Skip to main content

Neuronal Mechanisms of Oxygen Chemoreception: An Invertebrate Perspective

  • Conference paper
  • First Online:
Arterial Chemoreception

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 758))

Abstract

Since the evolution of aerobic metabolism, cellular requirements for molecular oxygen have been the major driver for the development of sophisticated mechanisms underlying both invertebrate and vertebrate respiratory behaviour. Among the most important characteristics of respiration is its adaptability, which allows animals to maintain oxygen homeostasis over a wide range of environmental and metabolic conditions. In all animals, the respiratory behaviour is controlled by neural networks often termed respiratory central pattern generators (rCPG). While rCPG neurons are intrinsically capable of generating rhythmical outputs, the respiratory needs are generally “sensed” by either central or peripheral chemoreceptive neurons. The mechanisms by which chemoreceptors respond to changes in oxygen and modulate central respiratory control centers have been the focus of decades of research. However, our understanding of these mechanisms has been limited due to an inability to precisely locate oxygen chemoreceptor populations, combined with the overwhelming complexity of vertebrate neural circuits. Although mammalian models remain the gold standard for research in general, invertebrates do nevertheless offer greatly simplified neural networks that share fundamental similarities with vertebrates. The following review will provide evidence for the existence of oxygen chemoreceptors in many invertebrate groups and reveal the mechanisms by which these neurons may “perceive” environmental oxygen and drive central rCPG activity. For this, we will specifically highlight an invertebrate model, the pond snail Lymnaea stagnalis whose episodic respiratory behaviour resembles that of diving mammals. The rCPG neurons have been identified and fully characterized in this model both in vivo and in vitro. The Lymnaea respiratory network has also been reconstructed in vitro and the contributions of individual rCPG neurons towards rhythm generation characterized through direct intracellular recordings. We now provide evidence for the presence of genuine peripheral oxygen chemoreceptors in Lymnaea, and demonstrate that these neurons respond to hypoxia in a manner analogous to that of mammalian carotid bodies. These chemoreceptor cells not only drive the activity of the rCPG neurons but their synaptic connections also exhibit hypoxia-induced plasticity. The lessons learned from this model will likely reveal fundamental principles underlying both peripheral and central respiratory control mechanisms, which may be conserved in both invertebrate and vertebrate species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bell HJ, Inoue T, Shum K, Luk C, Syed NI (2007) Peripheral oxygen‐sensing cells directly modulate the output of an identified respiratory central pattern generating neuron. Eur J Neurosci 25:3537–3550

    Article  PubMed  Google Scholar 

  • Blain GM, Smith CA, Henderson KS, Dempsey JA (2009) Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol 106:1564–1573

    Article  PubMed  Google Scholar 

  • Case JF (1956) Carbon dioxide and oxygen effects on the spiracles of flies. Physiol Zool 29:163–171

    CAS  Google Scholar 

  • Dusenbery DB (1983) Chemotactic behavior of nematodes. J Nematol 15:168–173

    PubMed  CAS  Google Scholar 

  • Dwinell MR, Powell FL (1999) Chronic hypoxia enhances the phrenic nerve response to arterial chemoreceptor stimulation in anesthetized rats. J Appl Physiol 87:817–823

    PubMed  CAS  Google Scholar 

  • Fredericks CA (1976) Oxygen as a limiting factor in phototaxis and in intraclonal spacing of the sea anemone Anthopleura elegantissima. Mar Biol 38:25–28

    Article  CAS  Google Scholar 

  • Gonzalez C, Agapito MT, Rocher A, Gomez-Niño A, Rigual R, Castañeda J, Conde SV, Obeso A (2010) A revisit to O2 sensing and transduction in the carotid body chemoreceptors in the context of reactive oxygen species biology. Respir Physiol Neurobiol 174:317–330

    Article  PubMed  CAS  Google Scholar 

  • Gore A, Muralidhar M, Espey MG, Degenhardt K, Mantell LL (2010) Hyperoxia sensing: from molecular mechanisms to significance in disease. J Immunotoxicol 7:239–254

    Article  PubMed  CAS  Google Scholar 

  • Harrison J, Frazier MR, Henry JR, Kaiser A, Klok CJ, Rascón B (2006) Responses of terrestrial insects to hypoxia or hyperoxia. Respir Physiol Neurobiol 154:4–17

    Article  PubMed  CAS  Google Scholar 

  • Hedges S, Blair J, Venturi M, Shoe J (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2

    Article  PubMed  Google Scholar 

  • Heymans C, Bouckaert JJ, Dautrebande L (1930) Sinus carotidien et réflexes respiratoires. II. Influences respiratoires réflexes de l’acidôse de l’alcalose, de l’anhydride carbonique, de l’ion hydrogéne et de l’anoxémie: Sinus carotidiens et échanges respiratoires dans le poumons et au delá des poumons. Arch Int Pharmacodyn 39:400–448

    Google Scholar 

  • Inoue T, Haque Z, Lukowiak K, Syed NI (2001) Hypoxia-induced respiratory patterned activity in Lymnaea originates at the periphery. J Neurophysiol 86:156–163

    PubMed  CAS  Google Scholar 

  • Ishii K, Ishii K, Kusakabe T (1985) Electrophysiological aspects of reflexogenic area in the chelonian, Geoclemmys reevesii. Respir Physiol 59:45–54

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Ishii K, Massabuau JC, Dejours P (1989) Oxygen-sensitive chemoreceptors in the branchio-cardiac veins of the crayfish, Astacus leptodactylus. Respir Physiol 78:73–81

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Ohta T, Nakazato Y (1999) Characteristics of 5-HT-containing chemoreceptor cells of the chicken aortic body. J Physiol 515:49–59

    Article  PubMed  CAS  Google Scholar 

  • Jones JD (1961) Aspects of respiration in Planorbis corneus(L.) and Lymnaea stagnalis(L.) (gastropoda: pulmonata). Comp Biochem Physiol 4:1–29

    Article  PubMed  CAS  Google Scholar 

  • Jonz MG, Fearon IM, Nurse CA (2004) Neuroepithelial oxygen chemoreceptors of the zebrafish gill. J Physiol 560:737–752

    Article  PubMed  CAS  Google Scholar 

  • Kamardin NN (1976) Structure and cellular organization of the osphradium of Limnea stagnalis (L.). Arkhiv Anatomii Gistologii I Embriologii 71:87–90

    CAS  Google Scholar 

  • Kanz JE, Quast WD (1992) Respiratory pumping behavior in the marine snail Aplysia californica as a function of ambient hypoxia. Physiol Zool 65:35–54

    Google Scholar 

  • Kusakabe T, Ishii K, Ishii K (1991) Dense granule-containing cells in the wall of the branchio-cardiac veins of a fresh water crayfish (Astacus leptodactylus). Anat Embryol 183:553–557

    Article  PubMed  CAS  Google Scholar 

  • Laverack MS, Saier B (1993) Morphology and ultrastructure of a presumptive oxygen receptor in the gills of the Norway lobster Nephrops norvegicus (Decapoda). J Crustac Biol 13:504–510

    Article  Google Scholar 

  • López-Barneo J, Ortega-Sáenz P, Pardal R, Pascual A, Piruat JI (2008) Carotid body oxygen sensing. Eur Respir J 32:1386–1398

    Article  PubMed  Google Scholar 

  • Massabuau JC, Burtin B (1984) Regulation of oxygen consumption in the crayfish Astacus leptodactylus at different levels of oxygenation: role of peripheral O2 chemoreception. J Comp Physiol B 155:43–49

    Article  Google Scholar 

  • Milsom WK, Burleson ML (2007) Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol 157:4–11

    Article  PubMed  CAS  Google Scholar 

  • Morton DB, Stewart JA, Langlais KK, Clemens-Grisham RA, Vermehren A (2008) Synaptic transmission in neurons that express the Drosophila atypical soluble guanylyl cyclases, Gyc-89Da and Gyc-89Db, is necessary for the successful completion of larval and adult ecdysis. J Exp Biol 211:1645–1656

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K (2009) Cellular signal transduction of the hypoxia response. J Biochem 146:757–765

    Article  PubMed  CAS  Google Scholar 

  • Neubauer JA, Sunderram J (2004) Oxygen-sensing neurons in the central nervous system. J Appl Physiol 96:367–374

    Article  PubMed  CAS  Google Scholar 

  • Nurse CA (2010) Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol 95:657–667

    Article  PubMed  CAS  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  PubMed  CAS  Google Scholar 

  • Py C, Denhoff MW, Martina M, Monette R, Comas T, Ahuja T, Martinez D, Wingar S, Caballero J, Laframboise S, Mielke J, Bogdanov A, Luk C, Syed N, Mealing G (2010) A novel silicon patch-clamp chip permits high-fidelity recording of ion channel activity from functionally defined neurons. Biotechnol Bioeng 107:593–600

    Article  PubMed  CAS  Google Scholar 

  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  PubMed  CAS  Google Scholar 

  • Smith JC, Abdala APL, Rybak IA, Paton JFR (2009) Structural and functional architecture of respiratory networks in the mammalian brainstem. Proc Trans R Soc B 364:2577–2587

    Article  Google Scholar 

  • Sokolov VA, Kamardin NN (1977) The relation of impulse frequency in the osphradial nerve to the concentration of oxygen and inulin in liquid passing over the osphradium of the pond snail. Vestnik Leningr Univ Biol 1:87–90

    Google Scholar 

  • Syed NI, Winlow W (1991) Respiratory behavior in the pond snail Lymnaea stagnalis II. Neural elements of the central pattern generator (CPG). J Comp Physiol 169:557–568

    Google Scholar 

  • Syed N, Bulloch A, Lukowiak K (1990) In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea. Science 250:282–285

    Article  PubMed  CAS  Google Scholar 

  • Syed NI, Harrison D, Winlow W (1991) Respiratory behavior in the pond snail Lymnaea stagnalisI. Behavioral analysis and the identification of motor neurons. J Comp Physiol A 169:541–555

    Google Scholar 

  • Taylor AC, Brand AR (1975) A comparative study of the respiratory responses of the bivalves Arctica islandica (L.) and Mytilus edulis(L.) to declining oxygen tension. Proc R Soc Lond B Biol 190:443–456

    Article  CAS  Google Scholar 

  • Taylor EW, Butler PJ, Sherlock PJ (1973) The respiratory and cardiovascular changes associated with the emersion response of Carcinus maenas (L.) during environmental hypoxia, at three different temperatures. J Comp Physiol 86:95–115

    Article  Google Scholar 

  • Thannickal VJ (2009) Oxygen in the evolution of complex life and the price we pay. Cell Mol Biol 40:507–510

    CAS  Google Scholar 

  • Vermehren-Schmaedick A, Ainsley JA, Johnson WA, Davies SA, Morton DB (2010) Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases. Genetics 186:183–196

    Article  PubMed  CAS  Google Scholar 

  • Wingrove JA, O’Farrell PH (1999) Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Cell 98:105–114

    Article  PubMed  CAS  Google Scholar 

  • Wohlgemuth SE, Taylor AC, Grieshaber MK (2000) Ventilatory and metabolic responses to hypoxia and sulphide in the lugworm Arenicola marina (L.). J Exp Biol 203:3177–3188

    PubMed  CAS  Google Scholar 

  • Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z-Q, Shear WA (2007) Linnaeus tercentenary and invertebrate taxonomy: an introduction. Zootaxa 1668:7–10

    Google Scholar 

  • Zimmer M, Gray JM, Pokala N, Chang AJ, Karow DS, Marletta MA, Hudson ML, Morton DB, Chronis N, Bargmann CI (2009) Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron 61:865–879

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Canadian Institutes of Health Research (CIHR) grant awarded to N.I.S. The authors would like to acknowledge the excellent technical support provided by Mr. Wali Zaidi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naweed I. Syed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Janes, T.A., Syed, N.I. (2012). Neuronal Mechanisms of Oxygen Chemoreception: An Invertebrate Perspective. In: Nurse, C., Gonzalez, C., Peers, C., Prabhakar, N. (eds) Arterial Chemoreception. Advances in Experimental Medicine and Biology, vol 758. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4584-1_2

Download citation

Publish with us

Policies and ethics