Skip to main content
Erschienen in: Journal of Neurology 10/2014

01.10.2014 | Original Communication

Cerebellar metabolic involvement and its correlations with clinical parameters in vestibular neuritis

verfasst von: Marco Alessandrini, Alessandro Micarelli, Agostino Chiaravalloti, Matteo Candidi, Ernesto Bruno, Barbara Di Pietro, Johanna Öberg, Orazio Schillaci, Marco Pagani

Erschienen in: Journal of Neurology | Ausgabe 10/2014

Einloggen, um Zugang zu erhalten

Abstract

Although vestibular neuritis (VN) cortical models are described in the literature, there is lack of knowledge regarding the exclusive cerebellar involvement. The aim of the present study was to analyze, by [18F] fluorodeoxyglucose-positron emission tomography (FDG-PET)/computer tomography, regional cerebellar FDG uptake in eight right-handed VN patients (five females; three males; mean age 48 ± 7 years) during the first few days (PET0) and after 1 month (PET1) since symptoms onset. At both phases, patients underwent otoneurological examination and filled in a battery of validated questionnaires. Twenty-six cerebellar volumes of interest (VOI) were identified by the automated anatomical labeling library and normalized to thalamus FDG-PET uptake. Mean intensity within VOIs was calculated in both phases and processed by within-subjects ANOVA. A significantly lower (p < 0.005) FDG uptake distribution was found in bilateral lobules III, VI and X and in vermis 1–2, 3, 6 and 10 at PET0 as compared to PET1 and a significant higher FDG uptake distribution was found in right crus I in the same comparison. Significant (p < 0.05) positive correlations were found between Anxiety and Bucket test scores, and normalized metabolism in right crus I (at PET0) and vermis 10 (at PET1), respectively. A negative correlation was found at PET0 between slow-phase velocity scores and normalized metabolism in right lobule X. These data show relevant changes in the pattern of cerebellar metabolism that might unravel additional central aspects of early and late VN associated to bilateral cortical responses to sensory conflict during the acute VN-related controversial inflow.
Literatur
1.
Zurück zum Zitat Alessandrini M, Pagani M, Napolitano B, Micarelli A, Candidi M, Bruno E et al (2013) Early and phasic cortical metabolic changes in vestibular neuritis onset. PLoS One 8:e57596PubMedCentralCrossRefPubMed Alessandrini M, Pagani M, Napolitano B, Micarelli A, Candidi M, Bruno E et al (2013) Early and phasic cortical metabolic changes in vestibular neuritis onset. PLoS One 8:e57596PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Pollak L, Klein C, Rafael S, Vera K, Rabey JM (2003) Anxiety in the first attack of vertigo. Otolaryngol Head Neck Surg 128:829–834CrossRefPubMed Pollak L, Klein C, Rafael S, Vera K, Rabey JM (2003) Anxiety in the first attack of vertigo. Otolaryngol Head Neck Surg 128:829–834CrossRefPubMed
4.
Zurück zum Zitat Tschan R, Wiltink J, Best C, Bense S, Dieterich M, Beutel ME et al (2008) German version of the Vertigo Symptom Scale (VSS) in patients with organic orsomatoform dizziness and healthy controls. J Neurol 255:1168–1175CrossRefPubMed Tschan R, Wiltink J, Best C, Bense S, Dieterich M, Beutel ME et al (2008) German version of the Vertigo Symptom Scale (VSS) in patients with organic orsomatoform dizziness and healthy controls. J Neurol 255:1168–1175CrossRefPubMed
6.
Zurück zum Zitat Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parietoinsular vestibular cortex. Brain 121:1749–1758CrossRefPubMed Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parietoinsular vestibular cortex. Brain 121:1749–1758CrossRefPubMed
7.
Zurück zum Zitat Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M (2004) Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol 56:624–630CrossRefPubMed Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M (2004) Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol 56:624–630CrossRefPubMed
8.
Zurück zum Zitat Dieterich M, Brandt T (2008) Functional brain imaging of peripheral and central vestibular disorders. Brain 131:2538–2552CrossRefPubMed Dieterich M, Brandt T (2008) Functional brain imaging of peripheral and central vestibular disorders. Brain 131:2538–2552CrossRefPubMed
9.
Zurück zum Zitat Dieterich M, Brandt T (2010) Imaging cortical activity after vestibular lesions. Restor Neurol Neurosci 28:47–56PubMed Dieterich M, Brandt T (2010) Imaging cortical activity after vestibular lesions. Restor Neurol Neurosci 28:47–56PubMed
10.
Zurück zum Zitat Helmchen C, Klinkenstein J, Machner B, Rambold H, Mohr C, Sander T (2009) Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation. Ann N Y Acad Sci 1164:104–115CrossRefPubMed Helmchen C, Klinkenstein J, Machner B, Rambold H, Mohr C, Sander T (2009) Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation. Ann N Y Acad Sci 1164:104–115CrossRefPubMed
11.
Zurück zum Zitat Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150CrossRefPubMed Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150CrossRefPubMed
12.
Zurück zum Zitat Eulenburg P, Stoeter P, Dieterich M (2010) Voxel-based morphometry depicts central compensation after vestibular neuritis. Ann Neurol 68:241–249CrossRefPubMed Eulenburg P, Stoeter P, Dieterich M (2010) Voxel-based morphometry depicts central compensation after vestibular neuritis. Ann Neurol 68:241–249CrossRefPubMed
13.
Zurück zum Zitat Cooper CW (1993) Vestibular neuronitis: a review of a common cause of vertigo in general practice. Br J Gen Pract 43:164–167PubMedCentralPubMed Cooper CW (1993) Vestibular neuronitis: a review of a common cause of vertigo in general practice. Br J Gen Pract 43:164–167PubMedCentralPubMed
14.
Zurück zum Zitat Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, European Association of Nuclear Medicine Neuroimaging Committee et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110CrossRefPubMed Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, European Association of Nuclear Medicine Neuroimaging Committee et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36:2103–2110CrossRefPubMed
15.
Zurück zum Zitat Honrubia V (1994) Quantitative vestibular function tests and the clinical examination. In: Herdman SJ (ed) Vestibular rehabilitation. Davis, Philadelphia, pp 113–164 Honrubia V (1994) Quantitative vestibular function tests and the clinical examination. In: Herdman SJ (ed) Vestibular rehabilitation. Davis, Philadelphia, pp 113–164
16.
Zurück zum Zitat Zwergal A, Rettinger N, Frenzel C, Dieterich M, Brandt T, Strupp M (2009) A bucket of static vestibular function. Neurology 72:1689–1692CrossRefPubMed Zwergal A, Rettinger N, Frenzel C, Dieterich M, Brandt T, Strupp M (2009) A bucket of static vestibular function. Neurology 72:1689–1692CrossRefPubMed
17.
Zurück zum Zitat Gomez-Alvarez FB, Jauregui-Renaud K (2011) Psychological symptoms and spatial orientation during the first 3 months after acute unilateral vestibular lesion. Arch Med Res 42:97–103CrossRefPubMed Gomez-Alvarez FB, Jauregui-Renaud K (2011) Psychological symptoms and spatial orientation during the first 3 months after acute unilateral vestibular lesion. Arch Med Res 42:97–103CrossRefPubMed
18.
19.
Zurück zum Zitat Cox BJ, Swinson RP (2002) Instrument to assess depersonalization/derealization in panic disorder. Depress Anxiety 15:172–175CrossRefPubMed Cox BJ, Swinson RP (2002) Instrument to assess depersonalization/derealization in panic disorder. Depress Anxiety 15:172–175CrossRefPubMed
20.
Zurück zum Zitat Pagani M, Chiò A, Valentini MC, Öberg J, Nobili F, Calvo A et al (2014) Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology (in press) Pagani M, Chiò A, Valentini MC, Öberg J, Nobili F, Calvo A et al (2014) Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology (in press)
21.
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labelling of activations in spm using a macroscopic anatomical parcellation of the MNI MRI single subject brain. Neuroimage 15:273–289CrossRefPubMed Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N et al (2002) Automated anatomical labelling of activations in spm using a macroscopic anatomical parcellation of the MNI MRI single subject brain. Neuroimage 15:273–289CrossRefPubMed
22.
Zurück zum Zitat Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS et al (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10:233–260CrossRefPubMed Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS et al (1999) Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage 10:233–260CrossRefPubMed
23.
Zurück zum Zitat Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260CrossRefPubMed Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260CrossRefPubMed
24.
Zurück zum Zitat Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138CrossRefPubMed Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138CrossRefPubMed
25.
Zurück zum Zitat Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46CrossRefPubMed Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46CrossRefPubMed
26.
Zurück zum Zitat Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501CrossRefPubMed Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501CrossRefPubMed
27.
Zurück zum Zitat Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59:1560–1570PubMedCentralCrossRefPubMed Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59:1560–1570PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844PubMedCentralCrossRefPubMed Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844PubMedCentralCrossRefPubMed
29.
Zurück zum Zitat Schmahmann JD, Macmore J, Vangel M (2009) Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience 162:852–861PubMedCentralCrossRefPubMed Schmahmann JD, Macmore J, Vangel M (2009) Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience 162:852–861PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Keren-Happuch E, Chen SH, Ho MH, Desmond JE (2014) A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp 35:593–615PubMedCentralCrossRef Keren-Happuch E, Chen SH, Ho MH, Desmond JE (2014) A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp 35:593–615PubMedCentralCrossRef
31.
Zurück zum Zitat Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V et al (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29:8586–8594PubMedCentralCrossRefPubMed Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V et al (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29:8586–8594PubMedCentralCrossRefPubMed
32.
Zurück zum Zitat Manni E, Petrosini L (2004) A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 5:241–249CrossRefPubMed Manni E, Petrosini L (2004) A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 5:241–249CrossRefPubMed
33.
34.
Zurück zum Zitat O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965PubMedCentralCrossRefPubMed O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain 119:1199–1211CrossRefPubMed Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain 119:1199–1211CrossRefPubMed
36.
Zurück zum Zitat Glickstein M (2000) How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci 23:613–617CrossRefPubMed Glickstein M (2000) How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci 23:613–617CrossRefPubMed
37.
Zurück zum Zitat Bauswein E, Kolb FP, Leimbeck B, Rubia FJ (1983) Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol 339:379–394PubMedCentralCrossRefPubMed Bauswein E, Kolb FP, Leimbeck B, Rubia FJ (1983) Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol 339:379–394PubMedCentralCrossRefPubMed
38.
Zurück zum Zitat Donga R, Dessem D (1993) An unrelayed projection of jaw-muscle spindle afferents to the cerebellum. Brain Res 626:347–350CrossRefPubMed Donga R, Dessem D (1993) An unrelayed projection of jaw-muscle spindle afferents to the cerebellum. Brain Res 626:347–350CrossRefPubMed
39.
Zurück zum Zitat Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347CrossRefPubMed Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347CrossRefPubMed
40.
Zurück zum Zitat Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195PubMed Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195PubMed
41.
42.
Zurück zum Zitat Glickstein M, Sultan F, Voogd J (2011) Functional localization in the cerebellum. Cortex 47:59–80CrossRefPubMed Glickstein M, Sultan F, Voogd J (2011) Functional localization in the cerebellum. Cortex 47:59–80CrossRefPubMed
44.
45.
Zurück zum Zitat Angelaki DE, Yakusheva TA, Green AM, Dickman JD, Blazquez PM (2010) Computation of egomotion in the macaque cerebellar vermis. Cerebellum 9:174–182PubMedCentralCrossRefPubMed Angelaki DE, Yakusheva TA, Green AM, Dickman JD, Blazquez PM (2010) Computation of egomotion in the macaque cerebellar vermis. Cerebellum 9:174–182PubMedCentralCrossRefPubMed
46.
Zurück zum Zitat Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, DE Angelaki (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54:973–985CrossRefPubMed Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, DE Angelaki (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54:973–985CrossRefPubMed
47.
Zurück zum Zitat Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541CrossRefPubMed Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541CrossRefPubMed
48.
Zurück zum Zitat du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG (1995) Learning and memory in the vestibulo-ocular reflex. Annu Rev Neurosci 18:409–441CrossRefPubMed du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG (1995) Learning and memory in the vestibulo-ocular reflex. Annu Rev Neurosci 18:409–441CrossRefPubMed
49.
Zurück zum Zitat du Lac S (1996) Candidate cellular mechanisms of vestibulo-ocular reflex plasticity. Ann NY Acad Sci 781:489–498CrossRefPubMed du Lac S (1996) Candidate cellular mechanisms of vestibulo-ocular reflex plasticity. Ann NY Acad Sci 781:489–498CrossRefPubMed
50.
Zurück zum Zitat Hirata Y, Highstein SM (2000) Analysis of the discharge pattern of floccular Purkinje cells in relation to vertical head and eye movement in the squirrel monkey. Prog Brain Res 124:221–332CrossRefPubMed Hirata Y, Highstein SM (2000) Analysis of the discharge pattern of floccular Purkinje cells in relation to vertical head and eye movement in the squirrel monkey. Prog Brain Res 124:221–332CrossRefPubMed
51.
Zurück zum Zitat Blazquez PM, Hirata Y, Heiney SA, Green AM, Highstein SM (2003) Cerebellar signatures of vestibulo-ocular reflex motor learning. J Neurosci 29:9742–9751 Blazquez PM, Hirata Y, Heiney SA, Green AM, Highstein SM (2003) Cerebellar signatures of vestibulo-ocular reflex motor learning. J Neurosci 29:9742–9751
52.
Zurück zum Zitat Partsalis AM, Zhang Y, Highstein SM (1995) Dorsal Y group in the squirrel monkey. II. Contribution of the cerebellar flocculus to neuronal responses in normal and adapted animals. J Neurophysiol 73:632–650PubMed Partsalis AM, Zhang Y, Highstein SM (1995) Dorsal Y group in the squirrel monkey. II. Contribution of the cerebellar flocculus to neuronal responses in normal and adapted animals. J Neurophysiol 73:632–650PubMed
53.
Zurück zum Zitat Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87:912–924PubMedCentralPubMed Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87:912–924PubMedCentralPubMed
54.
Zurück zum Zitat Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291PubMed Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291PubMed
56.
Zurück zum Zitat Alessandrini M, D’Erme G, Bruno E, Napolitano B, Magrini A (2003) Vestibular compensation: analysis of postural re-arrangement as a control index for unilateral vestibular deficit. NeuroReport 14:1075–1079PubMed Alessandrini M, D’Erme G, Bruno E, Napolitano B, Magrini A (2003) Vestibular compensation: analysis of postural re-arrangement as a control index for unilateral vestibular deficit. NeuroReport 14:1075–1079PubMed
57.
Zurück zum Zitat Kipping JA, Grodd W, Kumar V, Taubert M, Villringer A, Margulies DS (2013) Overlapping and parallel cerebello-cerebral networks contributing to sensorimotor control: an intrinsic functional connectivity study. Neuroimage 83:837–848CrossRefPubMed Kipping JA, Grodd W, Kumar V, Taubert M, Villringer A, Margulies DS (2013) Overlapping and parallel cerebello-cerebral networks contributing to sensorimotor control: an intrinsic functional connectivity study. Neuroimage 83:837–848CrossRefPubMed
58.
Zurück zum Zitat Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356PubMedCentralCrossRefPubMed Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356PubMedCentralCrossRefPubMed
59.
Zurück zum Zitat Dimitrova A, Kolb FP, Elles FP, Maschke M, Forsting M, Diener HC et al (2003) Cerebellar responses evoked by nociceptive leg withdrawal reflex as revealed by event-related FMRI. J Neurophysiol 90:1877–1886CrossRefPubMed Dimitrova A, Kolb FP, Elles FP, Maschke M, Forsting M, Diener HC et al (2003) Cerebellar responses evoked by nociceptive leg withdrawal reflex as revealed by event-related FMRI. J Neurophysiol 90:1877–1886CrossRefPubMed
60.
Zurück zum Zitat Wang D, Buckner RL, Liu H (2013) Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol 109:46–57PubMedCentralCrossRefPubMed Wang D, Buckner RL, Liu H (2013) Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol 109:46–57PubMedCentralCrossRefPubMed
61.
Zurück zum Zitat Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRefPubMed Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRefPubMed
Metadaten
Titel
Cerebellar metabolic involvement and its correlations with clinical parameters in vestibular neuritis
verfasst von
Marco Alessandrini
Alessandro Micarelli
Agostino Chiaravalloti
Matteo Candidi
Ernesto Bruno
Barbara Di Pietro
Johanna Öberg
Orazio Schillaci
Marco Pagani
Publikationsdatum
01.10.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 10/2014
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-014-7449-x

Weitere Artikel der Ausgabe 10/2014

Journal of Neurology 10/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.