Skip to main content
Erschienen in: European Journal of Trauma and Emergency Surgery 6/2023

Open Access 22.07.2023 | Original Article

Assessing lower extremity loading during activities of daily living using continuous-scale physical functional performance 10 and wireless sensor insoles: a comparative study between younger and older adults

verfasst von: Sonja Häckel, Tobias Kämpf, Heiner Baur, Arlene von Aesch, Reto Werner Kressig, Andreas Ernst Stuck, Johannes Dominik Bastian

Erschienen in: European Journal of Trauma and Emergency Surgery | Ausgabe 6/2023

Abstract

Purpose

This study aims to investigate the lower extremity loading during activities of daily living (ADLs) using the Continuous Scale of Physical Functional Performance (CS-PFP 10) test and wireless sensor insoles in healthy volunteers.

Methods

In this study, 42 participants were recruited, consisting of 21 healthy older adults (mean age 69.6 ± 4.6 years) and 21 younger healthy adults (mean age 23.6 ± 1.8 years). The performance of the subjects during ADLs was assessed using the CS-PFP 10 test, which comprised 10 tasks. The lower extremity loading was measured using wireless sensor insoles (OpenGo, Moticon, Munich, Germany) during the CS-PFP 10 test, which enabled the measurement of ground reaction forces, including the mean and maximum total forces during the stance phase, expressed in units of body weight (BW).

Results

The total CS-PFP 10 score was significantly lower in older participants compared to the younger group (mean total score of 57.1 ± 9.0 compared to 78.2 ± 5.4, respectively). No significant differences in the mean total forces were found between older and young participants. The highest maximum total forces were observed during the tasks ‘endurance walk’ (young: 1.97 ± 0.34 BW, old: 1.70 ± 0.43 BW) and ‘climbing stairs’ (young: 1.65 ± 0.36 BW, old: 1.52 ± 0.28 BW). Only in the endurance walk, older participants showed a significantly higher maximum total force (p < 0.001).

Conclusion

The use of wireless sensor insoles in a laboratory setting can effectively measure the load on the lower extremities during ADLs. These findings could offer valuable insights for developing tailored recommendations for patients with partial weight-bearing restrictions.

Introduction

The optimal weight-bearing and mobilization protocol for postoperative rehabilitation of the lower extremity, especially in patients with fragility fractures, has been a topic of ongoing debate. While some experts suggest protocols that involve immediate mobilization and weight-bearing, others argue for more cautious approaches, such as bed-to-wheelchair mobilization. However, limited evidence exists to conclusively determine which approach is superior [1, 2]. A contributing factor to this controversy may be the limited knowledge about the exact load placed on the leg during activities of daily living (ADL). While previous research has focused on measuring weight-bearing using methods such as force plates, pressure sensors, and motion capture systems [35], these have primarily been limited to static situations, such as standing or sitting still, and laboratory settings. The utilization of wireless sensor insoles to measure ground reaction forces (GRFs) during ADLs represents a promising new approach for gaining a better understanding of lower extremity loading in ADLs. These insoles are equipped with capacitive pressure sensors that measure plantar pressures. This ensures the calculation of applied ground reaction forces during stance and provides simple spatiotemporal gait parameters [6]. Some studies have utilized wireless sensor insoles to measure weight bearing during specific activities, such as walking or stair climbing, but there is limited research that has used these sensors to measure weight bearing during a broader range of activities [7, 8].
The Continuous-Scale Physical Functional Performance (CS-PFP) test offers the possibility to assess an individual's physical performance [9]. The short form of the test, the CS-PFP 10, includes 10 tasks that evaluate various aspects of functional mobility such as stair climbing, carrying groceries, and walking on different surfaces [10]. The present study aimed to investigate GRFs of the lower extremity during ADLs using the CS-PFP 10 test and wireless sensor insoles.

Methods

Study design and participants

This study utilized a prospective comparative cohort design and received a waiver of ethical approval from the Institutional Review Board (IRB). Two groups were formed: one group included female and male ambulatory volunteers aged 65 years or older, without either a lack of motivation, frailty, impaired cognition, gait disturbances, or previous orthopedic surgery on the lower leg. The other group included volunteers under 30 years of age. To assess motivation, the short version of the “Geriatric Depression Scale-15 (GDS)” [11] was used, and cognition was evaluated using the “Montreal Cognitive Assessment (MoCA-Score)” [12] and “Mini-Mental State (MMS) [13].” Grip strength was measured to test for weakness [14]. The “FRAIL scale” [15] “Katz Index,” [16], and “SARC-F” [17] were collected to describe the functional status and frailty of the participants. The study included 42 participants who met the following inclusion criteria: Age < 30 years or > 65 years, no musculoskeletal limitations, independence in ADLs without assistance from others (as self-reported), and self-consideration as fit. The exclusion criteria were individuals with gait disorders, frailty, or cognitive impairments.
Between the two groups, significantly different grip strength and FRAIL scale were seen (Table 1).
Table 1
Demographic characteristics and clinical scores of the study participants
Participants characteristics
Young adults (n = 21)
Older adults (n = 21)
p value
Female, n (%)
10 (47.6)
12 (57.1)
0.792
Age (years), mean (SD)
23.6 (± 1.8)
69.6 (± 4.6)
< 0.001
Height (cm), mean (SD)
178.4 (± 10.7)
172.5 (± 9.8)
0.274
Weight (kg), mean (SD)
72.9 (± 15.1)
74.8 (± 15.0)
0.791
BMI, mean (SD)
22.7 (± 2.8)
24.9 (± 3.4)
0.123
Motivation
 GDS-15, mean (SD)
0 (± 0)
0.15 (± 0.7)
> 0.999
  Pathological result ≥ 5 (n)
0
0
 
Cognition
 MoCA-Score, mean (SD)
29.5 (± 0.6)
28.7 (± 1.2)
0.094
  Pathological result < 26 (n)
0
0
 
 MMS, mean (SD)
29.8 (± 0.4)
29.4 (± 0.6)
0.282
  Pathological result < 24 (n)
0
0
 
Weakness
 Handgrip strength (kg), mean (SD)
38 (± 11)
30 (± 8)
0.114
 Handgrip strength (N), mean (SD)
377 (± 108)
293 (± 80)
0.114
  Pathological result (n) [11]
7
5
 
Frailty
 FRAIL Scale, mean (SD)
1.2 (± 0.4)
1.9 (± 0.4)
< 0.001
  Pathological result ≥ 3 pt. (n)
0
0
 
 Katz Index, mean (SD)
6 (± 0)
6 (± 0)
> 0.999
  Pathological result < 6 (n)
0
0
 
 SARC-F, mean (SD)
0 (± 0)
0.2 (± 0.4)
0.286
  Pathological result > 4 pt. (n)
0
0
 
Geriatric Depression Scale-15 (GDS-15), Montreal Cognitive Assessment (MoCA), and Mini-Mental State (MMS) scores are presented. Nonparametric tests (Mann–Whitney test) with p values adjusted using the Holm–Šídák method were used for statistical analysis
p < 0.05 is considered statistically significant (in bold)

Standardized measurement of ADLs

The CS-PFP-10 test was employed as a standardized measurement for assessing ADLs. The CS-PFP-10 test consists of ten tasks (Table 2), which assess the physical functioning of subjects across five subgroups: upper body strength (UBS), lower body strength (LBS), upper body flexibility (UBF), balance and coordination (BAC), and endurance (END) [9, 10]. The test is scored on a point scale and includes all abilities relevant to ADLs. The tasks gradually increase in intensity, from test situation to test situation (1–10), to accurately measure the physical abilities of the subjects. Participants are instructed to perform each task with maximum effort, completing them as quickly as possible and carrying as much weight as possible. To ensure safety, a safety belt is worn by the participant, allowing the tester to catch any potential falls. Additionally, subjects are closely monitored during all tasks (Table 2). The CS-PFP 10 total score is obtained by calculating the average corrected score of all tasks, while the total score for each domain is obtained by calculating the average score of the tasks in that domain. The scoring system for the CS-PFP 10 test ranges from 0 to 100, where a score of 0 to 47 indicates an increased likelihood of functional dependence, a score of 48 to 56 indicates being at risk of losing independence, and a score of 57 to 100 predicts independence in ADLs [10, 18].
Table 2
Overview of the Continuous Scale of Physical Functional Performance (CS-PFP 10) task
Task
Description
Task effort
Tested subgroups
Measurements
1
Kitchen pot carry
Low effort (personal)
Upper body strength, balance, and coordination
Time, weight
2
Put on/take off a jacket
Upper body flexibility, balance, and coordination
Time
3
Scarves pickup
Lower body strength, balance, and coordination
Time
4
Maximal reach
Upper body flexibility, balance, and coordination
Distance (initial and final)
5
Floor sweep
Medium effort (household)
Lower body strength, balance, and coordination
Time
6a
Laundry loading
Upper body strength, Lower body strength
Time
6b
Laundry unloading
Upper body strength, Lower body strength
Time
7
Sit down and get up from the floor
Lower body strength, balance, and coordination
Time
8
Stair climbing
Hard effort (mobility)
Lower body strength
Time
9
Grocery carrying and walking
Upper body strength, Lower body strength, balance, and coordination
Time and weight
10
6 min walk
Endurance
Distance

Load measurement of the lower extremity

The primary outcome of this study was the maximum total force, which refers to the highest amount of force exerted on the ground during the stance phase expressed in units of body weight (BW). Secondary outcomes were the mean total force, which refers to the average amount of force exerted on the ground, expressed in BW [3], and the CS-PFP 10 score of the participants. To measure the maximum and mean, we used the OpenGo insole (Moticon GmbH, Munich, Germany) containing 13 capacitive pressure sensors and a 3D accelerometer (Fig. 1A) [19]. The insole was placed inside the participants’ shoes, and it measured the force exerted during the tasks of the CS-PFP-10. The proprietary Moticon science software (Version 03.03.20) (Fig. 1B) automatically analyzed and calculated the mean and maximum ground reaction forces.

Experimental protocol

The recruitment of participants was initiated according to the aforementioned inclusion criteria. Additional scores were collected following participants’ consent to participate in the study. Furthermore, all participants received instructions based on the guidelines provided for the CS-PFP-10 test. Subsequently, all participants were equipped with the appropriate sensor insoles and commenced the CS-PFP-10 test. Once the test was completed, the CS-PFP-10 scores were calculated, and the recorded GRFs were analyzed using specialized software (Moticon, Germany).

Statistical Analysis

For non-normally distributed continuous data, a nonparametric Mann–Whitney test with p-values adjusted using the Holm–Šídák method was used for analysis. Normally distributed continuous data were analyzed using ordinary two-way ANOVA. Data are presented as mean ± SD, and the level of significance was set at p < 0.05. p values were calculated with a 95% confidence interval using IBM SPSS Statistics Version 28.0 for Macintosh (IBM Corp., Armonk, NY, USA).

Results

The analysis of the PFP-10 test showed that the group with younger participants had significantly higher scores compared to the older group, with a mean total score of 78.2 (SD 5.4) compared to 57.1 (SD 9.0), respectively (Fig. 1). The UBS subscore was highest in the young group (94.0, SD 6.6), while the older group did best in UBF (75.6 SD 9.4). Both groups had the lowest subscore in LBS, with the younger group scoring 73.2 (SD 7.3) and the older group significantly lower at 49.1 (SD 10.7) (Fig. 2).
Three older participants in our study scored below 47 on the CS-PFP 10 test, indicating dependence on activities of daily living. Nevertheless, we included them in our analysis of lower extremity loading as they reported being independent in ADLs, with no assistance required from third parties.

Lower extremities loading during activities of daily living

Ground reaction forces on each limb were evaluated using the wireless OpenGo insole (Moticon GmbH, Munich, Germany) in all 10 tasks of the CS-PFP-10. However, due to a measurement error, only 20 older participants were included in the analysis.
In terms of the maximum total force, younger participants showed significantly higher forces in Task 10 (6-min walk), with p < 0.001. The hard effort tasks of the CS-PFP 10, including Task 8 (stair climbing), Task 9 (grocery carrying and walking), and Task 10 (6-min walk), exhibited the highest maximum force of 1.37 ± 0.18 BW to 1.97 ± 0.34 BW in younger participants and 1.40 ± 0.18 BW to 1.70 ± 0.43 BW in older participants (Fig. 3B, Table 3).
Table 3
Comparison of ground reaction forces during the CS-PFP-10 test (10 tasks) between young (n = 21) and old healthy (n = 20) volunteers
Mean total force (unit to body weight), SD
Maximum total force (unit to bodyweight), SD
CS-PFP 10 task
Young adults
CS-PFP 10 task
Older adults
CS-PFP 10 Task
Young adults
CS-PFP 10 task
Older adults
10
0.57 ± 0.04
10
0.56 ± 0.06
10
1.97 ± 0.34
10
1.70 ± 0.43
4
0.53 ± 0.04
4
0.53 ± 0.08
8
1.65 ± 0.36
8
1.52 ± 0.28
9
0.49 ± 0.04
8
0.49 ± 0.07
9
1.37 ± 0.18
9
1.40 ± 0.18
8
0.47 ± 0.04
9
0.49 ± 0.06
5
1.20 ± 0.10
4
1.15 ± 0.16
6a
0.46 ± 0.05
6a
0.46 ± 0.08
4
1.18 ± 0.19
5
1.15 ± 0.18
6b
0.45 ± 0.08
3
0.45 ± 0.08
1
1.08 ± 0.16
1
1.06 ± 0.09
5
0.45 ± 0.07
5
0.45 ± 0.06
6a
1.02 ± 0.11
6a
1.00 ± 0.14
3
0.44 ± 0.06
2
0.43 ± 0.08
6b
0.98 ± 0.13
7
0.97 ± 0.14
2
0.43 ± 0.04
6b
0.41 ± 0.07
3
0.88 ± 0.12
3
0.95 ± 0.10
1
0.39 ± 0.04
1
0.41 ± 0.05
7
0.84 ± 0.12
2
0.93 ± 0.25
7
0.32 ± 0.04
7
0.29 ± 0.05
2
0.78 ± 0.14
6b
0.92 ± 0.11
Mean total force and maximum total force were measured using OpenGo Sensor Insoles and are presented in units of body weight, sorted from highest to lowest force. Highlighted in underline are the three highest and lowest tasks. The data shown are the means of measurements from both right and left insoles
p < 0.05 is considered statistically significant (in bold)
Comparing young (n = 21) and older (n = 20) participants, there was no significant difference in the mean total force (Fig. 3). The highest mean total force for both age groups was achieved in Task 10 (6-min walk), with 0.57 ± 0.04 BW and 0.56 ± 0.06 BW for young and older participants, respectively. The lowest force was observed in Task 7 (sit down and get up from the floor), with 0.32 ± 0.04 BW and 0.29 ± 0.05 BW for young and older participants, respectively (Fig. 3A, Table 3).
To investigate the impact of older participants' independence in ADLs based on their CS-PFP 10 score, we categorized them into three subgroups: dependent (n = 3), borderline independent (n = 8), and independent (n = 9). Subsequently, we analyzed the GRFs for each task of the CS-PFP 10 test within each subgroup and found no significant differences in the mean or maximum total forces relative to BW (data not shown).

Discussion

This study aimed to use the CS PFP-10 test to compare the lower extremity force during ADLs between healthy young and older participants. This study is the first to investigate the lower extremity load during ADLs in both age groups using the CS-PFP 10 test.
There is currently a lack of a systematic approach to personalizing postoperative rehabilitation protocols for old patients after fracture fixation, as discussed in previous research [2]. The ideal rehabilitation protocol should balance the need to protect those who cannot comply with weight-bearing restrictions while also assisting others in mobilization with partial weight-bearing and minimizing the risk of inadvertent overloading. In clinical practice, various considerations influence surgeons when determining weight-bearing restrictions in older adults. These factors include fracture type, comminution, bone quality, the accuracy of reduction, implant positioning and stability, as well as patient-specific factors such as the ability to adhere to postoperative weight-bearing restrictions. There is also a potential “cost–benefit ratio” to consider when deciding on these restrictions, particularly in patients who are unable to comply with partial weight-bearing instructions [20]. Overloading the osteosynthetic construct before fracture healing may result in failure, requiring revision surgery with significant morbidity in older patients. Unstable trochanteric fractures, especially in the presence of poor bone quality and suboptimal fracture fixation, have been associated with failure rates of over 50% [21]. Accordingly, no clear consensus exists on optimal aftercare for unstable trochanteric fractures treated with intramedullary nailing [2]. On the other hand, prolonged immobilization can have several detrimental effects. It can lead to muscle disuse and atrophy, resulting in muscle weakness, loss of muscle mass, and decreased functional capacity [22]. Immobilization can also cause joint stiffness and contractures, limiting the range of motion and impairing joint function, leading to decreased mobility and difficulties with ADLs [23]. Additionally, immobilization can accelerate bone loss, increasing the risk of osteoporosis and fractures, further compromising the healing process and functional recovery [24]. Therefore, early weight bearing and minimizing immobilization are beneficial to preserve muscle strength, joint function, bone density, and overall functional recovery in older adults.
The CS-PFP-10 is a widely accepted and validated tool for assessing an individual's ability to perform ADLs. Its tasks are standardized with precise specifications, making it a valuable tool for cross-laboratory comparisons. Previous studies have utilized the CS-PFP-10 to evaluate patients with various medical conditions, including chronic obstructive pulmonary disease and heart failure, as well as to investigate the relationship between functional performance and the risk of falls [2527]. In our study, all young participants scored > 57, indicative of physical reserve and independent living status [28]. The results of our study demonstrate that older participants had significantly lower scores on both the total CS-PFP 10 score and all subcategories compared to their younger counterparts. Notably, three older participants scored below 47 on the CS-PFP 10 test, indicating a lower physical reserve and a dependent living status. Due to their self-reported independence, we included them in our analysis. We acknowledge that the use of subjective self-reported values rather than objective measurement tools such as the Short-Form Health Survey Physical Function scale may have limitations. Nevertheless, other measurements of cognitive function, weakness, and frailty did not reveal any significant difference between younger and older participants.
To accurately measure load bearing during ADLs, we utilized a wireless sensor insole (Open Go, Moticon, Germany), which has already been clinically validated [6]. This innovative technology has been utilized in various clinical studies, including those focused on gait analysis in older patients and also in Parkinson's patients [29] as well as analyzing pathological gait patterns after talus fractures [30]. Studies have shown that using sensors and providing biofeedback can improve adherence to weight-bearing restrictions [31, 32]. This adherence is crucial for successful post-surgical outcomes. Additionally, wireless sensor insoles can be particularly useful for patients in remote areas, allowing healthcare professionals to monitor adherence to weight-bearing instructions in telehealth settings [33]. To the best of our knowledge, this is the first study to use this technology for measurements of ADLs. In this study, we specifically directed our attention to ADLs rather than focusing on exercises typically performed in a rehabilitation setting. The rationale behind this choice was to investigate ADLs in order to refine post-surgical protocols not only within a rehabilitation environment but also in the patients' home and daily lives. Exercises often involve higher magnitudes of load and repetitive loading patterns compared to ADLs [34]. These exercises are designed to intentionally apply controlled loads to target specific muscle groups or achieve specific fitness goals. On the other hand, ADLs encompass a broader range of movements and loading patterns that may be less predictable or repetitive in nature.
Our results identified two tasks with a high load on the lower limb (> 1.5 BW) in all participants, regardless of age. Stair climbing (CS-PFP 10 task 9) and a 6-min walk (CS-PFP 10 task 10) resulted in the highest loads on the lower limb. We found a significant difference in maximum total forces between younger and older participants in the 6-min walk test (CS-PFP 10 task 10). However, there was no significant difference in the mean total force on the lower extremity load. The literature suggests that older individuals tend to adopt a more cautious gait [35]. Other studies have shown that age-related decline in muscular capabilities at the ankle may contribute to decreased walking performance in older adults [36]. Moreover, reduced overall muscular strength could negatively affect gait performance [37].

Limitations and Strengths

One potential limitation of the CS-PFP 10 test is its duration, which takes approximately one hour per subject and requires a certified examiner to be present throughout the test. While this standardized approach is a strength, it may be taxing for participants and examiners alike. However, the reliability and validity of the CS-PFP 10 test have been established in previous studies. Using the validated German version in this study further strengthens its utility for measuring physical function in older adults [18, 28]. Another limitation is that the GDS, MoCA, MMS, FRAIL Scale, Katz Index, and SARC-F used in our study have been primarily validated in older adults and may not have the same level of applicability or accuracy when used in young individuals. However, for the purpose of our study, these scores were utilized to characterize the daily functioning of both young and older participants.
A strength of the CS-PFP 10 test is its ability to assess the performance of healthy individuals and identify specific areas of weakness in strength, balance, flexibility, and endurance. Other tests, like the Short Physical Performance Battery or the Physical Performance Test, may not detect these differences due to a ceiling effect in physically healthier and active individuals [38]. However, future research should also examine the test's efficacy in a postoperative setting with various walking aids and weight-bearing restrictions. Additionally, for individuals using assistive devices. While various tasks, such as putting on a jacket, picking up scarves from the floor, or walking for 6 min, could be done using crutches or a walker, some tests may need to be modified. Modifications of the CS-PFP 10 have already been made to accommodate people in wheelchairs with the WC-PFP test [39]. On the other hand, the assessment of lower extremity loading during the CS-PFP-10 test may provide insight into the level of load placed on the leg for non-compliant patients who do not use prescribed assistive devices such as crutches or walkers at home.

Conclusion

In conclusion, the utilization of the sensor insole provided valuable insight into the accurate and reliable measurement of lower extremity loading during various ADLs. The study results emphasize the significance of recognizing the high load on lower extremities during ADLs, regardless of age. For patients with weight-bearing restrictions, tasks such as stair climbing, and endurance walking require special attention due to the high loading. Future studies should investigate the impact of specific comorbidities on lower extremity force during ADLs in older adults. Overall, these findings highlight the potential for this technology to be used in clinical settings to evaluate lower extremity loading during ADLs and develop targeted interventions to improve physical function and independence.

Acknowledgements

The funding for this study was provided by Swiss Orthopaedics. This work was in part supported by the “Forschungsfonds der Geriatrischen Universitätsklinik”, Bern/Switzerland. The funder had no role in study design, data collection, and analysis, the decision to publish, or the preparation of the manuscript.

Declarations

Conflict of interest

None of the authors have financial or non-financial interests that are directly or indirectly related to this work submitted for publication.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Neuer Inhalt

Print-Titel

Literatur
1.
Zurück zum Zitat Giannoudis VP, Chloros GD, Bastian JD, Giannoudis PV. Can immediate mobilisation following fragility hip fractures always be safely achieved? Injury. 2020;51:2734–6.CrossRefPubMed Giannoudis VP, Chloros GD, Bastian JD, Giannoudis PV. Can immediate mobilisation following fragility hip fractures always be safely achieved? Injury. 2020;51:2734–6.CrossRefPubMed
2.
Zurück zum Zitat Lizano-Díez X, Keel MJB, Siebenrock KA, Tey M, Bastian JD. Rehabilitation protocols in unstable trochanteric fractures treated with cephalomedullary nails in elderly: current practices and outcome. Eur J Trauma Emerg Surg. 2020;46:1267–80.CrossRefPubMed Lizano-Díez X, Keel MJB, Siebenrock KA, Tey M, Bastian JD. Rehabilitation protocols in unstable trochanteric fractures treated with cephalomedullary nails in elderly: current practices and outcome. Eur J Trauma Emerg Surg. 2020;46:1267–80.CrossRefPubMed
3.
Zurück zum Zitat Ancillao A, Tedesco S, Barton J, O’Flynn B. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review. Sensors. 2018;18:2564.CrossRefPubMedPubMedCentral Ancillao A, Tedesco S, Barton J, O’Flynn B. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review. Sensors. 2018;18:2564.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Tveit M, Kärrholm J. Low effectiveness of prescribed partial weight bearing. Continuous recording of vertical loads using a new pressure-sensitive insole. J Rehabil Med. 2001;33:42–6.CrossRefPubMed Tveit M, Kärrholm J. Low effectiveness of prescribed partial weight bearing. Continuous recording of vertical loads using a new pressure-sensitive insole. J Rehabil Med. 2001;33:42–6.CrossRefPubMed
5.
Zurück zum Zitat Whittle M. Methods of gait analysis. In: gait analysis. Elsevier; 1988. p. 137–75.CrossRef Whittle M. Methods of gait analysis. In: gait analysis. Elsevier; 1988. p. 137–75.CrossRef
6.
Zurück zum Zitat Braun BJ, Veith NT, Hell R, Döbele S, Roland M, Rollmann M, et al. Validation and reliability testing of a new, fully integrated gait analysis insole. J Foot Ankle Res. 2015;8:1–7.CrossRef Braun BJ, Veith NT, Hell R, Döbele S, Roland M, Rollmann M, et al. Validation and reliability testing of a new, fully integrated gait analysis insole. J Foot Ankle Res. 2015;8:1–7.CrossRef
7.
8.
9.
Zurück zum Zitat Cress ME, Buchner DM, Questad KA, Esselman PC, deLateur BJ, Schwartz RS. Continuous-scale physical functional performance in healthy older adults: a validation study. Arch Phys Med Rehabil. 1996;77:1243–50.CrossRefPubMed Cress ME, Buchner DM, Questad KA, Esselman PC, deLateur BJ, Schwartz RS. Continuous-scale physical functional performance in healthy older adults: a validation study. Arch Phys Med Rehabil. 1996;77:1243–50.CrossRefPubMed
10.
Zurück zum Zitat Cress ME, Petrella JK, Moore TL, Schenkman ML. Continuous-scale physical functional performance test: validity, reliability, and sensitivity of data for the short version. Phys Ther. 2005;85:323–35.CrossRefPubMed Cress ME, Petrella JK, Moore TL, Schenkman ML. Continuous-scale physical functional performance test: validity, reliability, and sensitivity of data for the short version. Phys Ther. 2005;85:323–35.CrossRefPubMed
11.
Zurück zum Zitat Yesavage JA, Sheikh JI. 9/geriatric depression scale (GDS). Clin Gerontol. 1986;5:165–73.CrossRef Yesavage JA, Sheikh JI. 9/geriatric depression scale (GDS). Clin Gerontol. 1986;5:165–73.CrossRef
12.
Zurück zum Zitat Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.CrossRefPubMed Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.CrossRefPubMed
13.
Zurück zum Zitat Crum RM, Anthony JC, Bassett SS, Folstein MF. Population-based norms for the mini-mental state examination by age and educational level. JAMA. 1993;269:2386–91.CrossRefPubMed Crum RM, Anthony JC, Bassett SS, Folstein MF. Population-based norms for the mini-mental state examination by age and educational level. JAMA. 1993;269:2386–91.CrossRefPubMed
14.
Zurück zum Zitat Dodds RM, Syddall HE, Cooper R, Kuh D, Cooper C, Sayer AA. Global variation in grip strength: a systematic review and meta-analysis of normative data. Age Ageing. 2016;45:209–16.CrossRefPubMedPubMedCentral Dodds RM, Syddall HE, Cooper R, Kuh D, Cooper C, Sayer AA. Global variation in grip strength: a systematic review and meta-analysis of normative data. Age Ageing. 2016;45:209–16.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Braun T, Grüneberg C, Thiel C. German translation, cross-cultural adaptation and diagnostic test accuracy of three frailty screening tools. Z Gerontol Geriatr. 2018;51:282–92.CrossRefPubMed Braun T, Grüneberg C, Thiel C. German translation, cross-cultural adaptation and diagnostic test accuracy of three frailty screening tools. Z Gerontol Geriatr. 2018;51:282–92.CrossRefPubMed
16.
Zurück zum Zitat Shelkey M, Wallace M. Katz index of independence in activities of daily living (ADL). Director. 2000;8:72–3.PubMed Shelkey M, Wallace M. Katz index of independence in activities of daily living (ADL). Director. 2000;8:72–3.PubMed
17.
Zurück zum Zitat Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016;7(1):28–36.CrossRefPubMed Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016;7(1):28–36.CrossRefPubMed
18.
Zurück zum Zitat Härdi I, Bridenbaugh SA, Cress ME, Kressig RW. Validity of the German version of the continuous-scale physical functional performance 10 test. J Aging Res. 2017;2017:1–8.CrossRef Härdi I, Bridenbaugh SA, Cress ME, Kressig RW. Validity of the German version of the continuous-scale physical functional performance 10 test. J Aging Res. 2017;2017:1–8.CrossRef
19.
Zurück zum Zitat Braun BJ, Veith NT, Rollmann M, Orth M, Fritz T, Herath SC, et al. Weight-bearing recommendations after operative fracture treatment—fact or fiction? Gait results with and feasibility of a dynamic, continuous pedobarography insole. Int Orthop. 2017;41:1507–12.CrossRefPubMed Braun BJ, Veith NT, Rollmann M, Orth M, Fritz T, Herath SC, et al. Weight-bearing recommendations after operative fracture treatment—fact or fiction? Gait results with and feasibility of a dynamic, continuous pedobarography insole. Int Orthop. 2017;41:1507–12.CrossRefPubMed
20.
Zurück zum Zitat Vasarhelyi A, Baumert T, Fritsch C, Hopfenmüller W, Gradl G, Mittlmeier T. Partial weight bearing after surgery for fractures of the lower extremity – is it achievable? Gait Posture. 2006;23:99–105.CrossRefPubMed Vasarhelyi A, Baumert T, Fritsch C, Hopfenmüller W, Gradl G, Mittlmeier T. Partial weight bearing after surgery for fractures of the lower extremity – is it achievable? Gait Posture. 2006;23:99–105.CrossRefPubMed
22.
Zurück zum Zitat Kortebein P, Symons TB, Ferrando A, Paddon-Jones D, Ronsen O, Protas E, et al. Functional impact of 10 days of bed rest in healthy older adults. J Gerontol A Biol Sci Med Sci. 2008;63:1076–81.CrossRefPubMed Kortebein P, Symons TB, Ferrando A, Paddon-Jones D, Ronsen O, Protas E, et al. Functional impact of 10 days of bed rest in healthy older adults. J Gerontol A Biol Sci Med Sci. 2008;63:1076–81.CrossRefPubMed
23.
Zurück zum Zitat Marcucci L, Reggiani C. Increase of resting muscle stiffness, a less considered component of age-related skeletal muscle impairment. Eur J Transl Myol. 2020;30:8982.CrossRefPubMedPubMedCentral Marcucci L, Reggiani C. Increase of resting muscle stiffness, a less considered component of age-related skeletal muscle impairment. Eur J Transl Myol. 2020;30:8982.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Rolvien T, Milovanovic P, Schmidt FN, von Kroge S, Wölfel EM, Krause M, et al. Long-term immobilization in elderly females causes a specific pattern of cortical bone and osteocyte deterioration different from postmenopausal osteoporosis. J Bone Miner Res. 2020;35:1343–51.CrossRefPubMed Rolvien T, Milovanovic P, Schmidt FN, von Kroge S, Wölfel EM, Krause M, et al. Long-term immobilization in elderly females causes a specific pattern of cortical bone and osteocyte deterioration different from postmenopausal osteoporosis. J Bone Miner Res. 2020;35:1343–51.CrossRefPubMed
25.
Zurück zum Zitat Stanzani V, José A, de Oliveira CHY, Boldorini JC, de Cordoba LF, Dal Corso S, et al. Performance and reproducibility of the continuous scale physical functional performance 10 test in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev. 2018;38:327–32.CrossRefPubMed Stanzani V, José A, de Oliveira CHY, Boldorini JC, de Cordoba LF, Dal Corso S, et al. Performance and reproducibility of the continuous scale physical functional performance 10 test in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev. 2018;38:327–32.CrossRefPubMed
26.
Zurück zum Zitat Smee DJ, Anson JM, Waddington GS, Berry HL. Association between physical functionality and falls risk in community-living older adults. Curr Gerontol Geriatr Res. 2012;2012:1–6.CrossRef Smee DJ, Anson JM, Waddington GS, Berry HL. Association between physical functionality and falls risk in community-living older adults. Curr Gerontol Geriatr Res. 2012;2012:1–6.CrossRef
27.
Zurück zum Zitat Gary RA, Cress ME, Higgins MK, Smith AL, Dunbar SB. Combined aerobic and resistance exercise program improves task performance in patients with heart failure. Arch Phys Med Rehabil. 2011;92:1371–81.CrossRefPubMedPubMedCentral Gary RA, Cress ME, Higgins MK, Smith AL, Dunbar SB. Combined aerobic and resistance exercise program improves task performance in patients with heart failure. Arch Phys Med Rehabil. 2011;92:1371–81.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Cress ME, Meyer M. Maximal voluntary and functional performance needed for independence in adults aged 65 to 97 years. Phys Ther. 2003;83:37–48.CrossRefPubMed Cress ME, Meyer M. Maximal voluntary and functional performance needed for independence in adults aged 65 to 97 years. Phys Ther. 2003;83:37–48.CrossRefPubMed
29.
Zurück zum Zitat Chatzaki C, Skaramagkas V, Tachos N, Christodoulakis G, Maniadi E, Kefalopoulou Z, et al. The smart-insole dataset: gait analysis using wearable sensors with a focus on elderly and parkinson’s patients. Sensors. 2021;21:2821.CrossRefPubMedPubMedCentral Chatzaki C, Skaramagkas V, Tachos N, Christodoulakis G, Maniadi E, Kefalopoulou Z, et al. The smart-insole dataset: gait analysis using wearable sensors with a focus on elderly and parkinson’s patients. Sensors. 2021;21:2821.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Braun BJ, Pelz P, Veith NT, Rollmann M, Klein M, Herath SC, et al. Long-term pathological gait pattern changes after talus fractures — dynamic measurements with a new insole. Int Orthop. 2018;42:1075–82.CrossRefPubMed Braun BJ, Pelz P, Veith NT, Rollmann M, Klein M, Herath SC, et al. Long-term pathological gait pattern changes after talus fractures — dynamic measurements with a new insole. Int Orthop. 2018;42:1075–82.CrossRefPubMed
31.
Zurück zum Zitat Marin L, Vandoni M, Zaza G, Febbi M, Pedrotti L, Chiodaroli M, et al. The effects of insole-based visual feedback on weight-bearing in patients undergoing total hip replacement. Int J Environ Res Public Health. 2021;18:3346.CrossRefPubMedPubMedCentral Marin L, Vandoni M, Zaza G, Febbi M, Pedrotti L, Chiodaroli M, et al. The effects of insole-based visual feedback on weight-bearing in patients undergoing total hip replacement. Int J Environ Res Public Health. 2021;18:3346.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Siebert WE. Partial weight bearing after total hip arthroplasty. what does the patient really do? A prospective randomized gait analysis. Hip Int. 1994;4:61–8.CrossRef Siebert WE. Partial weight bearing after total hip arthroplasty. what does the patient really do? A prospective randomized gait analysis. Hip Int. 1994;4:61–8.CrossRef
33.
Zurück zum Zitat Subramaniam S, Majumder S, Faisal AI, Deen MJ. Insole-based systems for health monitoring: current solutions and research challenges. Sensors (Basel). 2022;22:438.CrossRefPubMed Subramaniam S, Majumder S, Faisal AI, Deen MJ. Insole-based systems for health monitoring: current solutions and research challenges. Sensors (Basel). 2022;22:438.CrossRefPubMed
34.
Zurück zum Zitat Morin P, Muller A, Pontonnier C, Dumont G. Foot contact detection through pressure insoles for the estimation of external forces and moments: application to running and walking. Comput Methods Biomech Biomed Engin. 2021;24:1–2. Morin P, Muller A, Pontonnier C, Dumont G. Foot contact detection through pressure insoles for the estimation of external forces and moments: application to running and walking. Comput Methods Biomech Biomed Engin. 2021;24:1–2.
35.
Zurück zum Zitat Herssens N, Verbecque E, Hallemans A, Vereeck L, Van Rompaey V, Saeys W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture. 2018;64:181–90.CrossRefPubMed Herssens N, Verbecque E, Hallemans A, Vereeck L, Van Rompaey V, Saeys W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture. 2018;64:181–90.CrossRefPubMed
36.
Zurück zum Zitat Gamwell HE, Wait SO, Royster JT, Ritch BL, Powell SC, Skinner JW. Aging and gait function: examination of multiple factors that influence gait variability. Gerontol Geriatr Med. 2022;8:23337214221080304.PubMedPubMedCentral Gamwell HE, Wait SO, Royster JT, Ritch BL, Powell SC, Skinner JW. Aging and gait function: examination of multiple factors that influence gait variability. Gerontol Geriatr Med. 2022;8:23337214221080304.PubMedPubMedCentral
37.
Zurück zum Zitat Anderson DE, Madigan ML. Healthy older adults have insufficient hip range of motion and plantar flexor strength to walk like healthy young adults. J Biomech. 2014;47:1104–9.CrossRefPubMedPubMedCentral Anderson DE, Madigan ML. Healthy older adults have insufficient hip range of motion and plantar flexor strength to walk like healthy young adults. J Biomech. 2014;47:1104–9.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Bridenbaugh S, Kressig RW, Bridenbaugh S. Wie fit ist Ihr Patient im Alltag? Mit einem gezielten Test lassen sich Defizite früh erkennen. Geriatrie pratique Praxis: offizielles Informationsforum der Schweizerischen Fachgesellschaft für Geriatrie. 2009;1:28–31. Bridenbaugh S, Kressig RW, Bridenbaugh S. Wie fit ist Ihr Patient im Alltag? Mit einem gezielten Test lassen sich Defizite früh erkennen. Geriatrie pratique Praxis: offizielles Informationsforum der Schweizerischen Fachgesellschaft für Geriatrie. 2009;1:28–31.
39.
Zurück zum Zitat Cress ME, Kinne S, Patrick DL, Maher E. Physical functional performance in persons using a manual wheelchair. J Orthop Sports Phys Ther. 2002;32:104–13.CrossRefPubMed Cress ME, Kinne S, Patrick DL, Maher E. Physical functional performance in persons using a manual wheelchair. J Orthop Sports Phys Ther. 2002;32:104–13.CrossRefPubMed
Metadaten
Titel
Assessing lower extremity loading during activities of daily living using continuous-scale physical functional performance 10 and wireless sensor insoles: a comparative study between younger and older adults
verfasst von
Sonja Häckel
Tobias Kämpf
Heiner Baur
Arlene von Aesch
Reto Werner Kressig
Andreas Ernst Stuck
Johannes Dominik Bastian
Publikationsdatum
22.07.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Trauma and Emergency Surgery / Ausgabe 6/2023
Print ISSN: 1863-9933
Elektronische ISSN: 1863-9941
DOI
https://doi.org/10.1007/s00068-023-02331-8

Weitere Artikel der Ausgabe 6/2023

European Journal of Trauma and Emergency Surgery 6/2023 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

TEP mit Roboterhilfe führt nicht zu größerer Zufriedenheit

15.05.2024 Knie-TEP Nachrichten

Der Einsatz von Operationsrobotern für den Einbau von Totalendoprothesen des Kniegelenks hat die Präzision der Eingriffe erhöht. Für die postoperative Zufriedenheit der Patienten scheint das aber unerheblich zu sein, wie eine Studie zeigt.

Lever-Sign-Test hilft beim Verdacht auf Kreuzbandriss

15.05.2024 Vordere Kreuzbandruptur Nachrichten

Mit dem Hebelzeichen-Test lässt sich offenbar recht zuverlässig feststellen, ob ein vorderes Kreuzband gerissen ist. In einer Metaanalyse war die Vorhersagekraft vor allem bei positivem Testergebnis hoch.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.