Skip to main content
Erschienen in: Herz 3/2015

01.05.2015 | Original article

Differential MMP-9 activity in CD34+progenitor cell-derived foam cells from diabetic and normoglycemic patients

verfasst von: Dr. J.U. Schmohl, MD, K. Daub, S.N.I. von Ungern-Sternberg, S. Lindemann, T. Schönberger, T. Geisler, M. Gawaz, P. Seizer, MD

Erschienen in: Herz | Sonderheft 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Background

Upon coincubation with platelet aggregates, CD34+ progenitor cells have the potential to differentiate into foam cells. There is evidence that progenitor cells from diabetic and nondiabetic patients have different properties, which may affect the patients’ prognosis. In this study we investigated an in vitro model of foam cell formation based on patient-derived CD34+ progenitor cells. We analyzed the growth characteristics as well as the M-CSF-release and matrix metalloproteinase (MMP) synthesis from CD34+ progenitor cell-derived foam cells originating from diabetic and nondiabetic patients.

Methods and results

Bone marrow samples were obtained from 38 patients who were elected for thoracic surgery. CD34+ progenitor cells from diabetic and nondiabetic patients were isolated and incubated with platelets from healthy volunteers. Foam cell formation was confirmed by immunostaining (CD68) and quantified by light microscopy. Whereas the absolute number of foam cells was not affected, the negative slope in the growth curve was seen significantly later in the diabetic group. In supernatants derived from“diabetic” CD34+ progenitor cells, MMP-9 was significantly enhanced, whereas MMP-2 activity or M-CSF-release was not affected significantly.

Conclusion

In a coculture model of CD34+ progenitor cells with platelets, we show for the first time that“diabetic” CD34+ progenitor cells exhibit functional differences in their differentiation to foam cells concerning growth characteristics and release of MMP-9.
Literatur
1.
Zurück zum Zitat Eastman RC, Javitt JC, Herman WH et al (1997) Model of complications of NIDDM. I. Model construction and assumptions. Diabetes Care 20(5):725–734CrossRefPubMed Eastman RC, Javitt JC, Herman WH et al (1997) Model of complications of NIDDM. I. Model construction and assumptions. Diabetes Care 20(5):725–734CrossRefPubMed
2.
Zurück zum Zitat Barzilay JI, Spiekerman CF, Kuller LH et al (2001) Prevalence of clinical and isolated subclinical cardiovascular disease in older adults with glucose disorders: the Cardiovascular Health Study. Diabetes Care 24(7):1233–1239CrossRefPubMed Barzilay JI, Spiekerman CF, Kuller LH et al (2001) Prevalence of clinical and isolated subclinical cardiovascular disease in older adults with glucose disorders: the Cardiovascular Health Study. Diabetes Care 24(7):1233–1239CrossRefPubMed
3.
Zurück zum Zitat Segal MS, Shah R, Afzal A et al (2006) Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes 55(1):102–109CrossRefPubMed Segal MS, Shah R, Afzal A et al (2006) Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes 55(1):102–109CrossRefPubMed
4.
Zurück zum Zitat Sagel J, Colwell JA, Crook L, Laimins M (1975) Increased platelet aggregation in early diabetus mellitus. Ann Intern Med 82(6):733–738CrossRefPubMed Sagel J, Colwell JA, Crook L, Laimins M (1975) Increased platelet aggregation in early diabetus mellitus. Ann Intern Med 82(6):733–738CrossRefPubMed
5.
Zurück zum Zitat Calverley DC, Hacker MR, Loda KA et al (2003) Increased platelet Fc receptor expression as a potential contributing cause of platelet hypersensitivity to collagen in diabetes mellitus. Br J Haematol 121(1):139–142CrossRefPubMed Calverley DC, Hacker MR, Loda KA et al (2003) Increased platelet Fc receptor expression as a potential contributing cause of platelet hypersensitivity to collagen in diabetes mellitus. Br J Haematol 121(1):139–142CrossRefPubMed
6.
Zurück zum Zitat Cabeza N, Li Z, Schulz C et al (2004) Surface expression of collagen receptor Fc receptor-gamma/glycoprotein VI is enhanced on platelets in type 2 diabetes and mediates release of CD40 ligand and activation of endothelial cells. Diabetes 53(8):2117–2121CrossRefPubMed Cabeza N, Li Z, Schulz C et al (2004) Surface expression of collagen receptor Fc receptor-gamma/glycoprotein VI is enhanced on platelets in type 2 diabetes and mediates release of CD40 ligand and activation of endothelial cells. Diabetes 53(8):2117–2121CrossRefPubMed
7.
Zurück zum Zitat Tepper OM, Galiano RD, Capla JM et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106(22):2781–2786CrossRefPubMed Tepper OM, Galiano RD, Capla JM et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106(22):2781–2786CrossRefPubMed
8.
Zurück zum Zitat Zhang LJ, Liu WX, Chen YD et al (2010) Proliferation, migration and apoptosis activities of endothelial progenitor cells in acute coronary syndrome. Chin Med J (Engl) 123(19):2655–2661 Zhang LJ, Liu WX, Chen YD et al (2010) Proliferation, migration and apoptosis activities of endothelial progenitor cells in acute coronary syndrome. Chin Med J (Engl) 123(19):2655–2661
9.
Zurück zum Zitat Fadini GP, Sartore S, Albiero M et al (2006) Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol 26(9):2140–2146CrossRefPubMed Fadini GP, Sartore S, Albiero M et al (2006) Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol 26(9):2140–2146CrossRefPubMed
10.
Zurück zum Zitat Hamed S, Brenner B, Abassi Z et al (2010) Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res 126(3):166–174CrossRefPubMed Hamed S, Brenner B, Abassi Z et al (2010) Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res 126(3):166–174CrossRefPubMed
11.
Zurück zum Zitat Gough PJ, Gomez IG, Wille PT, Raines EW (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 116(1):59–69CrossRefPubMedCentralPubMed Gough PJ, Gomez IG, Wille PT, Raines EW (2006) Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 116(1):59–69CrossRefPubMedCentralPubMed
12.
Zurück zum Zitat Galis ZS, Sukhova GK, Kranzhofer R et al (1995) Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci U S A 92(2):402–406CrossRefPubMedCentralPubMed Galis ZS, Sukhova GK, Kranzhofer R et al (1995) Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci U S A 92(2):402–406CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Daub K, Lindemann S, Langer H et al (2007) The evil in atherosclerosis: adherent platelets induce foam cell formation. Semin Thromb Hemost 33(2):173–178CrossRefPubMed Daub K, Lindemann S, Langer H et al (2007) The evil in atherosclerosis: adherent platelets induce foam cell formation. Semin Thromb Hemost 33(2):173–178CrossRefPubMed
14.
Zurück zum Zitat Ma H, Liu G, Ding W et al (2008) Diabetes-induced alteration of F4/80+ macrophages: a study in mice with streptozotocin-induced diabetes for a long term. J Mol Med (Berl) 86(4):391–400 Ma H, Liu G, Ding W et al (2008) Diabetes-induced alteration of F4/80+ macrophages: a study in mice with streptozotocin-induced diabetes for a long term. J Mol Med (Berl) 86(4):391–400
15.
Zurück zum Zitat Hayek T, Hussein K, Aviram M et al (2005) Macrophage foam-cell formation in streptozotocin-induced diabetic mice: stimulatory effect of glucose. Atherosclerosis 183(1):25–33CrossRefPubMed Hayek T, Hussein K, Aviram M et al (2005) Macrophage foam-cell formation in streptozotocin-induced diabetic mice: stimulatory effect of glucose. Atherosclerosis 183(1):25–33CrossRefPubMed
16.
17.
Zurück zum Zitat Gantman A, Fuhrman B, Aviram M, Hayek T (2010) High glucose stimulates macrophage SR-BI expression and induces a switch in its activity from cholesterol efflux to cholesterol influx. Biochem Biophys Res Commun 391(1):523–528CrossRefPubMed Gantman A, Fuhrman B, Aviram M, Hayek T (2010) High glucose stimulates macrophage SR-BI expression and induces a switch in its activity from cholesterol efflux to cholesterol influx. Biochem Biophys Res Commun 391(1):523–528CrossRefPubMed
18.
Zurück zum Zitat Cui X, Kushiyama A, Yoneda M et al (2010) Macrophage foam cell formation is augmented in serum from patients with diabetic angiopathy. Diabetes Res Clin Pract 87(1):57–63CrossRefPubMed Cui X, Kushiyama A, Yoneda M et al (2010) Macrophage foam cell formation is augmented in serum from patients with diabetic angiopathy. Diabetes Res Clin Pract 87(1):57–63CrossRefPubMed
19.
Zurück zum Zitat Shashkin PN, Jain N, Miller YI et al (2006) Insulin and glucose play a role in foam cell formation and function. Cardiovasc Diabetol 5:13. doi:10.1186/1475-2840-5-13CrossRefPubMedCentralPubMed Shashkin PN, Jain N, Miller YI et al (2006) Insulin and glucose play a role in foam cell formation and function. Cardiovasc Diabetol 5:13. doi:10.1186/1475-2840-5-13CrossRefPubMedCentralPubMed
20.
Zurück zum Zitat Daub K, Langer H, Seizer P et al (2006) Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. FASEB J 20(14):2559–2561CrossRefPubMed Daub K, Langer H, Seizer P et al (2006) Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. FASEB J 20(14):2559–2561CrossRefPubMed
21.
Zurück zum Zitat Daub K, Siegel-Axel D, Schonberger T et al (2010) Inhibition of foam cell formation using a soluble CD68-Fc fusion protein. J Mol Med (Berl) 88(9):909–920 Daub K, Siegel-Axel D, Schonberger T et al (2010) Inhibition of foam cell formation using a soluble CD68-Fc fusion protein. J Mol Med (Berl) 88(9):909–920
22.
Zurück zum Zitat Schmidt R, Bultmann A, Ungerer M et al (2006) Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells: implications in acute myocardial infarction. Circulation 113(6):834–841CrossRefPubMed Schmidt R, Bultmann A, Ungerer M et al (2006) Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells: implications in acute myocardial infarction. Circulation 113(6):834–841CrossRefPubMed
23.
Zurück zum Zitat Seizer P, Schonberger T, Schott M et al (2010) EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation. Atherosclerosis 209(1):51–57CrossRefPubMed Seizer P, Schonberger T, Schott M et al (2010) EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation. Atherosclerosis 209(1):51–57CrossRefPubMed
24.
Zurück zum Zitat Siefert SA, Sarkar R (2012) Matrix metalloproteinases in vascular physiology and disease. Vascular 20(4):210–216CrossRefPubMed Siefert SA, Sarkar R (2012) Matrix metalloproteinases in vascular physiology and disease. Vascular 20(4):210–216CrossRefPubMed
25.
Zurück zum Zitat Jiang XB, Wang JS, Liu DH et al (2012) Overexpression of matrix metalloproteinase-9 is correlated with carotid intraplaque hemorrhage in a swine model. J Neurointerv Surg. doi:10.1136/neurintsurg-2012-010401 Jiang XB, Wang JS, Liu DH et al (2012) Overexpression of matrix metalloproteinase-9 is correlated with carotid intraplaque hemorrhage in a swine model. J Neurointerv Surg. doi:10.1136/neurintsurg-2012-010401
27.
Zurück zum Zitat Stellos K, Bigalke B, Borst O et al (2013) Circulating platelet-progenitor cell coaggregate formation is increased in patients with acute coronary syndromes and augments recruitment of CD34+ cells in the ischaemic microcirculation. Eur Heart J 34(32):2548–2556CrossRefPubMed Stellos K, Bigalke B, Borst O et al (2013) Circulating platelet-progenitor cell coaggregate formation is increased in patients with acute coronary syndromes and augments recruitment of CD34+ cells in the ischaemic microcirculation. Eur Heart J 34(32):2548–2556CrossRefPubMed
28.
Zurück zum Zitat Stellos K, Langer H, Daub K et al (2008) Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation 117(2):206–215CrossRefPubMed Stellos K, Langer H, Daub K et al (2008) Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation 117(2):206–215CrossRefPubMed
29.
Zurück zum Zitat Massberg S, Konrad I, Schurzinger K et al (2006) Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med 203(5):1221–1233CrossRefPubMedCentralPubMed Massberg S, Konrad I, Schurzinger K et al (2006) Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med 203(5):1221–1233CrossRefPubMedCentralPubMed
30.
Zurück zum Zitat Stellos K, Bigalke B, Langer H et al (2009) Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells. Eur Heart J 30(5):584–593CrossRefPubMed Stellos K, Bigalke B, Langer H et al (2009) Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells. Eur Heart J 30(5):584–593CrossRefPubMed
31.
Zurück zum Zitat Langer H, May AE, Daub K et al (2006) Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ Res 98(2):e2–e10. doi:10.1161/01.RES. 0000201285.87524.9eCrossRefPubMed Langer H, May AE, Daub K et al (2006) Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ Res 98(2):e2–e10. doi:10.1161/01.RES. 0000201285.87524.9eCrossRefPubMed
32.
Zurück zum Zitat Stellos K, Langer H, Gnerlich S et al (2010) Junctional adhesion molecule A expressed on human CD34+ cells promotes adhesion on vascular wall and differentiation into endothelial progenitor cells. Arterioscler Thromb Vasc Biol 30(6):1127–1136CrossRefPubMed Stellos K, Langer H, Gnerlich S et al (2010) Junctional adhesion molecule A expressed on human CD34+ cells promotes adhesion on vascular wall and differentiation into endothelial progenitor cells. Arterioscler Thromb Vasc Biol 30(6):1127–1136CrossRefPubMed
33.
Zurück zum Zitat Stellos K, Panagiota V, Gnerlich S et al (2012) Expression of junctional adhesion molecule-C on the surface of platelets supports adhesion, but not differentiation, of human CD34 cells in vitro. Cell Physiol Biochem 29(1–2):153–162 Stellos K, Panagiota V, Gnerlich S et al (2012) Expression of junctional adhesion molecule-C on the surface of platelets supports adhesion, but not differentiation, of human CD34 cells in vitro. Cell Physiol Biochem 29(1–2):153–162
34.
Zurück zum Zitat Stellos K, Seizer P, Bigalke B et al (2010) Platelet aggregates-induced human CD34+ progenitor cell proliferation and differentiation to macrophages and foam cells is mediated by stromal cell derived factor 1 in vitro. Semin Thromb Hemost 36(2):139–145CrossRefPubMed Stellos K, Seizer P, Bigalke B et al (2010) Platelet aggregates-induced human CD34+ progenitor cell proliferation and differentiation to macrophages and foam cells is mediated by stromal cell derived factor 1 in vitro. Semin Thromb Hemost 36(2):139–145CrossRefPubMed
35.
Zurück zum Zitat Seizer P, Schiemann S, Merz T et al (2010) CD36 and macrophage scavenger receptor a modulate foam cell formation via inhibition of lipid-laden platelet phagocytosis. Semin Thromb Hemost 36(2):157–162CrossRefPubMed Seizer P, Schiemann S, Merz T et al (2010) CD36 and macrophage scavenger receptor a modulate foam cell formation via inhibition of lipid-laden platelet phagocytosis. Semin Thromb Hemost 36(2):157–162CrossRefPubMed
36.
Zurück zum Zitat Shiau MY, Tsai ST, Tsai KJ et al (2006) Increased circulatory MMP-2 and MMP-9 levels and activities in patients with type 1 diabetes mellitus. Mt Sinai J Med 73(7):1024–1028PubMed Shiau MY, Tsai ST, Tsai KJ et al (2006) Increased circulatory MMP-2 and MMP-9 levels and activities in patients with type 1 diabetes mellitus. Mt Sinai J Med 73(7):1024–1028PubMed
37.
Zurück zum Zitat Worley JR, Hughes DA, Dozio N et al (2007) Low density lipoprotein from patients with Type 2 diabetes increases expression of monocyte matrix metalloproteinase and ADAM metalloproteinase genes. Cardiovasc Diabetol 6:21CrossRefPubMedCentralPubMed Worley JR, Hughes DA, Dozio N et al (2007) Low density lipoprotein from patients with Type 2 diabetes increases expression of monocyte matrix metalloproteinase and ADAM metalloproteinase genes. Cardiovasc Diabetol 6:21CrossRefPubMedCentralPubMed
38.
Zurück zum Zitat Zhu P, Ren M, Yang C et al (2012) Involvement of RAGE, MAPK and NF-kappaB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes. Exp Dermatol 21(2):123–129CrossRefPubMed Zhu P, Ren M, Yang C et al (2012) Involvement of RAGE, MAPK and NF-kappaB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes. Exp Dermatol 21(2):123–129CrossRefPubMed
39.
Zurück zum Zitat Zhang F, Banker G, Liu X et al (2011) The novel function of advanced glycation end products in regulation of MMP-9 production. J Surg Res 171(2):871–876CrossRefPubMedCentralPubMed Zhang F, Banker G, Liu X et al (2011) The novel function of advanced glycation end products in regulation of MMP-9 production. J Surg Res 171(2):871–876CrossRefPubMedCentralPubMed
40.
Zurück zum Zitat Dasu MR, Devaraj S, Zhao L et al (2008) High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 57(11):3090–3098CrossRefPubMedCentralPubMed Dasu MR, Devaraj S, Zhao L et al (2008) High glucose induces toll-like receptor expression in human monocytes: mechanism of activation. Diabetes 57(11):3090–3098CrossRefPubMedCentralPubMed
41.
Zurück zum Zitat Shanmugam N, Gaw Gonzalo IT, Natarajan R (2004) Molecular mechanisms of high glucose-induced cyclooxygenase-2 expression in monocytes. Diabetes 53(3):795–802CrossRefPubMed Shanmugam N, Gaw Gonzalo IT, Natarajan R (2004) Molecular mechanisms of high glucose-induced cyclooxygenase-2 expression in monocytes. Diabetes 53(3):795–802CrossRefPubMed
42.
Zurück zum Zitat Shanmugam N, Reddy MA, Guha M, Natarajan R (2003) High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 52(5):1256–1264CrossRefPubMed Shanmugam N, Reddy MA, Guha M, Natarajan R (2003) High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 52(5):1256–1264CrossRefPubMed
43.
Zurück zum Zitat Guha M, Bai W, Nadler JL, Natarajan R (2000) Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J Biol Chem 275(23):17728–17739CrossRefPubMed Guha M, Bai W, Nadler JL, Natarajan R (2000) Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J Biol Chem 275(23):17728–17739CrossRefPubMed
44.
Zurück zum Zitat Hua KF, Wang SH, Dong WC et al (2012) High glucose increases nitric oxide generation in lipopolysaccharide-activated macrophages by enhancing activity of protein kinase C-alpha/delta and NF-kappaB. Inflamm Res 61(10):1107–1116CrossRefPubMed Hua KF, Wang SH, Dong WC et al (2012) High glucose increases nitric oxide generation in lipopolysaccharide-activated macrophages by enhancing activity of protein kinase C-alpha/delta and NF-kappaB. Inflamm Res 61(10):1107–1116CrossRefPubMed
45.
Zurück zum Zitat Cecchetti L, Tolley ND, Michetti N et al (2011) Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events. Blood 118(7):1903–1911CrossRefPubMedCentralPubMed Cecchetti L, Tolley ND, Michetti N et al (2011) Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events. Blood 118(7):1903–1911CrossRefPubMedCentralPubMed
46.
Zurück zum Zitat Sheu JR, Fong TH, Liu CM et al (2004) Expression of matrix metalloproteinase-9 in human platelets: regulation of platelet activation in in vitro and in vivo studies. Br J Pharmacol 143(1):193–201CrossRefPubMedCentralPubMed Sheu JR, Fong TH, Liu CM et al (2004) Expression of matrix metalloproteinase-9 in human platelets: regulation of platelet activation in in vitro and in vivo studies. Br J Pharmacol 143(1):193–201CrossRefPubMedCentralPubMed
47.
Zurück zum Zitat Kalvegren H, Jonsson S, Jonasson L (2011) Release of matrix metalloproteinases-1 and −2, but not -9, from activated platelets measured by enzyme-linked immunosorbent assay. Platelets 22(8):572–578CrossRefPubMed Kalvegren H, Jonsson S, Jonasson L (2011) Release of matrix metalloproteinases-1 and −2, but not -9, from activated platelets measured by enzyme-linked immunosorbent assay. Platelets 22(8):572–578CrossRefPubMed
48.
Zurück zum Zitat Catanzaro OL, Dziubecki D, Labal E, Sirois P (2010) Activation of peritoneal macrophages during the evolution of type 1 diabetes (insulitis) in streptozotocin-treated mice. Peptides 31(10):1884–1887CrossRefPubMed Catanzaro OL, Dziubecki D, Labal E, Sirois P (2010) Activation of peritoneal macrophages during the evolution of type 1 diabetes (insulitis) in streptozotocin-treated mice. Peptides 31(10):1884–1887CrossRefPubMed
Metadaten
Titel
Differential MMP-9 activity in CD34+progenitor cell-derived foam cells from diabetic and normoglycemic patients
verfasst von
Dr. J.U. Schmohl, MD
K. Daub
S.N.I. von Ungern-Sternberg
S. Lindemann
T. Schönberger
T. Geisler
M. Gawaz
P. Seizer, MD
Publikationsdatum
01.05.2015
Verlag
Urban & Vogel
Erschienen in
Herz / Ausgabe Sonderheft 3/2015
Print ISSN: 0340-9937
Elektronische ISSN: 1615-6692
DOI
https://doi.org/10.1007/s00059-013-4012-y

Weitere Artikel der Sonderheft 3/2015

Herz 3/2015 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.