Skip to main content
Erschienen in: Die Diabetologie 2/2024

26.01.2024 | Typ-2-Diabetes | Leitthema

Veränderungen der Sekretion und biologischen Wirksamkeit von Inkretinhormonen bei Typ-2-Diabetes

verfasst von: Dr. med. Daniel R. Quast, Prof. Dr. med. Dr. h.c. Michael A. Nauck

Erschienen in: Die Diabetologie | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Inkretinhormone „glucose-dependent insulinotropic peptide“ (GIP) und „glucagon-like peptide 1“ (GLP-1) werden nach oraler Zufuhr von Nährstoffen von enteroendokrinen Zellen der Darmschleimhaut sezerniert und stimulieren in Abhängigkeit von der Blutzuckerkonzentration die Insulinsekretion. Bei Gesunden sind sie zusammen für etwa 63–74 % des Inkretineffekts verantwortlich, wobei GIP verglichen mit GLP‑1 einen fast doppelt so hohen Anteil hat. Bei Menschen mit Typ-2-Diabetes ist der Inkretineffekt trotz einer insgesamt unveränderten Sekretion beider Hormone reduziert. Bei ihnen ist GIP weitgehend unwirksam, während die Wirksamkeit von GLP‑1 zur Senkung der Blutzuckerkonzentration, Stimulation der Insulin- und Hemmung der Glukagonsekretion deutlich besser erhalten ist. Die Ursachen für diese Unterschiede sind immer noch nicht abschließend geklärt, diskutiert werden eine verminderte Expression des GIP-Rezeptors bei Diabetes mellitus oder ein allgemein reduziertes Ansprechen funktionsgestörter β‑Zellen. Der weitgehende Wirkverlust von GIP beim Typ-2-Diabetes in Kurzzeitexperimenten zur Stimulation der Insulinsekretion ist nicht ohne Weiteres kompatibel mit der besonders hohen Effektivität von GIP-/GLP-1-Rezeptor-Koagonisten wie Tirzepatid in der Therapie des Typ-2-Diabetes, welcher zu einer stärkeren Senkung des HbA1c (Glykohämoglobin) und einer ausgeprägteren Gewichtsreduktion führt, als dies mit selektiven GLP-1-Rezeptor-Agonisten möglich ist. Das wachsende Verständnis der Sekretion und der biologischen Wirksamkeit von Inkretinhormonen im Kontext der pathophysiologischen Veränderungen beim Typ-2-Diabetes wird dazu beitragen, inkretinbasierte Medikamente zur Therapie des Typ-2-Diabetes und der Adipositas weiter zu optimieren.
Literatur
1.
Zurück zum Zitat Adriaenssens AE, Biggs EK, Darwish T et al (2019) Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metab 30:987–996 e986PubMedCentralPubMed Adriaenssens AE, Biggs EK, Darwish T et al (2019) Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake. Cell Metab 30:987–996 e986PubMedCentralPubMed
2.
Zurück zum Zitat Bergmann NC, Gasbjerg LS, Heimbürger SM et al (2020) No acute effects of exogenous glucose-dependent insulinotropic polypeptide on energy intake, appetite, or energy expenditure when added to treatment with a long-acting glucagon-Like Peptide 1 receptor agonist in men with type 2 diabetes. Diabetes Care 43:588–596PubMed Bergmann NC, Gasbjerg LS, Heimbürger SM et al (2020) No acute effects of exogenous glucose-dependent insulinotropic polypeptide on energy intake, appetite, or energy expenditure when added to treatment with a long-acting glucagon-Like Peptide 1 receptor agonist in men with type 2 diabetes. Diabetes Care 43:588–596PubMed
3.
Zurück zum Zitat Bergmann NC, Lund A, Gasbjerg LS et al (2019) Effects of combined GIP and GLP‑1 infusion on energy intake, appetite and energy expenditure in overweight/obese individuals: a randomised, crossover study. Diabetologia 62:665–675PubMed Bergmann NC, Lund A, Gasbjerg LS et al (2019) Effects of combined GIP and GLP‑1 infusion on energy intake, appetite and energy expenditure in overweight/obese individuals: a randomised, crossover study. Diabetologia 62:665–675PubMed
4.
Zurück zum Zitat Brown JC (1982) Gastric Inhibitory Polypeptide. Springer, Heidelberg Brown JC (1982) Gastric Inhibitory Polypeptide. Springer, Heidelberg
5.
Zurück zum Zitat Calanna S, Christensen M, Holst JJ et al (2013) Secretion of glucagon-like peptide‑1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia 56:965–972PubMedCentralPubMed Calanna S, Christensen M, Holst JJ et al (2013) Secretion of glucagon-like peptide‑1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia 56:965–972PubMedCentralPubMed
6.
Zurück zum Zitat Calanna S, Christensen M, Holst JJ et al (2013) Secretion of glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes: systematic review and meta-analysis of clinical studies. Diabetes Care 36:3346–3352PubMedCentralPubMed Calanna S, Christensen M, Holst JJ et al (2013) Secretion of glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes: systematic review and meta-analysis of clinical studies. Diabetes Care 36:3346–3352PubMedCentralPubMed
7.
Zurück zum Zitat Chia CW, Carlson OD, Kim W et al (2009) Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 58:1342–1349PubMedCentralPubMed Chia CW, Carlson OD, Kim W et al (2009) Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 58:1342–1349PubMedCentralPubMed
8.
Zurück zum Zitat Creutzfeldt W (1979) The incretin concept today. Diabetologia 16:75–85PubMed Creutzfeldt W (1979) The incretin concept today. Diabetologia 16:75–85PubMed
9.
Zurück zum Zitat Dupré J, Ross SA, Watson D et al (1973) Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 37:826–828PubMed Dupré J, Ross SA, Watson D et al (1973) Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 37:826–828PubMed
10.
Zurück zum Zitat Færch K, Torekov SS, Vistisen D et al (2015) GLP‑1 response to oral glucose is reduced in prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: The ADDITION-PRO Study. Diabetes 64:2513–2525PubMed Færch K, Torekov SS, Vistisen D et al (2015) GLP‑1 response to oral glucose is reduced in prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: The ADDITION-PRO Study. Diabetes 64:2513–2525PubMed
11.
Zurück zum Zitat Frias JP, Davies MJ, Rosenstock J et al (2021) Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 385:503–515PubMed Frias JP, Davies MJ, Rosenstock J et al (2021) Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 385:503–515PubMed
12.
Zurück zum Zitat Gasbjerg LS, Bergmann NC, Stensen S et al (2020) Evaluation of the incretin effect in humans using GIP and GLP‑1 receptor antagonists. Peptides 125:170183PubMed Gasbjerg LS, Bergmann NC, Stensen S et al (2020) Evaluation of the incretin effect in humans using GIP and GLP‑1 receptor antagonists. Peptides 125:170183PubMed
13.
Zurück zum Zitat Heise T, Mari A, Devries JH et al (2022) Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol 10:418–429PubMed Heise T, Mari A, Devries JH et al (2022) Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: a multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol 10:418–429PubMed
14.
Zurück zum Zitat Højberg PV, Vilsbøll T, Rabøl R et al (2009) Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide‑1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 52:199–207PubMed Højberg PV, Vilsbøll T, Rabøl R et al (2009) Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide‑1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 52:199–207PubMed
15.
Zurück zum Zitat Holst JJ, Ørskov C, Nielsen OV et al (1987) Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. Febs Lett 211:169–174PubMed Holst JJ, Ørskov C, Nielsen OV et al (1987) Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. Febs Lett 211:169–174PubMed
16.
Zurück zum Zitat Jones IR, Owens DR, Luzio S et al (1989) The glucose dependent insulinotropic polypeptide response to oral glucose and mixed meals is increased in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 32:668–677PubMed Jones IR, Owens DR, Luzio S et al (1989) The glucose dependent insulinotropic polypeptide response to oral glucose and mixed meals is increased in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 32:668–677PubMed
17.
Zurück zum Zitat Killion EA, Lu SC, Fort M et al (2020) Glucose-dependent insulinotropic polypeptide receptor therapies for the treatment of obesity, do agonists = antagonists? Endocr Rev 41: Killion EA, Lu SC, Fort M et al (2020) Glucose-dependent insulinotropic polypeptide receptor therapies for the treatment of obesity, do agonists = antagonists? Endocr Rev 41:
18.
Zurück zum Zitat Kjems LL, Holst JJ, Vølund A et al (2003) The influence of GLP‑1 on glucose-stimulated insulin secretion: Effects on β‑cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52:380–386PubMed Kjems LL, Holst JJ, Vølund A et al (2003) The influence of GLP‑1 on glucose-stimulated insulin secretion: Effects on β‑cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52:380–386PubMed
19.
Zurück zum Zitat Krarup T, Saurbrey N, Moody AJ et al (1987) Effect of porcine gastric inhibitory polypeptide on beta-cell function in type I and type II diabetes mellitus. Metabolism 36:677–682PubMed Krarup T, Saurbrey N, Moody AJ et al (1987) Effect of porcine gastric inhibitory polypeptide on beta-cell function in type I and type II diabetes mellitus. Metabolism 36:677–682PubMed
20.
Zurück zum Zitat Kreymann B, Williams G, Ghatei MA et al (1987) Glucagon-like peptide‑1 7–36: a physiological incretin in man. Lancet 2:1300–1304PubMed Kreymann B, Williams G, Ghatei MA et al (1987) Glucagon-like peptide‑1 7–36: a physiological incretin in man. Lancet 2:1300–1304PubMed
21.
Zurück zum Zitat Mclean BA, Wong CK, Campbell JE et al (2021) Revisiting the complexity of GLP‑1 action from sites of synthesis to receptor activation. Endocr Rev 42:101–132PubMed Mclean BA, Wong CK, Campbell JE et al (2021) Revisiting the complexity of GLP‑1 action from sites of synthesis to receptor activation. Endocr Rev 42:101–132PubMed
22.
Zurück zum Zitat Meier JJ, Nauck MA, Kranz D et al (2004) Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 53:654–662PubMed Meier JJ, Nauck MA, Kranz D et al (2004) Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 53:654–662PubMed
23.
Zurück zum Zitat Mentis N, Vardarli I, Köthe LD et al (2011) GIP does not potentiate the antidiabetic effects of GLP‑1 in hyperglycemic patients with type 2 diabetes. Diabetes 60:1270–1276PubMedCentralPubMed Mentis N, Vardarli I, Köthe LD et al (2011) GIP does not potentiate the antidiabetic effects of GLP‑1 in hyperglycemic patients with type 2 diabetes. Diabetes 60:1270–1276PubMedCentralPubMed
24.
Zurück zum Zitat Miyawaki K, Yamada Y, Ban N et al (2002) Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8:738–742PubMed Miyawaki K, Yamada Y, Ban N et al (2002) Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8:738–742PubMed
25.
Zurück zum Zitat Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619PubMedCentralPubMed Mojsov S, Weir GC, Habener JF (1987) Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79:616–619PubMedCentralPubMed
26.
Zurück zum Zitat Moon JS, Hong JH, Jung YJ et al (2022) SGLT-2 inhibitors and GLP‑1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab 33:424–442PubMed Moon JS, Hong JH, Jung YJ et al (2022) SGLT-2 inhibitors and GLP‑1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab 33:424–442PubMed
27.
28.
Zurück zum Zitat Nauck M, Stöckmann F, Ebert R et al (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29:46–52PubMed Nauck M, Stöckmann F, Ebert R et al (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29:46–52PubMed
29.
Zurück zum Zitat Nauck MA, D’alessio DA (2022) Tirzepatide, a dual GIP/GLP‑1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regarding glycaemic control and body weight reduction. Cardiovasc Diabetol 21:169PubMedCentralPubMed Nauck MA, D’alessio DA (2022) Tirzepatide, a dual GIP/GLP‑1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regarding glycaemic control and body weight reduction. Cardiovasc Diabetol 21:169PubMedCentralPubMed
30.
Zurück zum Zitat Nauck MA, El-Ouaghlidi A, Gabrys B et al (2004) Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes. Regul Pept 122:209–217PubMed Nauck MA, El-Ouaghlidi A, Gabrys B et al (2004) Secretion of incretin hormones (GIP and GLP-1) and incretin effect after oral glucose in first-degree relatives of patients with type 2 diabetes. Regul Pept 122:209–217PubMed
31.
Zurück zum Zitat Nauck MA, Heimesaat MM, Ørskov C et al (1993) Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type‑2 diabetes mellitus. J Clin Invest 91:301–307PubMedCentralPubMed Nauck MA, Heimesaat MM, Ørskov C et al (1993) Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type‑2 diabetes mellitus. J Clin Invest 91:301–307PubMedCentralPubMed
32.
Zurück zum Zitat Nauck MA, Kleine N, Ørskov C et al (1993) Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36:741–744PubMed Nauck MA, Kleine N, Ørskov C et al (1993) Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36:741–744PubMed
33.
Zurück zum Zitat Nauck MA, Meier JJ (2016) The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 4:525–536PubMed Nauck MA, Meier JJ (2016) The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 4:525–536PubMed
34.
35.
Zurück zum Zitat Nauck MA, Quast DR, Wefers J et al (2021) The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: a pathophysiological update. Diabetes Obes Metab 23(Suppl 3):5–29PubMed Nauck MA, Quast DR, Wefers J et al (2021) The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: a pathophysiological update. Diabetes Obes Metab 23(Suppl 3):5–29PubMed
36.
Zurück zum Zitat Nauck MA, Sauerwald A, Ritzel R et al (1998) Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure. Diabetes Care 21:1925–1931PubMed Nauck MA, Sauerwald A, Ritzel R et al (1998) Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure. Diabetes Care 21:1925–1931PubMed
37.
Zurück zum Zitat Oduori OS, Murao N, Shimomura K et al (2020) Gs/Gq signaling switch in β cells defines incretin effectiveness in diabetes. J Clin Invest 130:6639–6655PubMedCentralPubMed Oduori OS, Murao N, Shimomura K et al (2020) Gs/Gq signaling switch in β cells defines incretin effectiveness in diabetes. J Clin Invest 130:6639–6655PubMedCentralPubMed
38.
Zurück zum Zitat Pamir N, Lynn FC, Buchan AM et al (2003) Glucose-dependent insulinotropic polypeptide receptor null mice exhibit compensatory changes in the enteroinsular axis. Am J Physiol 284:E 931–E939 Pamir N, Lynn FC, Buchan AM et al (2003) Glucose-dependent insulinotropic polypeptide receptor null mice exhibit compensatory changes in the enteroinsular axis. Am J Physiol 284:E 931–E939
39.
Zurück zum Zitat Pederson RA, Satkunaraja M, Mcintosh CH et al (1998) Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor −/− mice. Diabetes 47:1046–1052PubMed Pederson RA, Satkunaraja M, Mcintosh CH et al (1998) Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor −/− mice. Diabetes 47:1046–1052PubMed
40.
Zurück zum Zitat Suzuki S, Kawai K, Ohashi S et al (1990) Reduced insulinotropic effects of glucagonlike peptide I‑(7–36)-amide and gastric inhibitory polypeptide in isolated perfused diabetic rat pancreas. Diabetes 39:1320–1325PubMed Suzuki S, Kawai K, Ohashi S et al (1990) Reduced insulinotropic effects of glucagonlike peptide I‑(7–36)-amide and gastric inhibitory polypeptide in isolated perfused diabetic rat pancreas. Diabetes 39:1320–1325PubMed
41.
Zurück zum Zitat Toft-Nielsen M‑B, Damholt MB, Madsbad S et al (2001) Determinants of the impaired secretion of glucagon-like peptide‑1 in type 2 diabetic patients. J Clin Endocrinol Metab 86:3717–3723PubMed Toft-Nielsen M‑B, Damholt MB, Madsbad S et al (2001) Determinants of the impaired secretion of glucagon-like peptide‑1 in type 2 diabetic patients. J Clin Endocrinol Metab 86:3717–3723PubMed
42.
Zurück zum Zitat Vardarli I, Arndt E, Deacon CF et al (2014) Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and “isoglycemic” intravenous glucose. Diabetes 63:663–674PubMed Vardarli I, Arndt E, Deacon CF et al (2014) Effects of sitagliptin and metformin treatment on incretin hormone and insulin secretory responses to oral and “isoglycemic” intravenous glucose. Diabetes 63:663–674PubMed
43.
Zurück zum Zitat Vilsbøll T, Krarup T, Deacon CF et al (2001) Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50:609–613PubMed Vilsbøll T, Krarup T, Deacon CF et al (2001) Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50:609–613PubMed
44.
Zurück zum Zitat Vilsbøll T, Krarup T, Madsbad S et al (2002) Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 45:1111–1119PubMed Vilsbøll T, Krarup T, Madsbad S et al (2002) Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 45:1111–1119PubMed
45.
Zurück zum Zitat Vollmer K, Holst JJ, Baller B et al (2008) Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 57:678–687PubMed Vollmer K, Holst JJ, Baller B et al (2008) Predictors of incretin concentrations in subjects with normal, impaired, and diabetic glucose tolerance. Diabetes 57:678–687PubMed
46.
Zurück zum Zitat Xu G, Kaneto H, Laybutt DR et al (2007) Downregulation of GLP‑1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes 56:1551–1558PubMed Xu G, Kaneto H, Laybutt DR et al (2007) Downregulation of GLP‑1 and GIP receptor expression by hyperglycemia: possible contribution to impaired incretin effects in diabetes. Diabetes 56:1551–1558PubMed
47.
Zurück zum Zitat Zhang Q, Delessa CT, Augustin R et al (2021) The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab 33:833–844 e835PubMedCentralPubMed Zhang Q, Delessa CT, Augustin R et al (2021) The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metab 33:833–844 e835PubMedCentralPubMed
Metadaten
Titel
Veränderungen der Sekretion und biologischen Wirksamkeit von Inkretinhormonen bei Typ-2-Diabetes
verfasst von
Dr. med. Daniel R. Quast
Prof. Dr. med. Dr. h.c. Michael A. Nauck
Publikationsdatum
26.01.2024
Verlag
Springer Medizin
Erschienen in
Die Diabetologie / Ausgabe 2/2024
Print ISSN: 2731-7447
Elektronische ISSN: 2731-7455
DOI
https://doi.org/10.1007/s11428-023-01146-w

Weitere Artikel der Ausgabe 2/2024

Die Diabetologie 2/2024 Zur Ausgabe

DDG Praxisempfehlungen

Therapie des Typ-2-Diabetes

Praxisempfehlungen der Deutschen Diabetes Gesellschaft

Kurz, prägnant und aktuell: Die Praxisempfehlungen der Deutschen Diabetes Gesellschaft.