Skip to main content
Erschienen in: European Journal of Nutrition 8/2015

01.12.2015 | Original Contribution

Apigenin manipulates the ubiquitin–proteasome system to rescue estrogen receptor-β from degradation and induce apoptosis in prostate cancer cells

verfasst von: Vishal Singh, Vikas Sharma, Vikas Verma, Deepti Pandey, Santosh K. Yadav, Jagdamba P. Maikhuri, Gopal Gupta

Erschienen in: European Journal of Nutrition | Ausgabe 8/2015

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To investigate apigenin (5,7,4-trihydroxyflavone), a dietary flavonoid with proteasome-inhibitory activity (desired for the management of multiple types of cancers), against FDA-approved anticancer proteasome inhibitor bortezomib in context to its effects on the tumor suppressor estrogen receptor-beta (ER-β) in prostate cancer cells.

Methods

Prostate cancer (PC-3) cells were treated with either apigenin or bortezomib, and proliferation inhibition was correlated with proteasomal biochemistry, ER-degradation and cell apoptosis.

Results

Apigenin specifically inhibited only chymotrypsin-like activity of proteasome without affecting trypsin and caspase-like activities, which was in contrast to the non-specific inhibition of all the three activities by bortezomib. Apigenin selectively increased the protein levels of ER-β at 1.8 and 10.0 µM (without affecting mRNA levels) and preferentially accumulated ubiquitinated ER-β over ER-α in PC-3. Apigenin-treated cells exhibited increased ER-β interactions with ubiquitin-protein ligase E6AP, downregulated PSMA5 (α-5 subunit for assembly of 20S proteasome) without affecting PSMB1 (β-1 subunit), PSMB2 (β-2 subunit) and PSMB5 (β-5 subunit, whose overexpression by bortezomib causes drug resistance) of proteasome at mRNA levels. Caspase-3 activation in PC-3 by apigenin was dependent on caspase-8 activity but independent of mitochondrial membrane depolarization. The deubiquitinase USP14 activity, which antagonizes degradation of proteins via proteasome, was significantly increased by apigenin treatment.

Conclusions

Apigenin selectively inhibits proteasomal degradation of tumor suppressor ER-β by specifically inhibiting chymotrypsin-like activity of proteasome, preventing its assembly via PSMA5 and inhibiting USP14 enzyme activity in prostate cancer cells, resulting in cancer cell apoptosis. Unlike bortezomib, apigenin’s actions are subtle, precise, mechanistically distinct and capable of abstaining drug resistance.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Papandreou CN, Logothetis CJ (2004) Bortezomib as a potential treatment for prostate cancer. Cancer Res 64:5036–5043CrossRef Papandreou CN, Logothetis CJ (2004) Bortezomib as a potential treatment for prostate cancer. Cancer Res 64:5036–5043CrossRef
3.
Zurück zum Zitat Chen L, Madura K (2005) Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 65:5599–5606CrossRef Chen L, Madura K (2005) Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 65:5599–5606CrossRef
4.
Zurück zum Zitat Voutsadakis IA, Papandreou CN (2012) The ubiquitin–proteasome system in prostate cancer and its transition to castration resistance. Urol Oncol 30:752–761CrossRef Voutsadakis IA, Papandreou CN (2012) The ubiquitin–proteasome system in prostate cancer and its transition to castration resistance. Urol Oncol 30:752–761CrossRef
5.
Zurück zum Zitat Zhang L, Littlejohn JE, Cui Y, Cao X, Peddaboina C, Smythe WR (2010) Characterization of bortezomib-adapted I-45 mesothelioma cells. Mol Cancer 9:110CrossRef Zhang L, Littlejohn JE, Cui Y, Cao X, Peddaboina C, Smythe WR (2010) Characterization of bortezomib-adapted I-45 mesothelioma cells. Mol Cancer 9:110CrossRef
6.
Zurück zum Zitat Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403CrossRef Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403CrossRef
7.
Zurück zum Zitat Poulaki V, Mitsiades CS, Kotoula V, Negri J, McMillin D, Miller JW, Mitsiades N (2007) The proteasome inhibitor bortezomib induces apoptosis in human retinoblastoma cell lines in vitro. Invest Ophthalmol Vis Sci 48:4706–4719CrossRef Poulaki V, Mitsiades CS, Kotoula V, Negri J, McMillin D, Miller JW, Mitsiades N (2007) The proteasome inhibitor bortezomib induces apoptosis in human retinoblastoma cell lines in vitro. Invest Ophthalmol Vis Sci 48:4706–4719CrossRef
8.
Zurück zum Zitat Kane RC, Farrell AT, Sridhara R, Pazdur R (2006) United States food and drug administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 12:2955–2960CrossRef Kane RC, Farrell AT, Sridhara R, Pazdur R (2006) United States food and drug administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 12:2955–2960CrossRef
9.
Zurück zum Zitat Parlati F, Lee SJ, Aujay M, Suzuki E, Levitsky K, Lorens JB, Micklem DR, Ruurs P, Sylvain C, Lu Y, Shenk KD, Bennett MK (2009) Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood 114:3439–3447CrossRef Parlati F, Lee SJ, Aujay M, Suzuki E, Levitsky K, Lorens JB, Micklem DR, Ruurs P, Sylvain C, Lu Y, Shenk KD, Bennett MK (2009) Carfilzomib can induce tumor cell death through selective inhibition of the chymotrypsin-like activity of the proteasome. Blood 114:3439–3447CrossRef
10.
Zurück zum Zitat Neilsen PM, Pehere AD, Pishas KI, Callen DF, Abell AD (2013) New 26S proteasome inhibitors with high selectivity for chymotrypsin-like activity and p53-dependent cytotoxicity. ACS Chem Biol 8:353–359CrossRef Neilsen PM, Pehere AD, Pishas KI, Callen DF, Abell AD (2013) New 26S proteasome inhibitors with high selectivity for chymotrypsin-like activity and p53-dependent cytotoxicity. ACS Chem Biol 8:353–359CrossRef
11.
Zurück zum Zitat Lu S, Chen Z, Yang J, Chen L, Gong S, Zhou H, Guo L, Wang J (2008) Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Exp Hematol 36:1278–1284CrossRef Lu S, Chen Z, Yang J, Chen L, Gong S, Zhou H, Guo L, Wang J (2008) Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Exp Hematol 36:1278–1284CrossRef
12.
Zurück zum Zitat Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP (2005) Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol 69:1421–1432CrossRef Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP (2005) Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol 69:1421–1432CrossRef
13.
Zurück zum Zitat Way TD, Kao MC, Lin JK (2004) Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 279:4479–4489CrossRef Way TD, Kao MC, Lin JK (2004) Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 279:4479–4489CrossRef
14.
Zurück zum Zitat He J, Xu Q, Wang M, Li C, Qian X, Shi Z, Liu LZ, Jiang BH (2012) Oral administration of apigenin inhibits metastasis through AKT/P70S6K1/MMP-9 Pathway in orthotopic ovarian tumor model. Int J Mol Sci 13:7271–7282CrossRef He J, Xu Q, Wang M, Li C, Qian X, Shi Z, Liu LZ, Jiang BH (2012) Oral administration of apigenin inhibits metastasis through AKT/P70S6K1/MMP-9 Pathway in orthotopic ovarian tumor model. Int J Mol Sci 13:7271–7282CrossRef
15.
Zurück zum Zitat Horvath LG, Henshall SM, Lee CS, Head DR, Quinn DI, Makela S, Delprado W, Golovsky D, Brenner PC, O’Neill G, Kooner R, Stricker PD, Grygiel JJ, Gustafsson JA, Sutherland RL (2001) Frequent loss of estrogen receptor-beta expression in prostate cancer. Cancer Res 61:5331–5335 Horvath LG, Henshall SM, Lee CS, Head DR, Quinn DI, Makela S, Delprado W, Golovsky D, Brenner PC, O’Neill G, Kooner R, Stricker PD, Grygiel JJ, Gustafsson JA, Sutherland RL (2001) Frequent loss of estrogen receptor-beta expression in prostate cancer. Cancer Res 61:5331–5335
16.
Zurück zum Zitat Ellem SJ, Risbridger GP (2009) The dual, opposing roles of estrogen in the prostate. Ann NY Acad Sci 1155:174–186CrossRef Ellem SJ, Risbridger GP (2009) The dual, opposing roles of estrogen in the prostate. Ann NY Acad Sci 1155:174–186CrossRef
17.
Zurück zum Zitat Li B, Hu Q, Xu R, Ren H, Fei E, Chen D, Wang G (2012) Hax-1 is rapidly degraded by the proteasome dependent on its PEST sequence. BMC Cell Biol 13:20CrossRef Li B, Hu Q, Xu R, Ren H, Fei E, Chen D, Wang G (2012) Hax-1 is rapidly degraded by the proteasome dependent on its PEST sequence. BMC Cell Biol 13:20CrossRef
19.
Zurück zum Zitat Harrington HA, Ho KL, Ghosh S, Tung KC (2008) Construction and analysis of a modular model of caspase activation in apoptosis. Theor Biol Med Model 5:26CrossRef Harrington HA, Ho KL, Ghosh S, Tung KC (2008) Construction and analysis of a modular model of caspase activation in apoptosis. Theor Biol Med Model 5:26CrossRef
20.
Zurück zum Zitat Kisselev AF, Garcia-Calvo M, Overkleeft HS, Peterson E, Pennington MW, Ploegh HL, Thornberry NA, Goldberg AL (2003) The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J Biol Chem 278:35869–35877CrossRef Kisselev AF, Garcia-Calvo M, Overkleeft HS, Peterson E, Pennington MW, Ploegh HL, Thornberry NA, Goldberg AL (2003) The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J Biol Chem 278:35869–35877CrossRef
21.
Zurück zum Zitat Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 96:10403–10408CrossRef Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 96:10403–10408CrossRef
22.
Zurück zum Zitat Dey P, Strom A, Gustafsson JA (2014) Estrogen receptor beta upregulates FOXO3a and causes induction of apoptosis through PUMA in prostate cancer. Oncogene 33:4213–4225CrossRef Dey P, Strom A, Gustafsson JA (2014) Estrogen receptor beta upregulates FOXO3a and causes induction of apoptosis through PUMA in prostate cancer. Oncogene 33:4213–4225CrossRef
23.
Zurück zum Zitat Lau KM, LaSpina M, Long J, Ho SM (2000) Expression of estrogen receptor (ER)-alpha and ER-beta in normal and malignant prostatic epithelial cells: regulation by methylation and involvement in growth regulation. Cancer Res 60:3175–3182 Lau KM, LaSpina M, Long J, Ho SM (2000) Expression of estrogen receptor (ER)-alpha and ER-beta in normal and malignant prostatic epithelial cells: regulation by methylation and involvement in growth regulation. Cancer Res 60:3175–3182
24.
Zurück zum Zitat Picard N, Charbonneau C, Sanchez M, Licznar A, Busson M, Lazennec G, Tremblay A (2008) Phosphorylation of activation function-1 regulates proteasome-dependent nuclear mobility and E6-associated protein ubiquitin ligase recruitment to the estrogen receptor beta. Mol Endocrinol 22:317–330CrossRef Picard N, Charbonneau C, Sanchez M, Licznar A, Busson M, Lazennec G, Tremblay A (2008) Phosphorylation of activation function-1 regulates proteasome-dependent nuclear mobility and E6-associated protein ubiquitin ligase recruitment to the estrogen receptor beta. Mol Endocrinol 22:317–330CrossRef
25.
Zurück zum Zitat Berry NB, Fan M, Nephew KP (2008) Estrogen receptor-alpha hinge-region lysines 302 and 303 regulate receptor degradation by the proteasome. Mol Endocrinol 22:1535–1551CrossRef Berry NB, Fan M, Nephew KP (2008) Estrogen receptor-alpha hinge-region lysines 302 and 303 regulate receptor degradation by the proteasome. Mol Endocrinol 22:1535–1551CrossRef
26.
Zurück zum Zitat Eakin CM, Maccoss MJ, Finney GL, Klevit RE (2007) Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci USA 104:5794–5799CrossRef Eakin CM, Maccoss MJ, Finney GL, Klevit RE (2007) Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci USA 104:5794–5799CrossRef
27.
Zurück zum Zitat Stanisic V, Malovannaya A, Qin J, Lonard DM, O’Malley BW (2009) OTU Domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) deubiquitinates estrogen receptor (ER) alpha and affects ER alpha transcriptional activity. J Biol Chem 284:16135–16145CrossRef Stanisic V, Malovannaya A, Qin J, Lonard DM, O’Malley BW (2009) OTU Domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) deubiquitinates estrogen receptor (ER) alpha and affects ER alpha transcriptional activity. J Biol Chem 284:16135–16145CrossRef
28.
Zurück zum Zitat Tateishi Y, Sonoo R, Sekiya Y, Sunahara N, Kawano M, Wayama M, Hirota R, Kawabe Y, Murayama A, Kato S, Kimura K, Yanagisawa J (2006) Turning off estrogen receptor beta-mediated transcription requires estrogen-dependent receptor proteolysis. Mol Cell Biol 26:7966–7976CrossRef Tateishi Y, Sonoo R, Sekiya Y, Sunahara N, Kawano M, Wayama M, Hirota R, Kawabe Y, Murayama A, Kato S, Kimura K, Yanagisawa J (2006) Turning off estrogen receptor beta-mediated transcription requires estrogen-dependent receptor proteolysis. Mol Cell Biol 26:7966–7976CrossRef
29.
Zurück zum Zitat Matthews J, Gustafsson JA (2003) Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv 3:281–292CrossRef Matthews J, Gustafsson JA (2003) Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv 3:281–292CrossRef
30.
Zurück zum Zitat Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM, Corbo L (2011) Cracking the estrogen receptor’s posttranslational code in breast tumors. Endocr Rev 32:597–622CrossRef Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM, Corbo L (2011) Cracking the estrogen receptor’s posttranslational code in breast tumors. Endocr Rev 32:597–622CrossRef
31.
Zurück zum Zitat Hirano Y, Hendil KB, Yashiroda H, Iemura S, Nagane R, Hioki Y et al (2005) A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437:1381–1385CrossRef Hirano Y, Hendil KB, Yashiroda H, Iemura S, Nagane R, Hioki Y et al (2005) A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 437:1381–1385CrossRef
32.
Zurück zum Zitat Arlt A, Bauer I, Schafmayer C, Tepel J, Muerkoster SS, Brosch M, Roder C, Kalthoff H, Hampe J, Moyer MP, Folsch UR, Schafer H (2009) Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene 28:3983–3996CrossRef Arlt A, Bauer I, Schafmayer C, Tepel J, Muerkoster SS, Brosch M, Roder C, Kalthoff H, Hampe J, Moyer MP, Folsch UR, Schafer H (2009) Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene 28:3983–3996CrossRef
33.
Zurück zum Zitat Sacco JJ, Coulson JM, Clague MJ, Urbe S (2010) Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62:140–157 Sacco JJ, Coulson JM, Clague MJ, Urbe S (2010) Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62:140–157
34.
Zurück zum Zitat Song L, Rape M (2008) Reverse the curse—the role of deubiquitination in cell cycle control. Curr Opin Cell Biol 20:156–163CrossRef Song L, Rape M (2008) Reverse the curse—the role of deubiquitination in cell cycle control. Curr Opin Cell Biol 20:156–163CrossRef
35.
Zurück zum Zitat D’Arcy P, Linder S (2012) Proteasome deubiquitinases as novel targets for cancer therapy. Int J Biochem Cell Biol 44:1729–1738CrossRef D’Arcy P, Linder S (2012) Proteasome deubiquitinases as novel targets for cancer therapy. Int J Biochem Cell Biol 44:1729–1738CrossRef
36.
Zurück zum Zitat Lee MJ, Lee BH, Hanna J, King RW, Finley D (2011) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics 10:R110 003871CrossRef Lee MJ, Lee BH, Hanna J, King RW, Finley D (2011) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics 10:R110 003871CrossRef
37.
Zurück zum Zitat Kumar R, Verma V, Jain A, Jain RK, Maikhuri JP, Gupta G (2011) Synergistic chemoprotective mechanisms of dietary phytoestrogens in a select combination against prostate cancer. J Nutr Biochem 22:723–731CrossRef Kumar R, Verma V, Jain A, Jain RK, Maikhuri JP, Gupta G (2011) Synergistic chemoprotective mechanisms of dietary phytoestrogens in a select combination against prostate cancer. J Nutr Biochem 22:723–731CrossRef
Metadaten
Titel
Apigenin manipulates the ubiquitin–proteasome system to rescue estrogen receptor-β from degradation and induce apoptosis in prostate cancer cells
verfasst von
Vishal Singh
Vikas Sharma
Vikas Verma
Deepti Pandey
Santosh K. Yadav
Jagdamba P. Maikhuri
Gopal Gupta
Publikationsdatum
01.12.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nutrition / Ausgabe 8/2015
Print ISSN: 1436-6207
Elektronische ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-014-0803-z

Weitere Artikel der Ausgabe 8/2015

European Journal of Nutrition 8/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.