Skip to main content
Erschienen in: Journal of Neurology 4/2015

01.04.2015 | Original Communication

Abnormal cerebellar volume and corticocerebellar dysfunction in early manifest Huntington’s disease

verfasst von: Robert Christian Wolf, Philipp Arthur Thomann, Fabio Sambataro, Nadine Donata Wolf, Nenad Vasic, G. Bernhard Landwehrmeyer, Sigurd Dietrich Süßmuth, Michael Orth

Erschienen in: Journal of Neurology | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

Evidence from animal models and neuropathological data has revealed cerebellar pathology in Huntington’s disease (HD). The extent of cerebellar dysfunction in preclinical stages and in early manifest HD is unclear. In this study, using MRI we investigated cerebellar changes in preclinical (preHD) and early manifest HD individuals. High-resolution structural MRI data at 3 Tesla were obtained from two independent preHD samples (n = 20/25 participants), from two independent cohorts of healthy controls (n = 20/24 participants) and from patients with early manifest HD (n = 20 participants). Resting-state functional MRI data were acquired from 20 healthy controls and 20 HD patients. Cerebellar volume was investigated using cerebellum-optimized voxel-based analysis methods. Corticocerebellar connectivity at rest was investigated by means of seed-region correlations. In both preHD samples, between-group analyses revealed no change of cerebellar volume. In contrast, early manifest HD patients exhibited lower right cerebellar lobule VIIa volume (p < 0.05 cluster-corrected). Within the control group regions functionally coupled to right cerebellar lobule VII comprised bilateral cerebellar regions, right prefrontal and cingulate areas, whereas within manifest HD, functional coupling was found in paracentral, lingual and inferior frontal areas. Paracentral connectivity strength in patients was associated with disease burden and motor symptoms. These data suggest intact cerebellar volume in preHD. In contrast, early manifest HD patients exhibit atrophy of specific cerebellar subregions and abnormal corticocerebellar functional coupling. In early HD, the association between paracentral lobule function and clinical parameters suggests that corticocerebellar connectivity strength is related to the evolution of HD biology and the severity of HD motor signs.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Vonsattel JP, Myers RH, Stevens TJ (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577CrossRefPubMed Vonsattel JP, Myers RH, Stevens TJ (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577CrossRefPubMed
3.
Zurück zum Zitat Vonsattel JP, Keller C, Cortes Ramirez EP (2011) Huntington’s disease—neuropathology. Handb Clin Neurol 100:83–100CrossRefPubMed Vonsattel JP, Keller C, Cortes Ramirez EP (2011) Huntington’s disease—neuropathology. Handb Clin Neurol 100:83–100CrossRefPubMed
4.
Zurück zum Zitat Hadzi TC, Hendricks AE, Latourelle JC, Lunetta KL, Cupples LA, Gillis T et al (2012) Assessment of cortical and striatal involvement in 523 Huntington disease brains. Neurology 79:1708–1715PubMedCentralCrossRefPubMed Hadzi TC, Hendricks AE, Latourelle JC, Lunetta KL, Cupples LA, Gillis T et al (2012) Assessment of cortical and striatal involvement in 523 Huntington disease brains. Neurology 79:1708–1715PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Kloppel S, Henley SM, Hobbs NZ, Wolf RC, Kassubek J, Tabrizi SJ et al (2009) Magnetic resonance imaging of Huntington’s disease: preparing for clinical trials. Neuroscience 164:205–219PubMedCentralCrossRefPubMed Kloppel S, Henley SM, Hobbs NZ, Wolf RC, Kassubek J, Tabrizi SJ et al (2009) Magnetic resonance imaging of Huntington’s disease: preparing for clinical trials. Neuroscience 164:205–219PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Wolf RC, Klöppel S (2013) Clinical significance of frontal cortex abnormalities in Huntington’s disease. Exp Neurol 247:39–44CrossRefPubMed Wolf RC, Klöppel S (2013) Clinical significance of frontal cortex abnormalities in Huntington’s disease. Exp Neurol 247:39–44CrossRefPubMed
7.
Zurück zum Zitat Weir DW, Sturrock A, Leavitt BR (2011) Development of biomarkers for Huntington’s disease. Lancet Neurol 10:573–590CrossRefPubMed Weir DW, Sturrock A, Leavitt BR (2011) Development of biomarkers for Huntington’s disease. Lancet Neurol 10:573–590CrossRefPubMed
8.
Zurück zum Zitat Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98CrossRefPubMed Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98CrossRefPubMed
9.
Zurück zum Zitat Wolf RC, Thomann PA, Thomann AK, Vasic N, Wolf ND, Landwehrmeyer GB et al (2013) Brain structure in preclinical Huntington’s disease: a multi-method approach. Neurodegener Dis 12:13–22CrossRefPubMed Wolf RC, Thomann PA, Thomann AK, Vasic N, Wolf ND, Landwehrmeyer GB et al (2013) Brain structure in preclinical Huntington’s disease: a multi-method approach. Neurodegener Dis 12:13–22CrossRefPubMed
10.
Zurück zum Zitat Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd D et al (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8:791–801PubMedCentralCrossRefPubMed Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd D et al (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8:791–801PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Tabrizi SJ, Scahill RI, Durr A, Roos RA, Leavitt BR, Jones R et al (2011) Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 10:31–42CrossRefPubMed Tabrizi SJ, Scahill RI, Durr A, Roos RA, Leavitt BR, Jones R et al (2011) Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurol 10:31–42CrossRefPubMed
12.
Zurück zum Zitat Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12:637–649CrossRefPubMed Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12:637–649CrossRefPubMed
13.
Zurück zum Zitat Hobbs NZ, Henley SM, Ridgway GR, Wild EJ, Barker RA, Scahill RI et al (2010) The progression of regional atrophy in premanifest and early Huntington’s disease: a longitudinal voxel-based morphometry study. J Neurol Neurosurg Psychiatry 81:756–763CrossRefPubMed Hobbs NZ, Henley SM, Ridgway GR, Wild EJ, Barker RA, Scahill RI et al (2010) The progression of regional atrophy in premanifest and early Huntington’s disease: a longitudinal voxel-based morphometry study. J Neurol Neurosurg Psychiatry 81:756–763CrossRefPubMed
15.
Zurück zum Zitat Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501CrossRefPubMed Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501CrossRefPubMed
16.
Zurück zum Zitat Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434CrossRefPubMed Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434CrossRefPubMed
17.
Zurück zum Zitat Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80:807–815CrossRefPubMed Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80:807–815CrossRefPubMed
18.
Zurück zum Zitat Papp KV, Kaplan RF, Snyder PJ (2011) Biological markers of cognition in prodromal Huntington’s disease: a review. Brain Cogn 77:280–291CrossRefPubMed Papp KV, Kaplan RF, Snyder PJ (2011) Biological markers of cognition in prodromal Huntington’s disease: a review. Brain Cogn 77:280–291CrossRefPubMed
19.
Zurück zum Zitat Papoutsi M, Labuschagne I, Tabrizi SJ, Stout JC (2014) The cognitive burden in Huntington’s disease: pathology, phenotype, and mechanisms of compensation. Mov Disord 29:673–683CrossRefPubMed Papoutsi M, Labuschagne I, Tabrizi SJ, Stout JC (2014) The cognitive burden in Huntington’s disease: pathology, phenotype, and mechanisms of compensation. Mov Disord 29:673–683CrossRefPubMed
20.
Zurück zum Zitat Dumas EM, van den Bogaard SJ, Middelkoop HA, Roos RA (2013) A review of cognition in Huntington’s disease. Front Biosci (Schol Ed) 5:1–18CrossRef Dumas EM, van den Bogaard SJ, Middelkoop HA, Roos RA (2013) A review of cognition in Huntington’s disease. Front Biosci (Schol Ed) 5:1–18CrossRef
21.
Zurück zum Zitat Fennema-Notestine C, Archibald SL, Jacobson MW, Corey-Bloom J, Paulsen JS, Peavy GM et al (2004) In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 63:989–995CrossRefPubMed Fennema-Notestine C, Archibald SL, Jacobson MW, Corey-Bloom J, Paulsen JS, Peavy GM et al (2004) In vivo evidence of cerebellar atrophy and cerebral white matter loss in Huntington disease. Neurology 63:989–995CrossRefPubMed
22.
Zurück zum Zitat Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620CrossRefPubMed Rosas HD, Koroshetz WJ, Chen YI, Skeuse C, Vangel M, Cudkowicz ME et al (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60:1615–1620CrossRefPubMed
23.
Zurück zum Zitat Turmaine M, Raza A, Mahal A, Mangiarini L, Bates GP, Davies SW (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci USA 97:8093–8097PubMedCentralCrossRefPubMed Turmaine M, Raza A, Mahal A, Mangiarini L, Bates GP, Davies SW (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci USA 97:8093–8097PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Dougherty SE, Reeves JL, Lesort M, Detloff PJ, Cowell RM (2013) Purkinje cell dysfunction and loss in a knock-in mouse model of Huntington disease. Exp Neurol 240:96–102PubMedCentralCrossRefPubMed Dougherty SE, Reeves JL, Lesort M, Detloff PJ, Cowell RM (2013) Purkinje cell dysfunction and loss in a knock-in mouse model of Huntington disease. Exp Neurol 240:96–102PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Tong Y, Ha TJ, Liu L, Nishimoto A, Reiner A, Goldowitz D (2011) Spatial and temporal requirements for huntingtin (Htt) in neuronal migration and survival during brain development. J Neurosci 31:14794–14799PubMedCentralCrossRefPubMed Tong Y, Ha TJ, Liu L, Nishimoto A, Reiner A, Goldowitz D (2011) Spatial and temporal requirements for huntingtin (Htt) in neuronal migration and survival during brain development. J Neurosci 31:14794–14799PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Rub U, Hoche F, Brunt ER, Heinsen H, Seidel K, Del Turco D et al (2012) Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 23:165–177CrossRefPubMed Rub U, Hoche F, Brunt ER, Heinsen H, Seidel K, Del Turco D et al (2012) Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 23:165–177CrossRefPubMed
27.
Zurück zum Zitat Werner CJ, Dogan I, Sass C, Mirzazade S, Schiefer J, Shah NJ et al (2014) Altered resting-state connectivity in Huntington’s disease. Hum Brain Mapp 35:2582–2593CrossRefPubMed Werner CJ, Dogan I, Sass C, Mirzazade S, Schiefer J, Shah NJ et al (2014) Altered resting-state connectivity in Huntington’s disease. Hum Brain Mapp 35:2582–2593CrossRefPubMed
28.
Zurück zum Zitat Wolf RC, Vasic N, Schonfeldt-Lecuona C, Ecker D, Landwehrmeyer GB (2009) Cortical dysfunction in patients with Huntington’s disease during working memory performance. Hum Brain Mapp 30:327–339CrossRefPubMed Wolf RC, Vasic N, Schonfeldt-Lecuona C, Ecker D, Landwehrmeyer GB (2009) Cortical dysfunction in patients with Huntington’s disease during working memory performance. Hum Brain Mapp 30:327–339CrossRefPubMed
29.
Zurück zum Zitat Novak MJ, Warren JD, Henley SM, Draganski B, Frackowiak RS, Tabrizi SJ (2012) Altered brain mechanisms of emotion processing in pre-manifest Huntington’s disease. Brain 135:1165–1179PubMedCentralCrossRefPubMed Novak MJ, Warren JD, Henley SM, Draganski B, Frackowiak RS, Tabrizi SJ (2012) Altered brain mechanisms of emotion processing in pre-manifest Huntington’s disease. Brain 135:1165–1179PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Georgiou-Karistianis N, Stout JC, Dominguez DJ, Carron SP, Ando A, Churchyard A et al (2014) Functional magnetic resonance imaging of working memory in Huntington’s disease: cross-sectional data from the IMAGE-HD study. Hum Brain Mapp 35:1847–1864CrossRefPubMed Georgiou-Karistianis N, Stout JC, Dominguez DJ, Carron SP, Ando A, Churchyard A et al (2014) Functional magnetic resonance imaging of working memory in Huntington’s disease: cross-sectional data from the IMAGE-HD study. Hum Brain Mapp 35:1847–1864CrossRefPubMed
31.
Zurück zum Zitat Zimbelman JL, Paulsen JS, Mikos AE, Reynolds NC, Hoffman RG, Rao SM (2007) fMRI detection of early neural dysfunction in preclinical Huntington’s disease. J Int Neuropsychol Soc 13:758–769CrossRefPubMed Zimbelman JL, Paulsen JS, Mikos AE, Reynolds NC, Hoffman RG, Rao SM (2007) fMRI detection of early neural dysfunction in preclinical Huntington’s disease. J Int Neuropsychol Soc 13:758–769CrossRefPubMed
32.
Zurück zum Zitat Scharmüller W, Ille R, Schienle A (2013) Cerebellar contributions to anger recognition deficits in Huntington’s disease. Cerebellum 12:819–825PubMedCentralCrossRefPubMed Scharmüller W, Ille R, Schienle A (2013) Cerebellar contributions to anger recognition deficits in Huntington’s disease. Cerebellum 12:819–825PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Gomez-Anson B, Alegret M, Munoz E, Monte GC, Alayrach E, Sanchez A et al (2009) Prefrontal cortex volume reduction on MRI in preclinical Huntington’s disease relates to visuomotor performance and CAG number. Parkinsonism Relat Disord 15:213–219CrossRefPubMed Gomez-Anson B, Alegret M, Munoz E, Monte GC, Alayrach E, Sanchez A et al (2009) Prefrontal cortex volume reduction on MRI in preclinical Huntington’s disease relates to visuomotor performance and CAG number. Parkinsonism Relat Disord 15:213–219CrossRefPubMed
34.
Zurück zum Zitat Scahill RI, Hobbs NZ, Say MJ, Bechtel N, Henley SM, Hyare H et al (2013) Clinical impairment in premanifest and early Huntington’s disease is associated with regionally specific atrophy. Hum Brain Mapp 34:519–529PubMed Scahill RI, Hobbs NZ, Say MJ, Bechtel N, Henley SM, Hyare H et al (2013) Clinical impairment in premanifest and early Huntington’s disease is associated with regionally specific atrophy. Hum Brain Mapp 34:519–529PubMed
35.
Zurück zum Zitat Henley SM, Ridgway GR, Scahill RI, Kloppel S, Tabrizi SJ, Fox NC et al (2010) Pitfalls in the use of voxel-based morphometry as a biomarker: examples from huntington disease. AJNR Am J Neuroradiol 31:711–719CrossRefPubMed Henley SM, Ridgway GR, Scahill RI, Kloppel S, Tabrizi SJ, Fox NC et al (2010) Pitfalls in the use of voxel-based morphometry as a biomarker: examples from huntington disease. AJNR Am J Neuroradiol 31:711–719CrossRefPubMed
36.
Zurück zum Zitat Lambrecq V, Langbour N, Guehl D, Bioulac B, Burbaud P, Rotgea J-Y (2013) Evolution of brain gray matter loss in Huntington’s disease: a meta-analysis. Eur J Neurol 12:819–825 Lambrecq V, Langbour N, Guehl D, Bioulac B, Burbaud P, Rotgea J-Y (2013) Evolution of brain gray matter loss in Huntington’s disease: a meta-analysis. Eur J Neurol 12:819–825
37.
Zurück zum Zitat Dogan I, Eickhoff SB, Schulz JB, Shah NJ, Laird AR, Fox PT et al (2013) Consistent neurodegeneration and its association with clinical progression in Huntington’s disease: a coordinate-based meta-analysis. Neurodegener Dis 12:23–35CrossRefPubMed Dogan I, Eickhoff SB, Schulz JB, Shah NJ, Laird AR, Fox PT et al (2013) Consistent neurodegeneration and its association with clinical progression in Huntington’s disease: a coordinate-based meta-analysis. Neurodegener Dis 12:23–35CrossRefPubMed
38.
Zurück zum Zitat Ruocco HH, Bonilha L, Li LM, Lopes-Cendes I, Cendes F (2008) Longitudinal analysis of regional gray matter loss in Huntington disease: effects of the length of the expanded CAG repeat. J Neurol Neurosurg Psychiatry 79:130–135CrossRefPubMed Ruocco HH, Bonilha L, Li LM, Lopes-Cendes I, Cendes F (2008) Longitudinal analysis of regional gray matter loss in Huntington disease: effects of the length of the expanded CAG repeat. J Neurol Neurosurg Psychiatry 79:130–135CrossRefPubMed
39.
Zurück zum Zitat Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11:42–53CrossRefPubMed Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11:42–53CrossRefPubMed
40.
Zurück zum Zitat Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138CrossRefPubMed Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138CrossRefPubMed
41.
Zurück zum Zitat Kuhn S, Romanowski A, Schubert F, Gallinat J (2011) Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct Funct 217:523–529CrossRefPubMed Kuhn S, Romanowski A, Schubert F, Gallinat J (2011) Reduction of cerebellar grey matter in Crus I and II in schizophrenia. Brain Struct Funct 217:523–529CrossRefPubMed
42.
Zurück zum Zitat Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19PubMedCentralPubMed Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19PubMedCentralPubMed
43.
Zurück zum Zitat van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534CrossRefPubMed van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534CrossRefPubMed
44.
Zurück zum Zitat Huntington-Study-Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11:136–142CrossRef Huntington-Study-Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11:136–142CrossRef
45.
Zurück zum Zitat Wolf RC, Sambataro F, Vasic N, Depping MS, Thomann PA, Landwehrmeyer B et al (2014) Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington’s disease. Psychol Med 44:3341–3356CrossRefPubMed Wolf RC, Sambataro F, Vasic N, Depping MS, Thomann PA, Landwehrmeyer B et al (2014) Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington’s disease. Psychol Med 44:3341–3356CrossRefPubMed
46.
Zurück zum Zitat Penney JB Jr, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH (1997) CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol 41:689–692CrossRefPubMed Penney JB Jr, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH (1997) CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol 41:689–692CrossRefPubMed
47.
Zurück zum Zitat Buckner RL, Krienen FM, Yeo BT (2013) Opportunities and limitations of intrinsic functional connectivity MRI. Nat Neurosci 16:832–837CrossRefPubMed Buckner RL, Krienen FM, Yeo BT (2013) Opportunities and limitations of intrinsic functional connectivity MRI. Nat Neurosci 16:832–837CrossRefPubMed
48.
Zurück zum Zitat Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106:2322–2345PubMedCentralCrossRefPubMed Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106:2322–2345PubMedCentralCrossRefPubMed
49.
Zurück zum Zitat Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRefPubMed Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRefPubMed
50.
Zurück zum Zitat Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051PubMedCentralCrossRefPubMed Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051PubMedCentralCrossRefPubMed
51.
Zurück zum Zitat Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678PubMedCentralCrossRefPubMed Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678PubMedCentralCrossRefPubMed
52.
Zurück zum Zitat Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29:828–838PubMedCentralCrossRefPubMed Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29:828–838PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Calhoun VD, Adali T, Pekar JJ (2004) A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasks. Magn Reson Imaging 22:1181–1191CrossRefPubMed Calhoun VD, Adali T, Pekar JJ (2004) A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasks. Magn Reson Imaging 22:1181–1191CrossRefPubMed
55.
Zurück zum Zitat Kuhn S, Romanowski A, Schilling C, Banaschewski T, Barbot A, Barker GJ et al (2012) Manual dexterity correlating with right lobule VI volume in right-handed 14-year-olds. Neuroimage 59:1615–1621CrossRefPubMed Kuhn S, Romanowski A, Schilling C, Banaschewski T, Barbot A, Barker GJ et al (2012) Manual dexterity correlating with right lobule VI volume in right-handed 14-year-olds. Neuroimage 59:1615–1621CrossRefPubMed
56.
Zurück zum Zitat D’Agata F, Caroppo P, Boghi A, Coriasco M, Caglio M, Baudino B et al (2011) Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients. Brain Struct Funct 216:275–288CrossRefPubMed D’Agata F, Caroppo P, Boghi A, Coriasco M, Caglio M, Baudino B et al (2011) Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients. Brain Struct Funct 216:275–288CrossRefPubMed
57.
Zurück zum Zitat Fan L, Tang Y, Sun B, Gong G, Chen ZJ, Lin X et al (2010) Sexual dimorphism and asymmetry in human cerebellum: an MRI-based morphometric study. Brain Res 1353:60–73CrossRefPubMed Fan L, Tang Y, Sun B, Gong G, Chen ZJ, Lin X et al (2010) Sexual dimorphism and asymmetry in human cerebellum: an MRI-based morphometric study. Brain Res 1353:60–73CrossRefPubMed
58.
Zurück zum Zitat Worsley KJ, Cao J, Paus T, Petrides M, Evans AC (1998) Applications of random field theory to functional connectivity. Hum Brain Mapp 6:364–367CrossRefPubMed Worsley KJ, Cao J, Paus T, Petrides M, Evans AC (1998) Applications of random field theory to functional connectivity. Hum Brain Mapp 6:364–367CrossRefPubMed
59.
Zurück zum Zitat Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46CrossRefPubMed Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46CrossRefPubMed
60.
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289CrossRefPubMed Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289CrossRefPubMed
61.
Zurück zum Zitat Lui S, Li T, Deng W, Jiang L, Wu Q, Tang H et al (2010) Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Arch Gen Psychiatry 67:783–792CrossRefPubMed Lui S, Li T, Deng W, Jiang L, Wu Q, Tang H et al (2010) Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Arch Gen Psychiatry 67:783–792CrossRefPubMed
62.
Zurück zum Zitat Nopoulos PC, Aylward EH, Ross CA, Johnson HJ, Magnotta VA, Juhl AR et al (2010) Cerebral cortex structure in prodromal Huntington disease. Neurobiol Dis 40:544–554PubMedCentralCrossRefPubMed Nopoulos PC, Aylward EH, Ross CA, Johnson HJ, Magnotta VA, Juhl AR et al (2010) Cerebral cortex structure in prodromal Huntington disease. Neurobiol Dis 40:544–554PubMedCentralCrossRefPubMed
63.
Zurück zum Zitat Aylward EH, Nopoulos PC, Ross CA, Langbehn DR, Pierson RK, Mills JA et al (2011) Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry 82:405–410PubMedCentralCrossRefPubMed Aylward EH, Nopoulos PC, Ross CA, Langbehn DR, Pierson RK, Mills JA et al (2011) Longitudinal change in regional brain volumes in prodromal Huntington disease. J Neurol Neurosurg Psychiatry 82:405–410PubMedCentralCrossRefPubMed
64.
Zurück zum Zitat Bhide PG, Day M, Sapp E, Schwarz C, Sheth A, Kim J et al (1996) Expression of normal and mutant huntingtin in the developing brain. J Neurosci 16:5523–5535PubMed Bhide PG, Day M, Sapp E, Schwarz C, Sheth A, Kim J et al (1996) Expression of normal and mutant huntingtin in the developing brain. J Neurosci 16:5523–5535PubMed
65.
Zurück zum Zitat Henley SM, Wild EJ, Hobbs NZ, Scahill RI, Ridgway GR, Macmanus DG et al (2009) Relationship between CAG repeat length and brain volume in premanifest and early Huntington’s disease. J Neurol 256:203–212CrossRefPubMed Henley SM, Wild EJ, Hobbs NZ, Scahill RI, Ridgway GR, Macmanus DG et al (2009) Relationship between CAG repeat length and brain volume in premanifest and early Huntington’s disease. J Neurol 256:203–212CrossRefPubMed
66.
Zurück zum Zitat Rosas HD, Hevelone ND, Zaleta AK, Greve DN, Salat DH, Fischl B (2005) Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 65:745–747CrossRefPubMed Rosas HD, Hevelone ND, Zaleta AK, Greve DN, Salat DH, Fischl B (2005) Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 65:745–747CrossRefPubMed
67.
Zurück zum Zitat Rosas HD, Salat DH, Lee SY, Zaleta AK, Pappu V, Fischl B et al (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131:1057–1068PubMedCentralCrossRefPubMed Rosas HD, Salat DH, Lee SY, Zaleta AK, Pappu V, Fischl B et al (2008) Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 131:1057–1068PubMedCentralCrossRefPubMed
68.
69.
Zurück zum Zitat Robinson FR, Fuchs AF (2001) The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci 24:981–1004CrossRefPubMed Robinson FR, Fuchs AF (2001) The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci 24:981–1004CrossRefPubMed
70.
Zurück zum Zitat Kloppel S, Draganski B, Siebner HR, Tabrizi SJ, Weiller C, Frackowiak RS (2009) Functional compensation of motor function in pre-symptomatic Huntington’s disease. Brain 132:1624–1632PubMedCentralCrossRefPubMed Kloppel S, Draganski B, Siebner HR, Tabrizi SJ, Weiller C, Frackowiak RS (2009) Functional compensation of motor function in pre-symptomatic Huntington’s disease. Brain 132:1624–1632PubMedCentralCrossRefPubMed
71.
Zurück zum Zitat Saft C, Schuttke A, Beste C, Andrich J, Heindel W, Pfleiderer B (2008) fMRI reveals altered auditory processing in manifest and premanifest Huntington’s disease. Neuropsychologia 46:1279–1289CrossRefPubMed Saft C, Schuttke A, Beste C, Andrich J, Heindel W, Pfleiderer B (2008) fMRI reveals altered auditory processing in manifest and premanifest Huntington’s disease. Neuropsychologia 46:1279–1289CrossRefPubMed
72.
Zurück zum Zitat Wolf RC, Vasic N, Schonfeldt-Lecuona C, Landwehrmeyer GB, Ecker D (2007) Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: evidence from event-related fMRI. Brain 130:2845–2857CrossRefPubMed Wolf RC, Vasic N, Schonfeldt-Lecuona C, Landwehrmeyer GB, Ecker D (2007) Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington’s disease: evidence from event-related fMRI. Brain 130:2845–2857CrossRefPubMed
73.
Zurück zum Zitat Rajah MN, D’Esposito M (2005) Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain 128:1964–1983CrossRefPubMed Rajah MN, D’Esposito M (2005) Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain 128:1964–1983CrossRefPubMed
74.
Zurück zum Zitat Dumas EM, van den Bogaard SJ, Hart EP, Soeter RP, van Buchem MA, van der Grond J et al (2014) Reduced functional brain connectivity prior to and after disease onset in Huntington’s disease. Neuroimage Clin 2:377–384CrossRef Dumas EM, van den Bogaard SJ, Hart EP, Soeter RP, van Buchem MA, van der Grond J et al (2014) Reduced functional brain connectivity prior to and after disease onset in Huntington’s disease. Neuroimage Clin 2:377–384CrossRef
75.
Zurück zum Zitat Allison T, McCarthy G, Luby M, Puce A, Spencer DD (1996) Localization of functional regions of human mesial cortex by somatosensory evoked potential recording and by cortical stimulation. Electroencephalogr Clin Neurophysiol 100:126–140CrossRefPubMed Allison T, McCarthy G, Luby M, Puce A, Spencer DD (1996) Localization of functional regions of human mesial cortex by somatosensory evoked potential recording and by cortical stimulation. Electroencephalogr Clin Neurophysiol 100:126–140CrossRefPubMed
76.
Zurück zum Zitat Puce A, Constable RT, Luby ML, McCarthy G, Nobre AC, Spencer DD et al (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83:262–270CrossRefPubMed Puce A, Constable RT, Luby ML, McCarthy G, Nobre AC, Spencer DD et al (1995) Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. J Neurosurg 83:262–270CrossRefPubMed
77.
Zurück zum Zitat Paradiso S, Turner BM, Paulsen JS, Jorge R, Ponto LL, Robinson RG (2008) Neural bases of dysphoria in early Huntington’s disease. Psychiatry Res 162:73–87PubMedCentralCrossRefPubMed Paradiso S, Turner BM, Paulsen JS, Jorge R, Ponto LL, Robinson RG (2008) Neural bases of dysphoria in early Huntington’s disease. Psychiatry Res 162:73–87PubMedCentralCrossRefPubMed
Metadaten
Titel
Abnormal cerebellar volume and corticocerebellar dysfunction in early manifest Huntington’s disease
verfasst von
Robert Christian Wolf
Philipp Arthur Thomann
Fabio Sambataro
Nadine Donata Wolf
Nenad Vasic
G. Bernhard Landwehrmeyer
Sigurd Dietrich Süßmuth
Michael Orth
Publikationsdatum
01.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 4/2015
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-015-7642-6

Weitere Artikel der Ausgabe 4/2015

Journal of Neurology 4/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.