Skip to main content
Erschienen in: CNS Drugs 7/2011

01.07.2011 | Leading Article

Enhancing CNS Repair in Neurological Disease

Challenges Arising from Neurodegeneration and Rewiring of the Network

verfasst von: Xiaohua Xu, Arthur E. Warrington, Allan J. Bieber, Moses Rodriguez

Erschienen in: CNS Drugs | Ausgabe 7/2011

Einloggen, um Zugang zu erhalten

Abstract

Repair of the central nervous system (CNS) constitutes an integral part of treating neurological disease and plays a crucial role in restoring CNS architecture and function. Distinct strategies have been developed to reconstruct the damaged neural tissue, with many tested preclinically in animal models. We review cell replacement-based repair strategies. By taking spinal cord injury, cerebral ischaemia and degenerative CNS disorders as examples for CNS repair, we discuss progress and potential problems in utilizing embryonic stem cells and adult neural/non-neural stem cells to repair cell loss in the CNS. Nevertheless, CNS repair is not simply a matter of cell transplantation. The major challenge is to induce regenerating neural cells to integrate into the neural network and compensate for damaged neural function. The neural cells confront an environment very different from that of the developmental stage in which these cells differentiate to form interwoven networks.
During the repair process, one of the challenges is neurodegeneration, which can develop from interrupted innervations to/from the targets, chronic inflammation, ischaemia, aging or idiopathic neural toxicity. Neurodegeneration, which occurs on the basis of a characteristic vascular and neural web, usually presents as a chronically progressive process with unknown aetiology. Currently, there is no effective treatment to stop or slow down neurodegeneration. Pathological changes from patients with Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis indicate a broken homeostasis in the CNS. We discuss how the blood-brain barrier and neural networks are formed to maintain CNS homeostasis and their contribution to neurodegeneration in diseased conditions.
Another challenge is that some inhibitors produced by CNS injury do not facilitate the regenerating neural cells to incorporate into a pre-existing network. We review glial responses to CNS injury. Of note, the reactive astrocytes not only encompass the lesions/pathogens but may also form glial scars to impede regenerating axons from traversing the lesions. In addition, myelin debris can prevent axon growth. Myelination enables saltatory transduction of electrical impulses along axonal calibers and actually provides trophic support to stabilize the axons. Therefore, repair strategies should be designed to promote axonal growth, myelination and modulate astrocytic responses. Finally, we discuss recent progress in developing human monoclonal IgMs that regulate CNS homeostasis and promote neural regeneration.
Literatur
1.
Zurück zum Zitat Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 2006 Mar–Apr; 23(3–4): 264–80PubMed Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 2006 Mar–Apr; 23(3–4): 264–80PubMed
2.
Zurück zum Zitat Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004 Feb; 5(2): 146–56PubMedCrossRef Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004 Feb; 5(2): 146–56PubMedCrossRef
3.
Zurück zum Zitat Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med 2008 May; 14(5): 497–500PubMedCrossRef Lo EH. A new penumbra: transitioning from injury into repair after stroke. Nat Med 2008 May; 14(5): 497–500PubMedCrossRef
4.
Zurück zum Zitat LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 2007 Jul; 8(7): 499–509PubMedCrossRef LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 2007 Jul; 8(7): 499–509PubMedCrossRef
5.
Zurück zum Zitat Daniela F, Vescovi AL, Bottai D. The stem cells as a potential treatment for neurodegeneration. Methods Mol Biol 2007; 399: 199–213PubMedCrossRef Daniela F, Vescovi AL, Bottai D. The stem cells as a potential treatment for neurodegeneration. Methods Mol Biol 2007; 399: 199–213PubMedCrossRef
6.
Zurück zum Zitat Leker RR, Lasri V, Chernoguz D. Growth factors improve neurogenesis and outcome after focal cerebral ischemia. J Neural Transm 2009 Nov; 116(11): 1397–402PubMedCrossRef Leker RR, Lasri V, Chernoguz D. Growth factors improve neurogenesis and outcome after focal cerebral ischemia. J Neural Transm 2009 Nov; 116(11): 1397–402PubMedCrossRef
7.
Zurück zum Zitat Sahni V, Kessler JA. Stem cell therapies for spinal cord injury. Nat Rev Neurol 2010 Jul; 6(7): 363–72PubMedCrossRef Sahni V, Kessler JA. Stem cell therapies for spinal cord injury. Nat Rev Neurol 2010 Jul; 6(7): 363–72PubMedCrossRef
8.
Zurück zum Zitat McDonald JW, Liu XZ, Qu Y, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999 Dec; 5(12): 1410–2PubMedCrossRef McDonald JW, Liu XZ, Qu Y, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999 Dec; 5(12): 1410–2PubMedCrossRef
9.
Zurück zum Zitat Erdo F, Buhrle C, Blunk J, et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 2003 Jul; 23(7): 780–5PubMed Erdo F, Buhrle C, Blunk J, et al. Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 2003 Jul; 23(7): 780–5PubMed
10.
Zurück zum Zitat Bjorklund LM, Sanchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 2002 Feb 19; 99(4): 2344–9PubMedCrossRef Bjorklund LM, Sanchez-Pernaute R, Chung S, et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 2002 Feb 19; 99(4): 2344–9PubMedCrossRef
11.
Zurück zum Zitat Lee SH, Lumelsky N, Studer L, et al. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000 Jun; 18(6): 675–9PubMedCrossRef Lee SH, Lumelsky N, Studer L, et al. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000 Jun; 18(6): 675–9PubMedCrossRef
12.
Zurück zum Zitat Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998 Nov; 4(11): 1313–7PubMedCrossRef Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998 Nov; 4(11): 1313–7PubMedCrossRef
13.
Zurück zum Zitat Toda H, Takahashi J, Iwakami N, et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett 2001 Dec 4; 316(1): 9–12PubMedCrossRef Toda H, Takahashi J, Iwakami N, et al. Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett 2001 Dec 4; 316(1): 9–12PubMedCrossRef
14.
Zurück zum Zitat Shim JW, Park CH, Bae YC, et al. Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression. Stem Cells 2007 May; 25(5): 1252–62PubMedCrossRef Shim JW, Park CH, Bae YC, et al. Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression. Stem Cells 2007 May; 25(5): 1252–62PubMedCrossRef
15.
Zurück zum Zitat Bonner JF, Blesch A, Neuhuber B, et al. Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J Neurosci Res May 1; 88(6): 1182-92 Bonner JF, Blesch A, Neuhuber B, et al. Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J Neurosci Res May 1; 88(6): 1182-92
16.
Zurück zum Zitat Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001 Apr; 32(4): 1005–11PubMedCrossRef Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001 Apr; 32(4): 1005–11PubMedCrossRef
17.
Zurück zum Zitat Newman MB, Davis CD, Kuzmin-Nichols N, et al. Human umbilical cord blood (HUCB) cells for central nervous system repair. Neurotox Res 2003; 5(5): 355–68PubMedCrossRef Newman MB, Davis CD, Kuzmin-Nichols N, et al. Human umbilical cord blood (HUCB) cells for central nervous system repair. Neurotox Res 2003; 5(5): 355–68PubMedCrossRef
18.
Zurück zum Zitat Sykova E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 2006; 15(8–9): 675–87PubMedCrossRef Sykova E, Homola A, Mazanec R, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 2006; 15(8–9): 675–87PubMedCrossRef
19.
Zurück zum Zitat Munoz-Elias G, Marcus AJ, Coyne TM, et al. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J Neurosci 2004 May 12; 24(19): 4585–95PubMedCrossRef Munoz-Elias G, Marcus AJ, Coyne TM, et al. Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J Neurosci 2004 May 12; 24(19): 4585–95PubMedCrossRef
20.
Zurück zum Zitat Pluchino S, Zanotti L, Rossi B, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 2005 Jul 14; 436(7048): 266–71PubMedCrossRef Pluchino S, Zanotti L, Rossi B, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 2005 Jul 14; 436(7048): 266–71PubMedCrossRef
21.
Zurück zum Zitat Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci 2006 May; 7(5): 395–406PubMedCrossRef Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci 2006 May; 7(5): 395–406PubMedCrossRef
22.
Zurück zum Zitat Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005; 28: 223–50PubMedCrossRef Ming GL, Song H. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 2005; 28: 223–50PubMedCrossRef
23.
Zurück zum Zitat Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002 Sep; 8(9): 963–70PubMedCrossRef Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002 Sep; 8(9): 963–70PubMedCrossRef
24.
Zurück zum Zitat Hamilton LK, Truong MK, Bednarczyk MR, et al. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 2009 Dec 15; 164(3): 1044–56PubMedCrossRef Hamilton LK, Truong MK, Bednarczyk MR, et al. Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord. Neuroscience 2009 Dec 15; 164(3): 1044–56PubMedCrossRef
25.
Zurück zum Zitat Bath KG, Lee FS. Neurotrophic factor control of adult SVZ neurogenesis. Dev Neurobiol 2010 Apr; 70(5): 339–49PubMed Bath KG, Lee FS. Neurotrophic factor control of adult SVZ neurogenesis. Dev Neurobiol 2010 Apr; 70(5): 339–49PubMed
26.
Zurück zum Zitat Case LC, Tessier-Lavigne M. Regeneration of the adult central nervous system. Curr Biol 2005 Sep 20; 15(18): R749–53PubMedCrossRef Case LC, Tessier-Lavigne M. Regeneration of the adult central nervous system. Curr Biol 2005 Sep 20; 15(18): R749–53PubMedCrossRef
27.
Zurück zum Zitat Bredesen DE, Rao RV, Mehlen P. Cell death in the nervous system. Nature 2006 Oct 19; 443(7113): 796–802PubMedCrossRef Bredesen DE, Rao RV, Mehlen P. Cell death in the nervous system. Nature 2006 Oct 19; 443(7113): 796–802PubMedCrossRef
28.
Zurück zum Zitat Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005 Aug 15; 202(4): 473–7PubMedCrossRef Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005 Aug 15; 202(4): 473–7PubMedCrossRef
29.
Zurück zum Zitat Frank-Cannon TC, Alto LT, McAlpine FE, et al. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009; 4: 47PubMedCrossRef Frank-Cannon TC, Alto LT, McAlpine FE, et al. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009; 4: 47PubMedCrossRef
30.
Zurück zum Zitat Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 2007 Sep; 8(9): 663–72PubMedCrossRef Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 2007 Sep; 8(9): 663–72PubMedCrossRef
31.
Zurück zum Zitat Auluck PK, Caraveo G, Lindquist S. α-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol 2010 Nov 10; (26): 211-33 Auluck PK, Caraveo G, Lindquist S. α-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol 2010 Nov 10; (26): 211-33
32.
Zurück zum Zitat Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009 Dec 14; 187(6): 761–72PubMedCrossRef Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009 Dec 14; 187(6): 761–72PubMedCrossRef
33.
Zurück zum Zitat Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration. Cell 2010 Mar 19; 140(6): 918–34PubMedCrossRef Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration. Cell 2010 Mar 19; 140(6): 918–34PubMedCrossRef
34.
Zurück zum Zitat Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 2003 Apr; 9(4): 453–7PubMedCrossRef Wyss-Coray T, Loike JD, Brionne TC, et al. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 2003 Apr; 9(4): 453–7PubMedCrossRef
35.
Zurück zum Zitat Tan L, Gordon KB, Mueller JP, et al. Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J Immunol 1998 May 1; 160(9): 4271–9PubMed Tan L, Gordon KB, Mueller JP, et al. Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J Immunol 1998 May 1; 160(9): 4271–9PubMed
36.
Zurück zum Zitat Constantinescu CS, Tani M, Ransohoff RM, et al. Astrocytes as antigen-presenting cells: expression of IL-12/ IL-23. J Neurochem 2005 Oct; 95(2): 331–40PubMedCrossRef Constantinescu CS, Tani M, Ransohoff RM, et al. Astrocytes as antigen-presenting cells: expression of IL-12/ IL-23. J Neurochem 2005 Oct; 95(2): 331–40PubMedCrossRef
37.
Zurück zum Zitat Trapp BD, Peterson J, Ransohoff RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998 Jan 29; 338(5): 278–85PubMedCrossRef Trapp BD, Peterson J, Ransohoff RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998 Jan 29; 338(5): 278–85PubMedCrossRef
38.
Zurück zum Zitat Rodriguez M, Scheithauer B. Ultrastructure of multiple sclerosis. Ultrastruct Pathol 1994 Jan–Apr; 18(1–2): 3–13PubMedCrossRef Rodriguez M, Scheithauer B. Ultrastructure of multiple sclerosis. Ultrastruct Pathol 1994 Jan–Apr; 18(1–2): 3–13PubMedCrossRef
39.
Zurück zum Zitat Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 2005 Jun; 18(3): 315–21PubMedCrossRef Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 2005 Jun; 18(3): 315–21PubMedCrossRef
40.
Zurück zum Zitat Fugger L, Friese MA, Bell JI. From genes to function: the next challenge to understanding multiple sclerosis. Nat Rev Immunol 2009 Jun; 9(6): 408–17PubMedCrossRef Fugger L, Friese MA, Bell JI. From genes to function: the next challenge to understanding multiple sclerosis. Nat Rev Immunol 2009 Jun; 9(6): 408–17PubMedCrossRef
41.
Zurück zum Zitat Beleza-Meireles A, Al-Chalabi A. Genetic studies of amyotrophic lateral sclerosis: controversies and perspectives. Amyotroph Lateral Scler 2009 Feb; 10(1): 1–14PubMedCrossRef Beleza-Meireles A, Al-Chalabi A. Genetic studies of amyotrophic lateral sclerosis: controversies and perspectives. Amyotroph Lateral Scler 2009 Feb; 10(1): 1–14PubMedCrossRef
42.
Zurück zum Zitat Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 2009 Apr 15; 18(R1): R48–59PubMedCrossRef Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 2009 Apr 15; 18(R1): R48–59PubMedCrossRef
43.
Zurück zum Zitat Ertekin-Taner N. Genetics of Alzheimer disease in the pre-and post-GWAS era. Alzheimers Res Ther 2010; 2(1): 3PubMedCrossRef Ertekin-Taner N. Genetics of Alzheimer disease in the pre-and post-GWAS era. Alzheimers Res Ther 2010; 2(1): 3PubMedCrossRef
44.
Zurück zum Zitat Goate AM, Haynes AR, Owen MJ, et al. Predisposing locus for Alzheimer’s disease on chromosome 21. Lancet 1989 Feb 18; 1(8634): 352–5PubMedCrossRef Goate AM, Haynes AR, Owen MJ, et al. Predisposing locus for Alzheimer’s disease on chromosome 21. Lancet 1989 Feb 18; 1(8634): 352–5PubMedCrossRef
45.
Zurück zum Zitat Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991 Feb 21; 349(6311): 704–6PubMedCrossRef Goate A, Chartier-Harlin MC, Mullan M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991 Feb 21; 349(6311): 704–6PubMedCrossRef
46.
Zurück zum Zitat Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995 Jun 29; 375(6534): 754–60PubMedCrossRef Sherrington R, Rogaev EI, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995 Jun 29; 375(6534): 754–60PubMedCrossRef
47.
Zurück zum Zitat Levy-Lahad E, Wijsman EM, Nemens E, et al. A familial Alzheimer’s disease locus on chromosome 1. Science 1995 Aug 18; 269(5226): 970–3PubMedCrossRef Levy-Lahad E, Wijsman EM, Nemens E, et al. A familial Alzheimer’s disease locus on chromosome 1. Science 1995 Aug 18; 269(5226): 970–3PubMedCrossRef
48.
Zurück zum Zitat Rogaev EI, Sherrington R, Rogaeva EA, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995 Aug 31; 376(6543): 775–8PubMedCrossRef Rogaev EI, Sherrington R, Rogaeva EA, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995 Aug 31; 376(6543): 775–8PubMedCrossRef
49.
Zurück zum Zitat Bertram L, Tanzi RE. Genome-wide association studies in Alzheimer’s disease. Hum Mol Genet 2009 Oct 15; 18(R2): R137–45PubMedCrossRef Bertram L, Tanzi RE. Genome-wide association studies in Alzheimer’s disease. Hum Mol Genet 2009 Oct 15; 18(R2): R137–45PubMedCrossRef
50.
Zurück zum Zitat Borchelt DR, Thinakaran G, Eckman CB, et al. Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta 1-42/1-40 ratio in vitro and in vivo. Neuron 1996 Nov; 17(5): 1005–13PubMedCrossRef Borchelt DR, Thinakaran G, Eckman CB, et al. Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta 1-42/1-40 ratio in vitro and in vivo. Neuron 1996 Nov; 17(5): 1005–13PubMedCrossRef
51.
Zurück zum Zitat Xia W, Zhang J, Kholodenko D, et al. Enhanced production and oligomerization of the 42-residue amyloid beta-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J Biol Chem 1997 Mar 21; 272(12): 7977–82PubMedCrossRef Xia W, Zhang J, Kholodenko D, et al. Enhanced production and oligomerization of the 42-residue amyloid beta-protein by Chinese hamster ovary cells stably expressing mutant presenilins. J Biol Chem 1997 Mar 21; 272(12): 7977–82PubMedCrossRef
52.
Zurück zum Zitat Holtzman DM, Bales KR, Tenkova T, et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2000 Mar 14; 97(6): 2892–7PubMedCrossRef Holtzman DM, Bales KR, Tenkova T, et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2000 Mar 14; 97(6): 2892–7PubMedCrossRef
53.
Zurück zum Zitat Baulac S, LaVoie MJ, Kimberly WT, et al. Functional gamma-secretase complex assembly in Golgi/trans-Golgi network: interactions among presenilin, nicastrin, Aph1, Pen-2, and gamma-secretase substrates. Neurobiol Dis 2003 Nov; 14(2): 194–204PubMedCrossRef Baulac S, LaVoie MJ, Kimberly WT, et al. Functional gamma-secretase complex assembly in Golgi/trans-Golgi network: interactions among presenilin, nicastrin, Aph1, Pen-2, and gamma-secretase substrates. Neurobiol Dis 2003 Nov; 14(2): 194–204PubMedCrossRef
54.
Zurück zum Zitat Dion PA, Daoud H, Rouleau GA. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 2009 Nov; 10(11): 769–82PubMedCrossRef Dion PA, Daoud H, Rouleau GA. Genetics of motor neuron disorders: new insights into pathogenic mechanisms. Nat Rev Genet 2009 Nov; 10(11): 769–82PubMedCrossRef
55.
Zurück zum Zitat Tam SJ, Watts RJ. Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu Rev Neurosci 2010; 33: 379–408PubMedCrossRef Tam SJ, Watts RJ. Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu Rev Neurosci 2010; 33: 379–408PubMedCrossRef
56.
Zurück zum Zitat Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res 2003; 61: 39–78PubMed Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res 2003; 61: 39–78PubMed
57.
Zurück zum Zitat Zlokovic BV, Apuzzo ML. Strategies to circumvent vascular barriers of the CNS. Neurosurgery 1998; 43(4): 877–8PubMedCrossRef Zlokovic BV, Apuzzo ML. Strategies to circumvent vascular barriers of the CNS. Neurosurgery 1998; 43(4): 877–8PubMedCrossRef
58.
Zurück zum Zitat Schlageter KE, Molnar P, Lapin GD, et al. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res 1999 Nov; 58(3): 312–28PubMedCrossRef Schlageter KE, Molnar P, Lapin GD, et al. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res 1999 Nov; 58(3): 312–28PubMedCrossRef
59.
Zurück zum Zitat Banerjee S, Bhat MA. Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci 2007; 30: 235–58PubMedCrossRef Banerjee S, Bhat MA. Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci 2007; 30: 235–58PubMedCrossRef
60.
Zurück zum Zitat Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006 Jan; 7(1): 41–53PubMedCrossRef Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006 Jan; 7(1): 41–53PubMedCrossRef
61.
Zurück zum Zitat Rouach N, Glowinski J, Giaume C. Activity-dependent neuronal control of gap-junctional communication in astrocytes. J Cell Biol 2000 Jun 26; 149(7): 1513–26PubMedCrossRef Rouach N, Glowinski J, Giaume C. Activity-dependent neuronal control of gap-junctional communication in astrocytes. J Cell Biol 2000 Jun 26; 149(7): 1513–26PubMedCrossRef
62.
Zurück zum Zitat Rouach N, Koulakoff A, Abudara V, et al. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 2008 Dec 5; 322(5907): 1551–5PubMedCrossRef Rouach N, Koulakoff A, Abudara V, et al. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 2008 Dec 5; 322(5907): 1551–5PubMedCrossRef
63.
Zurück zum Zitat Bushong EA, Martone ME, Jones YZ, et al. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 2002 Jan 1;22(1): 183–92PubMed Bushong EA, Martone ME, Jones YZ, et al. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 2002 Jan 1;22(1): 183–92PubMed
64.
Zurück zum Zitat Khuth ST, Strazielle N, Giraudon P, et al. Impairment of blood-cerebrospinal fluid barrier properties by retrovirus-activated T lymphocytes: reduction in cerebrospinal fluid-to-blood efflux of prostaglandin E 2. J Neurochem 2005 Sep; 94(6): 1580–93PubMedCrossRef Khuth ST, Strazielle N, Giraudon P, et al. Impairment of blood-cerebrospinal fluid barrier properties by retrovirus-activated T lymphocytes: reduction in cerebrospinal fluid-to-blood efflux of prostaglandin E 2. J Neurochem 2005 Sep; 94(6): 1580–93PubMedCrossRef
65.
Zurück zum Zitat Navikas V, Link H. Review: cytokines and the pathogenesis of multiple sclerosis. J Neurosci Res 1996 Aug 15; 45(4): 322–33PubMedCrossRef Navikas V, Link H. Review: cytokines and the pathogenesis of multiple sclerosis. J Neurosci Res 1996 Aug 15; 45(4): 322–33PubMedCrossRef
66.
Zurück zum Zitat Nave KA, Trapp BD. Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 2008; 31: 535–61PubMedCrossRef Nave KA, Trapp BD. Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci 2008; 31: 535–61PubMedCrossRef
67.
Zurück zum Zitat Rakic P, Ayoub AE, Breunig JJ, et al. Decision by division: making cortical maps. Trends Neurosci 2009 May; 32(5): 291–301PubMedCrossRef Rakic P, Ayoub AE, Breunig JJ, et al. Decision by division: making cortical maps. Trends Neurosci 2009 May; 32(5): 291–301PubMedCrossRef
68.
Zurück zum Zitat Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010 Jan; 119(1): 7–35PubMedCrossRef Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010 Jan; 119(1): 7–35PubMedCrossRef
69.
Zurück zum Zitat Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001 Apr; 81(2): 871–927PubMed Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001 Apr; 81(2): 871–927PubMed
71.
Zurück zum Zitat Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 2009; 27: 119–45PubMedCrossRef Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 2009; 27: 119–45PubMedCrossRef
72.
Zurück zum Zitat Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci 2009 May; 30(5): 260–7PubMedCrossRef Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci 2009 May; 30(5): 260–7PubMedCrossRef
73.
Zurück zum Zitat Sofroniew MV. Molecular dissection of reactive astro-gliosis and glial scar formation. Trends Neurosci 2009 Dec; 32(12): 638–47PubMedCrossRef Sofroniew MV. Molecular dissection of reactive astro-gliosis and glial scar formation. Trends Neurosci 2009 Dec; 32(12): 638–47PubMedCrossRef
74.
Zurück zum Zitat Margolis RK, Margolis RU. Nervous tissue proteoglycans. EXS 1994; 70: 145–77PubMed Margolis RK, Margolis RU. Nervous tissue proteoglycans. EXS 1994; 70: 145–77PubMed
75.
Zurück zum Zitat Yamagata T, Saito H, Habuchi O, et al. Purification and properties of bacterial chondroitinases and chon-drosulfatases. J Biol Chem 1968 Apr 10; 243(7): 1523–35PubMed Yamagata T, Saito H, Habuchi O, et al. Purification and properties of bacterial chondroitinases and chon-drosulfatases. J Biol Chem 1968 Apr 10; 243(7): 1523–35PubMed
76.
Zurück zum Zitat Bradbury EJ, Carter LM. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 2010 Mar; 84(4–5): 306–16PubMed Bradbury EJ, Carter LM. Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 2010 Mar; 84(4–5): 306–16PubMed
77.
Zurück zum Zitat Brambilla R, Persaud T, Hu X, et al. Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J Immunol 2009 Mar 1; 182(5): 2628–40PubMedCrossRef Brambilla R, Persaud T, Hu X, et al. Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J Immunol 2009 Mar 1; 182(5): 2628–40PubMedCrossRef
78.
Zurück zum Zitat Hamby ME, Hewett JA, Hewett SJ. TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia 2006 Nov 1; 54(6): 566–77PubMedCrossRef Hamby ME, Hewett JA, Hewett SJ. TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia 2006 Nov 1; 54(6): 566–77PubMedCrossRef
79.
Zurück zum Zitat Takano T, Kang J, Jaiswal JK, et al. Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci U S A 2005 Nov 8; 102(45): 16466–71PubMedCrossRef Takano T, Kang J, Jaiswal JK, et al. Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci U S A 2005 Nov 8; 102(45): 16466–71PubMedCrossRef
80.
Zurück zum Zitat Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci 2009 Mar; 10(3): 235–41PubMedCrossRef Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci 2009 Mar; 10(3): 235–41PubMedCrossRef
81.
Zurück zum Zitat Trendelenburg G, Dirnagl U. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 2005 Jun; 50(4): 307–20PubMedCrossRef Trendelenburg G, Dirnagl U. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 2005 Jun; 50(4): 307–20PubMedCrossRef
82.
Zurück zum Zitat Kuhlmann T, Lassmann H, Bruck W. Diagnosis of inflammatory demyelination in biopsy specimens: a practical approach. Acta Neuropathol 2008 Mar; 115(3): 275–87PubMedCrossRef Kuhlmann T, Lassmann H, Bruck W. Diagnosis of inflammatory demyelination in biopsy specimens: a practical approach. Acta Neuropathol 2008 Mar; 115(3): 275–87PubMedCrossRef
83.
Zurück zum Zitat Voskuhl RR, Peterson RS, Song B, et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 2009 Sep 16; 29(37): 11511–22PubMedCrossRef Voskuhl RR, Peterson RS, Song B, et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 2009 Sep 16; 29(37): 11511–22PubMedCrossRef
84.
Zurück zum Zitat Thal DR, Schultz C, Dehghani F, et al. Amyloid beta-protein (Abeta)-containing astrocytes are located preferentially near N-terminal-truncated Abeta deposits in the human entorhinal cortex. Acta Neuropathol 2000 Dec; 100(6): 608–17PubMedCrossRef Thal DR, Schultz C, Dehghani F, et al. Amyloid beta-protein (Abeta)-containing astrocytes are located preferentially near N-terminal-truncated Abeta deposits in the human entorhinal cortex. Acta Neuropathol 2000 Dec; 100(6): 608–17PubMedCrossRef
85.
Zurück zum Zitat Faulkner JR, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 2004 Mar 3; 24(9): 2143–55PubMedCrossRef Faulkner JR, Herrmann JE, Woo MJ, et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 2004 Mar 3; 24(9): 2143–55PubMedCrossRef
86.
Zurück zum Zitat Li L, Lundkvist A, Andersson D, et al. Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 2008 Mar; 28(3): 468–81PubMedCrossRef Li L, Lundkvist A, Andersson D, et al. Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 2008 Mar; 28(3): 468–81PubMedCrossRef
87.
Zurück zum Zitat Di Giorgio FP, Carrasco MA, Siao MC, et al. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 2007 May; 10(5): 608–14PubMedCrossRef Di Giorgio FP, Carrasco MA, Siao MC, et al. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 2007 May; 10(5): 608–14PubMedCrossRef
88.
Zurück zum Zitat Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 2007 May; 10(5): 615–22PubMedCrossRef Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 2007 May; 10(5): 615–22PubMedCrossRef
89.
Zurück zum Zitat McKerracher L, David S, Jackson DL, et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 1994 Oct; 13(4): 805–11PubMedCrossRef McKerracher L, David S, Jackson DL, et al. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 1994 Oct; 13(4): 805–11PubMedCrossRef
90.
Zurück zum Zitat Mukhopadhyay G, Doherty P, Walsh FS, et al. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 1994 Sep; 13(3): 757–67PubMedCrossRef Mukhopadhyay G, Doherty P, Walsh FS, et al. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 1994 Sep; 13(3): 757–67PubMedCrossRef
91.
Zurück zum Zitat Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000 Jan 27; 403(6768): 434–9PubMedCrossRef Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000 Jan 27; 403(6768): 434–9PubMedCrossRef
92.
Zurück zum Zitat GrandPre T, Nakamura F, Vartanian T, et al. Identification of the Nogo inhibitor of axon regeneration as a reticulon protein. Nature 2000 Jan 27; 403(6768): 439–44PubMedCrossRef GrandPre T, Nakamura F, Vartanian T, et al. Identification of the Nogo inhibitor of axon regeneration as a reticulon protein. Nature 2000 Jan 27; 403(6768): 439–44PubMedCrossRef
93.
Zurück zum Zitat Prinjha R, Moore SE, Vinson M, et al. Inhibitor of neurite outgrowth in humans. Nature 2000 Jan 27; 403(6768): 383–4PubMedCrossRef Prinjha R, Moore SE, Vinson M, et al. Inhibitor of neurite outgrowth in humans. Nature 2000 Jan 27; 403(6768): 383–4PubMedCrossRef
94.
Zurück zum Zitat Wang KC, Koprivica V, Kim JA, et al. Oligodendrocytemyelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 2002 Jun 27; 417(6892): 941–4PubMedCrossRef Wang KC, Koprivica V, Kim JA, et al. Oligodendrocytemyelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 2002 Jun 27; 417(6892): 941–4PubMedCrossRef
95.
Zurück zum Zitat Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 2003 Sep; 4(9): 703–13PubMedCrossRef Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 2003 Sep; 4(9): 703–13PubMedCrossRef
96.
Zurück zum Zitat Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006 Aug; 7(8): 617–27PubMedCrossRef Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006 Aug; 7(8): 617–27PubMedCrossRef
97.
Zurück zum Zitat Mi S, Sandrock A, Miller RH. LINGO-1 and its role in CNS repair. Int J Biochem Cell Biol 2008; 40(10): 1971–8PubMedCrossRef Mi S, Sandrock A, Miller RH. LINGO-1 and its role in CNS repair. Int J Biochem Cell Biol 2008; 40(10): 1971–8PubMedCrossRef
98.
Zurück zum Zitat Cao Z, Gao Y, Deng K, et al. Receptors for myelin inhibitors: structures and therapeutic opportunities. Mol Cell Neurosci 2010 Jan; 43(1): 1–14PubMedCrossRef Cao Z, Gao Y, Deng K, et al. Receptors for myelin inhibitors: structures and therapeutic opportunities. Mol Cell Neurosci 2010 Jan; 43(1): 1–14PubMedCrossRef
99.
Zurück zum Zitat Yang LJ, Zeller CB, Shaper NL, et al. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci U S A 1996 Jan 23; 93(2): 814–8PubMedCrossRef Yang LJ, Zeller CB, Shaper NL, et al. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci U S A 1996 Jan 23; 93(2): 814–8PubMedCrossRef
100.
Zurück zum Zitat Vyas AA, Patel HV, Fromholt SE, et al. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A 2002 Jun 11; 99(12): 8412–7PubMedCrossRef Vyas AA, Patel HV, Fromholt SE, et al. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A 2002 Jun 11; 99(12): 8412–7PubMedCrossRef
101.
Zurück zum Zitat Atwal JK, Pinkston-Gosse J, Syken J, et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 2008 Nov 7; 322(5903): 967–70PubMedCrossRef Atwal JK, Pinkston-Gosse J, Syken J, et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 2008 Nov 7; 322(5903): 967–70PubMedCrossRef
102.
Zurück zum Zitat Goh EL, Young JK, Kuwako K, et al. Beta1-integrin mediates myelin-associated glycoprotein signaling in neuronal growth cones. Mol Brain 2008; 1(1): 10PubMedCrossRef Goh EL, Young JK, Kuwako K, et al. Beta1-integrin mediates myelin-associated glycoprotein signaling in neuronal growth cones. Mol Brain 2008; 1(1): 10PubMedCrossRef
103.
Zurück zum Zitat Quarles RH. Myelin-associated glycoprotein (MAG): past, present and beyond. JNeurochem 2007 Mar; 100(6): 1431–48 Quarles RH. Myelin-associated glycoprotein (MAG): past, present and beyond. JNeurochem 2007 Mar; 100(6): 1431–48
104.
Zurück zum Zitat Schnaar RL, Lopez PH. Myelin-associated glycoprotein and its axonal receptors. J Neurosci Res 2009 Nov 15; 87(15): 3267–76PubMedCrossRef Schnaar RL, Lopez PH. Myelin-associated glycoprotein and its axonal receptors. J Neurosci Res 2009 Nov 15; 87(15): 3267–76PubMedCrossRef
105.
Zurück zum Zitat Bartsch U, Bandtlow CE, Schnell L, et al. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 1995 Dec; 15(6): 1375–81PubMedCrossRef Bartsch U, Bandtlow CE, Schnell L, et al. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 1995 Dec; 15(6): 1375–81PubMedCrossRef
106.
Zurück zum Zitat Lee JK, Geoffroy CG, Chan AF, et al. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron 2010 Jun 10; 66(5): 663–70PubMedCrossRef Lee JK, Geoffroy CG, Chan AF, et al. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron 2010 Jun 10; 66(5): 663–70PubMedCrossRef
107.
Zurück zum Zitat Yin X, Crawford TO, Griffin JW, et al. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 1998 Mar 15; 18(6): 1953–62PubMed Yin X, Crawford TO, Griffin JW, et al. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 1998 Mar 15; 18(6): 1953–62PubMed
108.
Zurück zum Zitat Nguyen T, Mehta NR, Conant K, et al. Axonal protective effects of the myelin-associated glycoprotein. J Neurosci 2009 Jan 21; 29(3): 630–7PubMedCrossRef Nguyen T, Mehta NR, Conant K, et al. Axonal protective effects of the myelin-associated glycoprotein. J Neurosci 2009 Jan 21; 29(3): 630–7PubMedCrossRef
109.
Zurück zum Zitat Warrington AE, Bieber AJ, Van Keulen V, et al. Neuron-binding human monoclonal antibodies support central nervous system neurite extension. J Neuropathol Exp Neurol 2004 May; 63(5): 461–73PubMed Warrington AE, Bieber AJ, Van Keulen V, et al. Neuron-binding human monoclonal antibodies support central nervous system neurite extension. J Neuropathol Exp Neurol 2004 May; 63(5): 461–73PubMed
110.
Zurück zum Zitat Schnell L, Schwab ME. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 1990 Jan 18; 343(6255): 269–72PubMedCrossRef Schnell L, Schwab ME. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 1990 Jan 18; 343(6255): 269–72PubMedCrossRef
111.
Zurück zum Zitat Brosamle C, Huber AB, Fiedler M, et al. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci 2000 Nov 1; 20(21): 8061–8PubMed Brosamle C, Huber AB, Fiedler M, et al. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci 2000 Nov 1; 20(21): 8061–8PubMed
112.
Zurück zum Zitat Rodriguez M, Lennon VA, Benveniste EN, et al. Remyelination by oligodendrocytes stimulated by antiserum to spinal cord. J Neuropathol Exp Neurol 1987 Jan; 46(1): 84–95PubMedCrossRef Rodriguez M, Lennon VA, Benveniste EN, et al. Remyelination by oligodendrocytes stimulated by antiserum to spinal cord. J Neuropathol Exp Neurol 1987 Jan; 46(1): 84–95PubMedCrossRef
113.
Zurück zum Zitat Howe CL, Bieber AJ, Warrington AE, et al. Antiapoptotic signaling by a remyelination-promoting human anti-myelin antibody. Neurobiol Dis 2004 Feb; 15(1): 120–31PubMedCrossRef Howe CL, Bieber AJ, Warrington AE, et al. Antiapoptotic signaling by a remyelination-promoting human anti-myelin antibody. Neurobiol Dis 2004 Feb; 15(1): 120–31PubMedCrossRef
114.
Zurück zum Zitat Miller DJ, Sanborn KS, Katzmann JA, et al. Monoclonal autoantibodies promote central nervous system repair in an animal model of multiple sclerosis. J Neurosci 1994 Oct; 14(10): 6230–8PubMed Miller DJ, Sanborn KS, Katzmann JA, et al. Monoclonal autoantibodies promote central nervous system repair in an animal model of multiple sclerosis. J Neurosci 1994 Oct; 14(10): 6230–8PubMed
115.
Zurück zum Zitat Warrington AE, Asakura K, Bieber AJ, et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci U S A 2000 Jun 6; 97(12): 6820–5PubMedCrossRef Warrington AE, Asakura K, Bieber AJ, et al. Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci U S A 2000 Jun 6; 97(12): 6820–5PubMedCrossRef
116.
Zurück zum Zitat Rodriguez M, Warrington AE, Pease LR. Invited article: human natural autoantibodies in the treatment of neurologic disease. Neurology 2009 Apr 7; 72(14): 1269–76PubMedCrossRef Rodriguez M, Warrington AE, Pease LR. Invited article: human natural autoantibodies in the treatment of neurologic disease. Neurology 2009 Apr 7; 72(14): 1269–76PubMedCrossRef
117.
Zurück zum Zitat Casali P, Schettino EW. Structure and function of natural antibodies. Curr Top Microbiol Immunol 1996; 210: 167–79PubMedCrossRef Casali P, Schettino EW. Structure and function of natural antibodies. Curr Top Microbiol Immunol 1996; 210: 167–79PubMedCrossRef
118.
Zurück zum Zitat Boes M. Role of natural and immune IgM antibodies in immune responses. Mol Immunol 2000 Dec; 37(18): 1141–9PubMedCrossRef Boes M. Role of natural and immune IgM antibodies in immune responses. Mol Immunol 2000 Dec; 37(18): 1141–9PubMedCrossRef
119.
Zurück zum Zitat Elkon K, Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol 2008 Sep; 4(9): 491–8PubMedCrossRef Elkon K, Casali P. Nature and functions of autoantibodies. Nat Clin Pract Rheumatol 2008 Sep; 4(9): 491–8PubMedCrossRef
120.
Zurück zum Zitat Binder CJ. Natural IgM antibodies against oxidation-specific epitopes. J Clin Immunol 2010 May; 30 Suppl. 1: S56–60PubMedCrossRef Binder CJ. Natural IgM antibodies against oxidation-specific epitopes. J Clin Immunol 2010 May; 30 Suppl. 1: S56–60PubMedCrossRef
121.
Zurück zum Zitat Jeannin P, Jaillon S, Delneste Y. Pattern recognition receptors in the immune response against dying cells. Curr Opin Immunol 2008 Oct; 20(5): 530–7PubMedCrossRef Jeannin P, Jaillon S, Delneste Y. Pattern recognition receptors in the immune response against dying cells. Curr Opin Immunol 2008 Oct; 20(5): 530–7PubMedCrossRef
122.
Zurück zum Zitat Vollmers HP, Brandlein S. Natural antibodies and cancer. J Autoimmun 2007 Dec; 29(4): 295–302PubMedCrossRef Vollmers HP, Brandlein S. Natural antibodies and cancer. J Autoimmun 2007 Dec; 29(4): 295–302PubMedCrossRef
123.
Zurück zum Zitat Watzlawik J, Holicky E, Edberg DD, et al. Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia 2010 Nov 15; 58(15): 1782–93PubMedCrossRef Watzlawik J, Holicky E, Edberg DD, et al. Human remyelination promoting antibody inhibits apoptotic signaling and differentiation through Lyn kinase in primary rat oligodendrocytes. Glia 2010 Nov 15; 58(15): 1782–93PubMedCrossRef
Metadaten
Titel
Enhancing CNS Repair in Neurological Disease
Challenges Arising from Neurodegeneration and Rewiring of the Network
verfasst von
Xiaohua Xu
Arthur E. Warrington
Allan J. Bieber
Moses Rodriguez
Publikationsdatum
01.07.2011
Verlag
Springer International Publishing
Erschienen in
CNS Drugs / Ausgabe 7/2011
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.2165/11587830-000000000-00000

Weitere Artikel der Ausgabe 7/2011

CNS Drugs 7/2011 Zur Ausgabe

Adis Drug Profile

Vilazodone

Therapy in Practice

Transdermal Rivastigmine

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.