Skip to main content
Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology 2/2012

01.02.2012 | Editorial

Electrical stimulation — a therapeutic strategy for retinal and optic nerve disease?

verfasst von: Florian Gekeler, Karl Ulrich Bartz-Schmidt

Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Excerpt

Since Galvani’s experiments with frog legs in 1791, we know that neural tissue can be readily excited by electrical currents. Doctors have utilized the therapeutic potential of electricity ever since, with such lasting achievements as cardioversion and defibrillation. In ophthalmology, one of the earliest scientific mentions of electrical currents is from Henri Dor in 1873 [1]. He used complicated machines for the treatment of “amblyopia and amauroses”, “retino-choroiditis with pigment infiltration”, “glaucoma”, and “white optic atrophy” — following a tendency of a technology minded era when electrical currents were praised for all kinds of ailments. His experiments and studies, however, fell into oblivion in the following decades at the beginning of the twentieth century, with giant progress of scientific medical practice in many other areas. Electrical stimulation of the visual system was re-discovered in the 1970s for elicitation of visual percepts, or phosphenes, by supra-threshold stimulation [2]. These experiments constituted the basis for retinal implants which today allow patients to recognize letters and shapes in laboratory and natural settings [3, 4]. During the course of these trials, the therapeutic potential of sub-threshold electrical stimulation was detected in 2004 by Chow [5] in patients carrying an inactive subretinal prosthesis which produced only sub-threshold currents. His patients experienced amelioration of their residual vision even in retinal areas far from the implant. This effect was attributed to the release of neurotrophic factors, and various groups worldwide started to explore the therapeutic potential in animal experiments and in human trials. For practical reasons — such as ease of use and availability — application of currents through corneal electrodes has been widely adopted since then, coining the term transcorneal electrical stimulation (TES). Various types of contact lens-electrodes or DTL-electrodes deliver currents to counter-electrodes, usually integrated in the corneal electrode or on the periorbital skin, to ensure good transretinal currents. More than 20 peer-reviewed publications in PubMed in the last 5 years are evidence for this renewed interest in electrical stimulation of ocular tissue. …
Literatur
1.
Zurück zum Zitat Dor H (1873) Beiträge zur Electrotherapie der Augenkrankheiten. Albrecht von Graefes ArchKlin Exp Ophthalmol19:352 Dor H (1873) Beiträge zur Electrotherapie der Augenkrankheiten. Albrecht von Graefes ArchKlin Exp Ophthalmol19:352
2.
Zurück zum Zitat Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. JPhysiol (Lond) 243:553–576 Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. JPhysiol (Lond) 243:553–576
3.
Zurück zum Zitat Ahuja AK, Dorn JD, Caspi A, McMahon MJ, Dagnelie G, Dacruz L, Stanga P, Humayun MS, Greenberg RJ (2011) Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol 95:539–543PubMedCrossRef Ahuja AK, Dorn JD, Caspi A, McMahon MJ, Dagnelie G, Dacruz L, Stanga P, Humayun MS, Greenberg RJ (2011) Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol 95:539–543PubMedCrossRef
4.
Zurück zum Zitat Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278:1489–1497PubMedCrossRef Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 278:1489–1497PubMedCrossRef
5.
Zurück zum Zitat Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122:460–469PubMedCrossRef Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122:460–469PubMedCrossRef
6.
Zurück zum Zitat Morimoto T, Choi J-S, Miyoshi T, Fukuda Y, Tano Y, Fujikado T (2005) Effects of transcorneal electrical stimulation on the survival of photoreceptors in Royal College of Surgeons rats. ARVO Meeting Abstracts 46:183 Morimoto T, Choi J-S, Miyoshi T, Fukuda Y, Tano Y, Fujikado T (2005) Effects of transcorneal electrical stimulation on the survival of photoreceptors in Royal College of Surgeons rats. ARVO Meeting Abstracts 46:183
7.
Zurück zum Zitat Morimoto T, Fujikado T, Choi JS, Kanda H, Miyoshi T, Fukuda Y, Tano Y (2007) Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 48:4725–4732PubMedCrossRef Morimoto T, Fujikado T, Choi JS, Kanda H, Miyoshi T, Fukuda Y, Tano Y (2007) Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in Royal College of Surgeons rats. Invest Ophthalmol Vis Sci 48:4725–4732PubMedCrossRef
8.
Zurück zum Zitat Schmid H, Herrmann T, Kohler K, Stett A (2009) Neuroprotective effect of transretinal electrical stimulation on neurons in the inner nuclear layer of the degenerated retina. Brain Res Bull 79:15–25PubMedCrossRef Schmid H, Herrmann T, Kohler K, Stett A (2009) Neuroprotective effect of transretinal electrical stimulation on neurons in the inner nuclear layer of the degenerated retina. Brain Res Bull 79:15–25PubMedCrossRef
9.
Zurück zum Zitat Miyake K, Yoshida M, Inoue Y, Hata Y (2007) Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. Invest Ophthalmol Vis Sci 48:2356–2361PubMedCrossRef Miyake K, Yoshida M, Inoue Y, Hata Y (2007) Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury. Invest Ophthalmol Vis Sci 48:2356–2361PubMedCrossRef
10.
Zurück zum Zitat Morimoto T, Miyoshi T, Matsuda S, Tano Y, Fujikado T, Fukuda Y (2005) Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. Invest Ophthalmol Vis Sci 46:2147–2155PubMedCrossRef Morimoto T, Miyoshi T, Matsuda S, Tano Y, Fujikado T, Fukuda Y (2005) Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. Invest Ophthalmol Vis Sci 46:2147–2155PubMedCrossRef
11.
Zurück zum Zitat Morimoto T, Miyoshi T, Sawai H, Fujikado T (2010) Optimal parameters of transcorneal electrical stimulation (TES) to be neuroprotective of axotomized RGCs in adult rats. Exp Eye Res 90:285–291PubMedCrossRef Morimoto T, Miyoshi T, Sawai H, Fujikado T (2010) Optimal parameters of transcorneal electrical stimulation (TES) to be neuroprotective of axotomized RGCs in adult rats. Exp Eye Res 90:285–291PubMedCrossRef
12.
Zurück zum Zitat Morimoto T, Miyoshi T, Fujikado T, Tano Y, Fukuda Y (2002) Electrical stimulation enhances the survival of axotomized retinal ganglion cells in vivo. Neuroreport 13:227–230PubMedCrossRef Morimoto T, Miyoshi T, Fujikado T, Tano Y, Fukuda Y (2002) Electrical stimulation enhances the survival of axotomized retinal ganglion cells in vivo. Neuroreport 13:227–230PubMedCrossRef
13.
Zurück zum Zitat Okazaki Y, Morimoto T, Sawai H (2008) Parameters of optic nerve electrical stimulation affecting neuroprotection of axotomized retinal ganglion cells in adult rats. Neurosci Res 61:129–135PubMedCrossRef Okazaki Y, Morimoto T, Sawai H (2008) Parameters of optic nerve electrical stimulation affecting neuroprotection of axotomized retinal ganglion cells in adult rats. Neurosci Res 61:129–135PubMedCrossRef
14.
Zurück zum Zitat Ni YQ, Gan DK, Xu HD, Xu GZ, Da CD (2009) Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration. Exp Neurol 219:439–452PubMedCrossRef Ni YQ, Gan DK, Xu HD, Xu GZ, Da CD (2009) Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration. Exp Neurol 219:439–452PubMedCrossRef
15.
Zurück zum Zitat Schatz A, Arango-Gonzales N, Fischer D, Willmann G, Bolz S, Messias A, Grimm C, Zrenner E, Bartz-Schmidt KU, Gekeler F (2011) Influence of transcorneal electrical stimulation on light exposed rats. ARVO Meeting Abstracts 52:1867 Schatz A, Arango-Gonzales N, Fischer D, Willmann G, Bolz S, Messias A, Grimm C, Zrenner E, Bartz-Schmidt KU, Gekeler F (2011) Influence of transcorneal electrical stimulation on light exposed rats. ARVO Meeting Abstracts 52:1867
16.
Zurück zum Zitat Wang X, Mo X, Li D, Wang Y, Fang Y, Rong X, Miao H, Shou T (2011) Neuroprotective effect of transcorneal electrical stimulation on ischemic damage in the rat retina. Exp Eye Res 93:753–760PubMedCrossRef Wang X, Mo X, Li D, Wang Y, Fang Y, Rong X, Miao H, Shou T (2011) Neuroprotective effect of transcorneal electrical stimulation on ischemic damage in the rat retina. Exp Eye Res 93:753–760PubMedCrossRef
17.
Zurück zum Zitat Tagami Y, Kurimoto T, Miyoshi T, Morimoto T, Sawai H, Mimura O (2009) Axonal regeneration induced by repetitive electrical stimulation of crushed optic nerve in adult rats. Jpn J Ophthalmol 53:257–266PubMedCrossRef Tagami Y, Kurimoto T, Miyoshi T, Morimoto T, Sawai H, Mimura O (2009) Axonal regeneration induced by repetitive electrical stimulation of crushed optic nerve in adult rats. Jpn J Ophthalmol 53:257–266PubMedCrossRef
18.
Zurück zum Zitat Ciavatta VT, Kim M, Wong P, Nickerson JM, Shuler RK Jr, McLean GY, Pardue MT (2009) Retinal expression of Fgf2 in RCS rats with subretinal microphotodiode array. Invest Ophthalmol Vis Sci 50:4523–4530PubMedCrossRef Ciavatta VT, Kim M, Wong P, Nickerson JM, Shuler RK Jr, McLean GY, Pardue MT (2009) Retinal expression of Fgf2 in RCS rats with subretinal microphotodiode array. Invest Ophthalmol Vis Sci 50:4523–4530PubMedCrossRef
19.
Zurück zum Zitat Willmann G, Schaferhoff K, Fischer MD, Arango-Gonzalez B, Bolz S, Naycheva L, Rock T, Bonin M, Bartz-Schmidt KU, Zrenner E, Schatz A, Gekeler F (2011) Gene expression profiling of the retina after transcorneal electrical stimulation in wild-type brown Norway rats. Invest Ophthalmol Vis Sci 52:7529–7537CrossRef Willmann G, Schaferhoff K, Fischer MD, Arango-Gonzalez B, Bolz S, Naycheva L, Rock T, Bonin M, Bartz-Schmidt KU, Zrenner E, Schatz A, Gekeler F (2011) Gene expression profiling of the retina after transcorneal electrical stimulation in wild-type brown Norway rats. Invest Ophthalmol Vis Sci 52:7529–7537CrossRef
20.
Zurück zum Zitat Kurimoto T, Oono S, Oku H, Tagami Y, Kashimoto R, Takata M, Okamoto N, Ikeda T, Mimura O (2010) Transcorneal electrical stimulation increases chorioretinal blood flow in normal human subjects. Clin Ophthalmol 4:1441–1446PubMedCrossRef Kurimoto T, Oono S, Oku H, Tagami Y, Kashimoto R, Takata M, Okamoto N, Ikeda T, Mimura O (2010) Transcorneal electrical stimulation increases chorioretinal blood flow in normal human subjects. Clin Ophthalmol 4:1441–1446PubMedCrossRef
21.
Zurück zum Zitat Fujikado T, Morimoto T, Matsushita K, Shimojo H, Okawa Y, Tano Y (2006) Effect of transcorneal electrical stimulation in patients with nonarteritic ischemic optic neuropathy or traumatic optic neuropathy. Jpn J Ophthalmol 50:266–273PubMedCrossRef Fujikado T, Morimoto T, Matsushita K, Shimojo H, Okawa Y, Tano Y (2006) Effect of transcorneal electrical stimulation in patients with nonarteritic ischemic optic neuropathy or traumatic optic neuropathy. Jpn J Ophthalmol 50:266–273PubMedCrossRef
22.
Zurück zum Zitat Inomata K, Shinoda K, Ohde H, Tsunoda K, Hanazono G, Kimura I, Yuzawa M, Tsubota K, Miyake Y (2007) Transcorneal electrical stimulation of retina to treat longstanding retinal artery occlusion. Graefes Arch Clin Exp Ophthalmol 245:1773–1780PubMedCrossRef Inomata K, Shinoda K, Ohde H, Tsunoda K, Hanazono G, Kimura I, Yuzawa M, Tsubota K, Miyake Y (2007) Transcorneal electrical stimulation of retina to treat longstanding retinal artery occlusion. Graefes Arch Clin Exp Ophthalmol 245:1773–1780PubMedCrossRef
23.
Zurück zum Zitat Oono S, Kurimoto T, Kashimoto R, Tagami Y, Okamoto N, Mimura O (2011) Transcorneal electrical stimulation improves visual function in eyes with branch retinal artery occlusion. Clin Ophthalmol 5:397–402PubMed Oono S, Kurimoto T, Kashimoto R, Tagami Y, Okamoto N, Mimura O (2011) Transcorneal electrical stimulation improves visual function in eyes with branch retinal artery occlusion. Clin Ophthalmol 5:397–402PubMed
24.
Zurück zum Zitat Naycheva L, Schatz A, Rock T, Willmann G, Bartz-Schmidt KU, Zrenner E, Gekeler F (2011) Transcorneal electrical stimulation in patients with retinal artery occlusion. ARVO Meeting Abstracts 52:1871 Naycheva L, Schatz A, Rock T, Willmann G, Bartz-Schmidt KU, Zrenner E, Gekeler F (2011) Transcorneal electrical stimulation in patients with retinal artery occlusion. ARVO Meeting Abstracts 52:1871
25.
Zurück zum Zitat Rock T, Schatz A, Naycheva L, Willmann G, Bartz-Schmidt K-U, Zrenner E, Gekeler F (2011) Effects of transcorneal electrical stimulation in patients with Stargardt disease — a prospective, randomized, sham-controlled pilot study. ARVO Meeting Abstracts 52:1870 Rock T, Schatz A, Naycheva L, Willmann G, Bartz-Schmidt K-U, Zrenner E, Gekeler F (2011) Effects of transcorneal electrical stimulation in patients with Stargardt disease — a prospective, randomized, sham-controlled pilot study. ARVO Meeting Abstracts 52:1870
26.
Zurück zum Zitat Schatz A, Rock T, Naycheva L, Willmann G, Wilhelm B, Peters T, Bartz-Schmidt KU, Zrenner E, Messias A, Gekeler F (2011) Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled exploratory study. Invest Ophthalmol Vis Sci 52:4485–4496PubMedCrossRef Schatz A, Rock T, Naycheva L, Willmann G, Wilhelm B, Peters T, Bartz-Schmidt KU, Zrenner E, Messias A, Gekeler F (2011) Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled exploratory study. Invest Ophthalmol Vis Sci 52:4485–4496PubMedCrossRef
Metadaten
Titel
Electrical stimulation — a therapeutic strategy for retinal and optic nerve disease?
verfasst von
Florian Gekeler
Karl Ulrich Bartz-Schmidt
Publikationsdatum
01.02.2012
Verlag
Springer-Verlag
Erschienen in
Graefe's Archive for Clinical and Experimental Ophthalmology / Ausgabe 2/2012
Print ISSN: 0721-832X
Elektronische ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-012-1930-y

Weitere Artikel der Ausgabe 2/2012

Graefe's Archive for Clinical and Experimental Ophthalmology 2/2012 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Metastase in der periokulären Region

Metastasen Leitthema

Orbitale und periokuläre metastatische Tumoren galten früher als sehr selten. Aber mit der ständigen Aktualisierung von Medikamenten und Nachweismethoden für die Krebsbehandlung werden neue Chemotherapien und Strahlenbehandlungen eingesetzt. Die …

Staging und Systemtherapie bei okulären und periokulären Metastasen

Metastasen Leitthema

Metastasen bösartiger Erkrankungen sind die häufigsten Tumoren, die im Auge diagnostiziert werden. Sie treten bei ungefähr 5–10 % der Patienten mit soliden Tumoren im Verlauf der Erkrankung auf. Besonders häufig sind diese beim Mammakarzinom und …

CME: Wundheilung nach Trabekulektomie

Trabekulektomie CME-Artikel

Wird ein Glaukom chirurgisch behandelt, ist die anschließende Wundheilung von entscheidender Bedeutung. In diesem CME-Kurs lernen Sie, welche Pathomechanismen der Vernarbung zugrunde liegen, wie perioperativ therapiert und Operationsversagen frühzeitig erkannt werden kann.

„standard operating procedures“ (SOP) – Vorschlag zum therapeutischen Management bei periokulären sowie intraokulären Metastasen

Metastasen Leitthema

Peri- sowie intraokuläre Metastasen sind insgesamt gesehen selten und meist Zeichen einer fortgeschrittenen primären Tumorerkrankung. Die Therapie ist daher zumeist palliativ und selten kurativ. Zudem ist die Therapiefindung sehr individuell. Die …

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.