Skip to main content
Erschienen in: Annals of Surgical Oncology 1/2023

Open Access 28.10.2022 | Peritoneal Surface Malignancy

Functional Outcomes Following Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy: A Prospective Cohort Study

verfasst von: Preet G. S. Makker, BMedSci, PhD, MD, Cherry E. Koh, MBBS, MS, PhD, FRACS, Nabila Ansari, BMedSci, MBBS, FRACS, Nicole Gonzaga, BPubHlth, Jenna Bartyn, BHSc, MPH, Michael Solomon, MB, BCH, BAO, MSc, DMedSc, DMed (NUI), FRCSI, FRACS, Daniel Steffens, BPhyt, PhD

Erschienen in: Annals of Surgical Oncology | Ausgabe 1/2023

Abstract

Background

Pre-operative physical status and its association with post-operative surgical outcomes is poorly understood in patients with peritoneal malignancy who undergo cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC). The aims of this study were to determine the pre-operative physical function in patients having CRS-HIPEC and investigate the association between physical function and post-operative outcomes.

Patients and Methods

Patients undergoing CRS-HIPEC between 2017 and 2021 were recruited at a single quaternary referral hospital in Sydney, Australia. The primary physical function measures were the 6-min walk test (6MWT) and the five-times sit to stand test (5STS). Data were collected pre-operatively and at post-operative day 10, and were analysed according to pre-operative patient characteristics and post-operative outcomes such as length of hospital stay (LOS) and complications.

Results

The cohort of patients that participated in functional assessments consisted of 234 patients, with a median age of 56 years. Patients having CRS-HIPEC performed worse on the 6MWT pre-operatively compared with the general Australian population (p < 0.001). Post-operatively, these patients experienced a further deterioration in 6MWT and 5STS performance and the degree of the post-operative decline in function was associated with post-operative morbidity. A higher level of pre-operative physical function was associated with shorter LOS and minor post-operative complications.

Conclusions

Patients who have undergone CRS-HIPEC were functionally impaired pre-operatively compared with the general population and experience a further deterioration of physical function post-operatively. A higher level of pre-operative physical function is associated with minor post-operative morbidity, which is highly relevant for pre-operative optimisation of patients with cancer.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1245/​s10434-022-12691-x.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The management of peritoneal malignancy remains a challenging area in surgical oncology. The recent emergence of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) as a treatment strategy over systemic chemotherapy or palliative care for selected patients has led to superior 5-year survival rates, better disease control and improvement in longer term health-related quality of life (QoL).14 CRS is performed on primary or metastatic peritoneal disease arising from cancers of the appendix, colon, rectum, mesothelium and ovary, with the goal of removing all visible disease using a combination of visceral resections and peritonectomy procedures.5 HIPEC involves direct administration of a heated chemotherapy agent intraoperatively following cytoreduction to treat any microscopic disease.6 It is estimated that between 29,000 and 41,000 CRS-HIPEC procedures are performed in the USA every year.7
Whilst patient survival rates from peritoneal malignancy have improved with a CRS-HIPEC approach for selected patients, there continues to be significant morbidity associated with this procedure.1,8 Therefore, there is growing interest in improving outcomes in this patient population.9 Post-operative complications, length of hospital stay and 30-day mortality are either comparable or favourable in patients having CRS-HIPEC when compared with other high-risk oncological procedures such as hepatectomy, pancreaticoduodenectomy and oesophagectomy.8 In addition, several studies assessing short- and long-term QoL in CRS-HIPEC populations have found a significant short-term decline in QoL, with a return to baseline levels ranging from 6 months to 2 years after surgery.1013 Studies investigating level of physical function through patient-reported measures have reported a short-term post-operative decline in function.10,11,13,14 Patient-reported outcomes are prone to bias and variability between testing centres, leading to inconclusive results and a lack of generalisability.15 Studies measuring physical function using objective measures are lacking in patients having CRS-HIPEC.
The 6-min walk test (6MWT) and five-times sit to stand test (5STS) are clinically validated tools for measuring functional capacity and lower limb function, which are relevant dimensions for determining pre-operative fitness for surgery and post-operative recovery. There are limited studies that report objectively measured functional outcomes in patients with abdominal and pelvic cancers using 6MWT and 5STS,1619 and to the authors’ knowledge, no studies to date utilise these tools in the context of peritoneal malignancy and CRS-HIPEC. A previously published cohort study investigated the clinical application of 6MWT and 5STS in the pre-operative and post-operative setting in patients undergoing pelvic exenteration surgery for advanced pelvic malignancy.20 This study found that pelvic exenteration patients experience an acute decline in post-operative function, and patients with a worse pre-operative function were more likely to experience worse post-operative morbidity.
Objective measurement of physical function in surgical patients is advantageous, especially when compared with patient-reported outcomes. In the pre-operative setting, functional tests can be used to determine fitness for surgery and predict post-operative outcomes.21 There is emerging evidence supporting the role of pre-operative optimisation through prehabilitation for improving physical fitness prior to surgery and increasing the likelihood of favourable post-operative outcomes.2226 Post-operatively, physical function status can provide a gauge for recovery. On a population level, pre-operative and post-operative functional status of patients having CRS-HIPEC, and the association between pre-operative level of function and post-operative outcomes is poorly understood. Therefore, this prospective cohort study aims to describe the level of physical function in a CRS-HIPEC population using the 6MWT and 5STS, and to explore the association between pre-operative level of function and post-operative outcomes.

Patients and Methods

Study Design and Ethics

This is a prospective cohort study of patients who underwent CRS-HIPEC with curative intent for malignant disease at a single quaternary referral centre between 2017 and 2021.27 As part of the study, patients underwent assessment of physical function pre-operatively and at post-operative day 10. Ethics approval for this study was obtained from the Sydney Local Health District (Royal Prince Alfred Hospital Zone; Protocol No. X21-0236). Informed consent was obtained from all patients participating in the study. This study was conducted and written in accordance with the STROBE statement.28

Study Variables

The primary outcomes of interest in this study were objective physical outcomes determined by 6MWT and 5STS (described below). These tests have been previously validated for assessing physical function in the setting of surgery, intensive care and chronic medical conditions.20,2932 Functional assessments were performed pre-operatively and 10 days post-operatively by a registered physiotherapist. Pre-operative variables pertaining to patient characteristics included operative and admission details (including the type and extent of surgery performed, details of HIPEC delivery and completeness of cytoreduction or CC score), type of primary tumour, peritoneal cancer index (PCI),5 age, sex, height, weight, American Society of Anesthesiologists (ASA) physical status score, Eastern Cooperative Oncology Group (ECOG) performance status score, type of HIPEC agent, stoma type and discharge destination. Variables related to post-operative outcomes included length of hospital stay (LOS), intensive care unit (ICU) stay and post-operative in-hospital complications—described based on whether they were present or absent and according to the Comprehensive Complication Index (CCI) and Clavien–Dindo (CD) score.33,34 Patient characteristics and surgical outcomes were collected as part of a prospective research database using a standardized data collection form

Six-Min Walk Test

The 6MWT assesses functional capacity and was conducted in accordance with the protocol of the American Thoracic Society.26,35 In brief, patients were instructed to walk as quickly as possible for 6 min up and down a 30 m straight, indoor corridor. The total distance walked (measured in metres) and patient vital signs (blood pressure, heart rate and oxygen saturation) were recorded. A higher 6-min walk distance (6MWD) indicates better functional capacity. All tests were performed in the same corridor. As per the ATS guidelines,35 the hospital physiotherapist performed the 6MWT once, with or without a prior practice test. If a practice test was performed, the second test was performed at least 1 h after the practice test, and the highest 6MWD was reported. Reference values for the 6MWT were derived from a mathematical model of healthy Australian participants:36
$$6{\text{MWD}} = 216.90 + 4.12 \times \left( {{\text{height}},{\text{cm}}} \right) - 1.75 \times \left( {{\text{age}},{\text{ years}}} \right) - 1.15 \times \left( {{\text{weight}},{\text{kg}}} \right) - 34.04 \times \left( {{\text{gender}},{\text{where}}\,{\text{men}} = 0\,{\text{and}}\,{\text{women}} = 1} \right).$$
These values were compared with the pre-operative 6MWD measured within the population of this study.

Five-Times Sit to Stand Test

The 5STS assesses lower limb strength and function26,37 and was conducted as described previously.20 Patients were instructed to sit with arms folded across the chest and with their back against a chair. Patients were then asked to stand up and sit down as quickly as possible, five times. Time taken to complete the test was measured in seconds. A shorter time for completion of the 5STS is indicative of better physical function. All tests were performed in the same setting and used the same chair.

Statistical Methods

Categorical data are expressed as frequency (percentage) and continuous data as median (interquartile range, IQR). Categorical variables were analysed using the Chi-squared test. Continuous variables were analysed using non-parametric tests such as the Wilcoxon test (for repeated measures analysis), Mann–Whitney U test (for unpaired column analysis) and Kruskal Wallis with Dunn’s multiple comparisons test (for column analysis involving three variables). Holm–Bonferroni post-hoc correction was added to column analysis to account for the number of variables and presented as a separate data set (Supplementary Fig. 2). Data obtained from 6MWT and 5STS were expressed as either absolute values of 6MWD (metres) or time taken to complete the 5STS (s), or as percentage change. The 6MWD percentage change was calculated using the following formula: [(pre-operative 6MWD—post-operative 6MWD)/pre-operative 6MWD]*100. The 5STS percentage change was calculated using the following formula: [(post-operative 5STS—pre-operative 5STS)/pre-operative 5STS]*100. A greater percentage change in 6MWD and 5STS represents a greater decline in physical function. Pearson’s correlation analysis was performed to determine correlations between 6MWT and 5STS outcomes, which were expressed as a r and p-values. An r value between 0 and ± 0.3 indicates a weak correlation, between 0.3 and 0.7 (or between − 0.3 and − 0.7) indicates a moderate correlation and between 0.7 and 1 (or between − 0.7 and − 1) indicates a strong correlation.38 For subgroup analysis of association between physical function and pre-operative and post-operative variables, variables were dichotomised based on their respective medians. All statistical calculations were performed on GraphPad Prism software (version 9). Statistical significance was set at p < 0.05 for all analyses.

Results

Characteristics of the Study Sample

The study consisted of 289 consecutive patients who underwent CRS-HIPEC between April 2017 and July 2021. Of this cohort, 234 (81%) patients underwent at least one functional test at either pre-operative or at day 10 post-operative (Fig. 1). Eighty (34.2%) patients participated in both 6MWT and 5STS at both time points.
The median (IQR) age of patients who underwent physical function tests (n = 234) was 56 (20) years, and overall included more females (n = 124, 53%) than males (n = 110, 47%). The cohort consisted primarily of colorectal cancer patients (n = 107, 45.7%). The median PCI was 12, and 81.6% of patients underwent a complete cytoreduction with no residual peritoneal disease (CC-0). The median LOS was 18 days, and the median stay in ICU was 5 days. Most patients experienced post-operative complications (n = 174; 74.4%) and of these, the majority experienced minor complications [CD grade I–II (n = 119, 68.4%) or CCI ≤ 6 (n = 210; 89.7%)]. Characteristics of patients having CRS-HIPEC are detailed in Table 1. There were significant differences in ASA score and post-operative complications between patients who underwent and did not undergo physical function tests (Table 1).
Table 1
Characteristics of patients who underwent abdominal and pelvic cytoreductive surgery
 
Patients with functional tests (n = 234)
Patients without functional tests (n = 55)
p-values
Patient demographics
Age, years
56 (20)
Range = 61
57 (20.3)
Range = 57
0.88
Sex
  
0.03
Male
110 (47%)
17 (31%)
 
Female
124 (53%)
38 (69%)
 
BMI
27.9 (7.5)
Range = 33.1
25 (7)
Range = 23.1
0.01
ASA score
  
< 0.001
1
8 (3.4%)
3 (5.5%)
 
2
104 (44.4%)
31 (56.4%)
 
3
122 (52.1%)
18 (32.7%)
 
4
0 (0%)
4 (7.3%)
 
ECOG score
  
0.16
0
162 (69.2%)
40 (72.8%)
 
1
58 (24.8%)
11 (20%)
 
2
13 (5.6%)
2 (3.6%)
 
3
1 (0.4%)
2 (3.6%)
 
Surgical factors
Type of tumour
  
0.61
Colorectal
107 (45.7%)
27 (49.1%)
 
Appendix adenocarcinoma
49 (20.9%)
13 (23.6%)
 
Ovarian
16 (6.8%)
3 (5.5%)
 
Peritoneal mesothelioma
13 (5.6%)
2 (3.6%)
 
Pseudomyxoma peritonei
40 (17.1%)
5 (9.1%)
 
Small bowel adenocarcinoma
6 (2.6%)
0 (0%)
 
Others
3 (1.3%)
5 (9.1%)
 
Peritoneal cancer index (PCI)
12 (16)
Range = 39
10 (21)
Range = 37
0.63
Peritonectomy
  
0.99
Right parietal
226 (96.6%)
49 (89.1%)
 
Left parietal
216 (92.3%)
47 (85.5%)
 
Right subdiaphragmatic
137 (58.5%)
33 (60%)
 
Left subdiaphragmatic
93 (39.7%)
24 (43.6%)
 
Pelvic
190 (81.2%)
47 (85.5%)
 
Right liver capsule
54 (23.1%)
14 (25.5%)
 
Left liver capsule
32 (13.7%)
6 (10.9%)
 
Stripping of porta hepatis
41 (17.5%)
11 (20%)
 
Completeness of cytoreduction
  
0.93
CC-0
191 (81.6%)
45 (81.8%)
 
CC-1
27 (11.5%)
7 (12.7%)
 
CC-2
3 (1.3%)
1 (1.8%)
 
CC-3
13 (5.6%)
2 (3.6%)
 
HIPEC
  
0.03
Oxaliplatin
46 (19.7%)
2 (3.6%)
 
Cisplatin
12 (5.1%)
4 (7.3%)
 
Mitomycin-C
151 (64.5%)
44 (80%)
 
Other
13 (5.6%)
0 (0%)
 
None
12 (5.1%)
5 (9.1%)
 
Stoma
  
0.008
Colostomy
15 (6.4%)
8 (14.5%)
 
End ileostomy
23 (9.8%)
2 (3.6%)
 
Defunctioning ileostomy
33 (14.1%)
15 (27.3%)
 
None
163 (69.7%)
30 (54.6%)
 
Postoperative outcomes
Length of hospital stay, days
18 (11)
Range = 153
19 (18)
Range = 74
0.11
Intensive care unit stay, days
5 (2)
Range = 75
5 (2)
Range = 28
0.33
Discharge destination
  
0.66
Home
213 (91.1%)
49 (89.1%)
 
Other hospital
5 (2.1%)
5 (9.1%)
 
Rehabilitation
12 (5.1%)
0 (0%)
 
Deceased in hospital
4 (1.7%)
1 (1.8%)
 
Number of hospital readmissions
  
0.03
No readmissions
146 (62.4%)
43 (78.2%)
 
≥ 1 readmissions
88 (37.6%)
12 (21.8%)
 
Post-operative complications
  
< 0.001
Complications
174 (74.4%)
38 (69.1%)
 
No Complications
59 (25.2%)
9 (16.4%)
 
Missing data
1 (0.4%)
8 (14.5%)
 
Clavien–Dindo (n)
  
0.21
I–II
119 (68.4%)
22 (57.9%)
 
III–V
55 (31.6%)
16 (42.1%)
 
Comprehensive Complication Index (CCI)
  
0.89
≤ 6
210 (89.7%)
49 (89.1%)
 
> 6
24 (10.3%)
6 (10.9%)
 
Categorical variables presented as frequency (percentage) and were analysed using Chi-squared test. Continuous variables presented as median, interquartile range (IQR) and range, and were analysed used Mann–Whitney U test. Statistical significance is set at p < 0.05. Significant p-values are represented in bold

Pre-operative and Post-operative Physical Function

One hundred ninety-seven (84.2%) patients underwent the 6WMT pre-operatively, 136 (58.1%) on post-operative day 10 and 99 (42.3%) patients at both time points. One hundred ninety-two (82.1%) patients underwent the 5STS pre-operatively, 114 (48.7%) patients on post-operative day 10 and 80 (34.2%) at both time points (Fig. 1).
Pre-operatively, patients were functionally impaired compared with the general Australian population36 [pre-operative 6MWD median (IQR): 510 m (127 m); reference 6MWD: 709.7 m (65.5 m); p < 0.001] (Fig. 2a). At post-operative day 10, patients experienced a further decline in 6MWD compared with pre-operative levels [post-operative 6MWD: 270 m (180 m); p < 0.001]. Post-operatively, patients also showed impairment in the 5STS performance [pre-operative 5STS median (IQR): 9.3 s (4.1 s); post-operative 5STS: 14.7 s (8.1 s); p < 0.001] (Fig. 2b). The percentage change in 6MWD showed a moderate positive linear correlation with the percentage change in 5STS (r = 0.51; p < 0.001) (Fig. 2c). Similarly, pre-operative 6MWD showed a moderate negative linear correlation with pre-operative 5STS (r = − s0.48; p < 0.001) (Fig. 2d).
Differences in 6MWD and 5STS percentage change were assessed in a subgroup analysis according to patient pre-operative and peri-operative characteristics (Supplementary Table 1). There were no differences in the percentage change of 6MWD and 5STS based on age, sex, body mass index (BMI), ASA and ECOG score. Peri-operatively, a higher cancer burden (PCI ≥ 12) and incomplete cytoreduction was associated with a greater post-operative decline in function, with no significant difference in patients receiving mitomycin-C compared with platinum-based HIPEC. Post-operatively, greater severity of post-operative complications (CD grade III–V) and longer LOS (≥ 18 days) were associated with a greater post-operative decline in function (Fig. 3). There were no differences in ICU stay or number of hospital readmissions (Supplementary Fig. 1)

Pre-operative Function and Post-operative Outcomes

Associations between pre-operative functional capacity and post-operative outcomes are detailed in Table 2. Pre-operatively, patients with a higher level of pre-operative function were more likely to be younger (< 56 years), male, have lower ASA and ECOG scores, have a lower cancer burden (PCI < 12) and be candidates for complete cytoreduction. Post-operatively, patients with better pre-operative function were more likely to have a shorter LOS [6MWD <18 days: 530 (96.5); ≥ 18 days: 471 (145.8); p < 0.001: 5STS <18 days: 8.89 (3); ≥ 18 days: 10.21 (4.4); p < 0.03] and minor post-operative complications, i.e. CD [6MWD grade I–II: 525 (135); grade III–V: 475 (112.3); p = 0.01] and CCI [6MWD CCI ≤ 6: 510 (121.5); CCI > 6: 460 (95); p = 0.04: 5STS CCI ≤ 6: 9.18 (4.1); CCI > 6: 11.01 (3.6); p = 0.01]. They were also more likely to be discharged home [6MWD: 510 (120): 5STS: 9.17 (3.9)] as opposed to being transferred to another hospital or to in-patient rehabilitation, or dying [6MWD: 424 (155.5); p = 0.005: 5STS: 11.61 (5.05); p < 0.001].
Table 2
Association between pre-operative functional capacity and pre-operative patient characteristics and post-operative outcomes
Patient characteristics
Pre-operative 6MWD (m) (n = 197)
Pre-operative 5STS (s) (n = 192)
Age (years)
  
< 56
N = 95
540 (116)
N = 94
8.49 (3.3)
≥ 56
N = 102
487 (105.8)
N = 98
10.26 (3.44)
p-Value
0.004
< 0.001
Sex
  
Male
N = 95
515 (110)
N = 90
9.25 (3.8)
Female
N = 102
488 (146.2)
N = 102
9.4 (4.3)
p-value
0.04
0.81
BMI
  
< 27.9
N = 102
510 (120)
N = 99
8.90 (4.0)
≥ 27.9
N = 95
505 (123)
N = 93
9.43 (4.1)
p-value
0.24
0.17
ASA score
  
1
N = 8
568 (183)
N = 6
8.45 (4.0)
2
N = 81
540 (96)
N = 79
8.65 (3.2)
3
N = 108
475 (138.5)
N = 107
10.19 (3.7)
p-value
1 versus 2: 0.68
1 versus 2: 0.99
1 versus 3: 0.009
1 versus 3: 0.70
2 versus 3: < 0.001
2 versus 3: 0.006
ECOG score
  
0
N = 133
540 (99)
N = 129
8.87 (3.1)
1
N = 51
440 (133)
N = 50
10.83 (3.3)
2
N = 13
400 (153.5)
N = 13
13.80 (9.3)
p-value
0 versus 1: < 0.001
0 versus 1: 0.007
0 versus 2: < 0.001
0 versus 2: < 0.001
1 versus 2: 0.26
1 versus 2: 019
Peritoneal cancer index (PCI)
  
< 12
N = 94
527.5 (115.8)
N = 91
9.15 (3.8)
≥ 12
N = 103
500 (125)
N = 101
9.60 (4.0)
p-value
0.006
0.12
Completeness of cytoreduction
  
CC-0
N = 157
510 (120)
N = 153
9.15 (3.9)
CC-1, 2 and 3
N = 40
475 (134.8)
N = 39
10.35 (3.0)
p-values
0.04
0.03
Length of hospital stay (days)
  
< 18
N = 93
530 (96.5)
N = 90
8.89 (3.0)
≥ 18
N = 104
471 (145.8)
N = 102
10.21 (4.4)
p-value
< 0.001
0.03
Intensive care unit stay (days)
  
< 5
N = 84
521.5 (102.3)
N = 79
8.99 (2.9)
≥ 5
N = 113
500 (150)
N = 113
9.81 (4.52)
p-value
0.07
0.21
Number of hospital readmissions
  
0
N = 114
523.5 (120)
N = 113
8.9 (3.9)
≥ 1
N = 83
490 (120)
N = 79
10.19 (4.2)
p-value
0.07
0.07
Discharge destination
  
Home
N = 176
510 (120)
N = 171
9.17 (3.9)
Other (other hospital, rehabilitation, deceased in hospital)
N = 21
424 (155.5)
N = 21
11.61 (5.05)
p-value
0.005
< 0.001
Post-operative complications
  
Complications
N = 139
510 (135)
N = 137
9.17 (4.2)
No complications
N = 57
510 (105)
N = 54
9.96 (3.8)
p-value
0.81
0.53
Clavien–Dindo
  
I–II
N = 91
525 (120)
N = 90
8.90 (3.8)
III–V
N = 48
475 (112.3)
N = 47
9.81 (5.3)
p-value
0.01
0.06
Comprehensive Complication Index (CCI)
  
≤ 6
N = 176
510 (121.5)
N = 172
9.18 (4.1)
> 6
N = 21
460 (95)
N = 20
11.01 (3.6)
p-value
0.04
0.01
Categorical variables presented as frequency (number of patients). Continuous variables presented as median and interquartile range (IQR) and were analysed used Mann–Whitney U test or Kruskal–Wallis test with Dunn’s multiple comparisons. Statistical significance is set at p < 0.05. Significant p-values are shown in bold
The association between pre-operative function and post-operative surgical outcomes were further explored by dichotomising both pre-operative 6MWD and 5STS time by the cohort median (i.e. 6MWD: 510 m and 5STS: 9.3 s) (Supplementary Table 2), and the results were comparable to the analysis detailed in Table 2. Patients with pre-operative 6MWD ≥ 510 m and 5STS < 9.3 s had a shorter LOS, fewer number of hospital readmissions and minor post-operative complications (CD grade I–II and CCI ≤ 6).

Discussion

Summary of Findings

The main findings of this CRS-HIPEC study suggest that patients with a higher level of pre-operative physical function were more likely to have a shorter LOS, experience more minor post-operative complications (grade I–II) and were more likely to be discharged home. However, pre-operative physical function was not associated with ICU stay, number of hospital readmissions and the presence (as opposed to absence) of post-operative complications. Patients experience a further decline in physical function after surgery, and a greater decline in physical function was associated with a higher peritoneal metastasis burden, incomplete cytoreduction, presence of post-operative complication, major post-operative complications (grade III–V) and longer LOS.

Physical Status of CRS-HIPEC Patient Population

A decline in pre-operative function in comparison with the general population is similar to outcomes previously reported in other major cancer patients.20 Notably, this study found that patients with worse pre-operative function were more likely to experience major post-operative complications. Several studies in gastrointestinal, abdominal and pelvic onco-surgeries have found that poorer pre-operative functional capacity is associated with increased post-operative morbidity.1619 In CRS-HIPEC, Pillinger et al.39 reported that patients who did not develop post-operative complications had a higher pre-operative peak VO2 on cardiopulmonary exercise testing (CPET). A recent review identified several modifiable and non-modifiable pre-operative risk factors such as age, sex, ASA score, ECOG performance, QoL and nutrition that can determine post-operative complications, LOS and survival after CRS-HIPEC.9 This study establishes pre-operative physical function as a potentially modifiable risk factor impacting post-operative morbidity, which may be optimised through physical rehabilitation prior to surgery. However, pre-operative function was not a significant predictor of hospital readmission in this study, which suggests that there may be other factors impacting post-operative recovery. There is increasing evidence to support the role of prehabilitation for pre-operative optimisation in oncological surgery.23,24 Whilst evidence supporting prehabilitation in the CRS-HIPEC patient population is scarce,9 recommendations supporting prehabilitation in this population have been published.40
Following surgery, patients having CRS-HIPEC experience a further decline in physical function with respect to their pre-operative baseline, with a greater decline being associated with greater post-operative morbidity. This has also been reported in patients who have undergone pelvic exenteration,20 and agrees with patient-reported QoL outcomes which also demonstrate a decline in QoL measures in the acute post-operative period, and an association with post-operative morbidity.1013,41 These studies also report a long-term recovery of QoL. Whether recovery of physical function follows a similar trajectory as QoL remains to be studied.
The utility of the 6MWT and 5STS in assessing physical function in surgical and chronically ill patients has been previously demonstrated.2932,42,43 The 6MWT offers a relatively inexpensive, less labour intensive and widely applicable tool for measuring functional capacity of patients in the clinical setting, compared with CPET, which is the current gold standard. Comparison between CPET and 6MWD and their correlation with post-operative outcomes is somewhat limited and warrants investigation. The 5STS is a validated tool for assessing functional lower extremity strength, balance and exercise capacity37,44,45 that is moderately correlated with 6MWT in the CRS-HIPEC patient population, as demonstrated in this study. Several studies have demonstrated the clinical utility of these tests in assessing physical function following abdominal surgery, with poorer function being associated with worse post-operative morbidity.17,20,46,47 Given that both tests measure different aspects of physical function and only show moderate correlation, they should not be used interchangeably. Also, both the 6MWT and 5STS have only been validated in face-to-face encounters and their application in telehealth is yet to be examined. However, it is expected that the 5STS will be easier to administer through the telehealth interface.

Limitations

Aspects of patient demographics may have confounded this study. Despite this study including a large sample, several differences in patient characteristics were found between patients who participated compared with those who did not participate in physical function tests, which may have introduced bias to this study. Moreover, this is a single centre study, which arguably restricts the generalisability of the conclusions derived from this study. A multi-centre study assessing the association between physical function and surgical outcomes would provide more meaningful conclusions and may be more impactful in informing international clinical guidelines. This study is also limited in that fewer than 40% of patients participated in both 6MWT and 5STS at both the pre-operative and day 10 post-operative time points. Patient participation was primarily impacted by logistical factors such as competing demands of the clinical team, time pressure on clinics and the availability of hospital physiotherapists to implement functional assessments owing to staff shortages. A minority of patients had a prolonged ICU stay exceeding 10 days and so these patients did not participate in functional assessment on post-operative day 10. Post-operative functional outcomes may also be confounded by acute post-operative pain, which was not measured in this study. This study could also be improved by examining the impact of factors such nutritional status, extent of the procedure and pre-operative comorbidities on performance in pre-operative and post-operative functional assessment.

Conclusions

Cancer patients who are candidates for CRS-HIPEC have worse pre-operative functional capacity compared with the general Australian population. Poorer pre-operative function is associated with a longer LOS and major post-operative complications. Post-operatively, patients undergoing CRS-HIPEC experience a further decline in physical function, with a greater extent of decline being associated with higher cancer burden, incidence and severity of post-operative complications and longer LOS. This study is the first of its kind to quantify pre-operative and acute post-operative physical function in the CRS-HIPEC patient population using objective measures, and to provide evidence for an association between pre-operative function and post-operative outcomes in this population. This study has important implications for improving clinical decision-making, patient education and for establishing strategies to improve pre-operative function for mitigating post-operative morbidity. Future studies investigating the long-term trajectories of physical function, including at time of discharge and at various post-discharge time points, are warranted, which can be correlated with QoL outcomes. Examining other pre-operative variables in conjunction with physical function such as nutritional and psychological statuses, and the extent of cancer-induced sarcopenia will also provide important information. The association of physical function and post-operative outcomes should be further elucidated in a multivariate analysis using broader known predictive factors. This would lend support for future randomised controlled trials investigating the role of prehabilitation for improving post-operative outcomes in the CRS-HIPEC patient population.

Acknowledgement

We would like to acknowledge the research staff at Surgical Outcomes Research Centre, Royal Prince Alfred Hospital, Sydney, for their assistance in data management.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Anhänge
Literatur
1.
Zurück zum Zitat Smith ME, Nathan H. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: safety is only half of the story. JAMA Netw Open. 2019;2(1):e186839-e.CrossRef Smith ME, Nathan H. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: safety is only half of the story. JAMA Netw Open. 2019;2(1):e186839-e.CrossRef
2.
Zurück zum Zitat Sugarbaker PH. Update on the management of malignant peritoneal mesothelioma. Transl Lung Cancer Res. 2018;7(5):599–608.CrossRef Sugarbaker PH. Update on the management of malignant peritoneal mesothelioma. Transl Lung Cancer Res. 2018;7(5):599–608.CrossRef
3.
Zurück zum Zitat Weber T, Roitman M, Link KH. Current status of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis from colorectal cancer. Clin Colorectal Cancer. 2012;11(3):167–76.CrossRef Weber T, Roitman M, Link KH. Current status of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis from colorectal cancer. Clin Colorectal Cancer. 2012;11(3):167–76.CrossRef
4.
Zurück zum Zitat Verwaal VJ, Ruth SV, Bree ED, Slooten GWV, Tinteren HV, Boot H, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21(20):3737–43.CrossRef Verwaal VJ, Ruth SV, Bree ED, Slooten GWV, Tinteren HV, Boot H, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21(20):3737–43.CrossRef
5.
Zurück zum Zitat Sugarbaker PH. Peritonectomy procedures. Ann Surg. 1995;221(1):29–42.CrossRef Sugarbaker PH. Peritonectomy procedures. Ann Surg. 1995;221(1):29–42.CrossRef
6.
Zurück zum Zitat Elias D, Goéré D, Dumont F, Honoré C, Dartigues P, Stoclin A, et al. Role of hyperthermic intraoperative peritoneal chemotherapy in the management of peritoneal metastases. Eur J Cancer. 2014;50(2):332–40.CrossRef Elias D, Goéré D, Dumont F, Honoré C, Dartigues P, Stoclin A, et al. Role of hyperthermic intraoperative peritoneal chemotherapy in the management of peritoneal metastases. Eur J Cancer. 2014;50(2):332–40.CrossRef
7.
Zurück zum Zitat Rajeev R, Klooster B, Turaga KK. Impact of surgical volume of centers on post-operative outcomes from cytoreductive surgery and hyperthermic intra-peritoneal chemoperfusion. J Gastrointest Oncol. 2016;7(1):122–8. Rajeev R, Klooster B, Turaga KK. Impact of surgical volume of centers on post-operative outcomes from cytoreductive surgery and hyperthermic intra-peritoneal chemoperfusion. J Gastrointest Oncol. 2016;7(1):122–8.
8.
Zurück zum Zitat Foster JM, Sleightholm R, Patel A, Shostrom V, Hall B, Neilsen B, et al. Morbidity and mortality rates following cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy compared with other high-risk surgical oncology procedures. JAMA Netw Open. 2019;2(1):e186847.CrossRef Foster JM, Sleightholm R, Patel A, Shostrom V, Hall B, Neilsen B, et al. Morbidity and mortality rates following cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy compared with other high-risk surgical oncology procedures. JAMA Netw Open. 2019;2(1):e186847.CrossRef
9.
Zurück zum Zitat Strijker D, Meijerink W, Bremers AJA, de Reuver P, van Laarhoven C, van den Heuvel B. Prehabilitation to improve postoperative outcomes in patients with peritoneal carcinomatosis undergoing hyperthermic intraperitoneal chemotherapy (HIPEC): a scoping review. Eur J Surg Oncol. 2022;48(3):657–65.CrossRef Strijker D, Meijerink W, Bremers AJA, de Reuver P, van Laarhoven C, van den Heuvel B. Prehabilitation to improve postoperative outcomes in patients with peritoneal carcinomatosis undergoing hyperthermic intraperitoneal chemotherapy (HIPEC): a scoping review. Eur J Surg Oncol. 2022;48(3):657–65.CrossRef
10.
Zurück zum Zitat Steffens D, Koh C, Ansari N, Solomon MJ, Brown K, McBride K, et al. Quality of life after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: early results from a prospective cohort study of 115 patients. Ann Surg Oncol. 2020;27(10):3986–94.CrossRef Steffens D, Koh C, Ansari N, Solomon MJ, Brown K, McBride K, et al. Quality of life after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: early results from a prospective cohort study of 115 patients. Ann Surg Oncol. 2020;27(10):3986–94.CrossRef
11.
Zurück zum Zitat Passot G, Bakrin N, Roux AS, Vaudoyer D, Gilly FN, Glehen O, et al. Quality of life after cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy: a prospective study of 216 patients. Eur J Surg Oncol. 2014;40(5):529–35.CrossRef Passot G, Bakrin N, Roux AS, Vaudoyer D, Gilly FN, Glehen O, et al. Quality of life after cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy: a prospective study of 216 patients. Eur J Surg Oncol. 2014;40(5):529–35.CrossRef
12.
Zurück zum Zitat Dodson RM, McQuellon RP, Mogal HD, Duckworth KE, Russell GB, Votanopoulos KI, et al. Quality-of-life evaluation after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2016;23(Suppl 5):772–83.CrossRef Dodson RM, McQuellon RP, Mogal HD, Duckworth KE, Russell GB, Votanopoulos KI, et al. Quality-of-life evaluation after cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2016;23(Suppl 5):772–83.CrossRef
13.
Zurück zum Zitat Chia CS, Tan GHC, Lim C, Soo KC, Teo MCC. Prospective quality of life study for colorectal cancer patients with peritoneal carcinomatosis undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2016;23(9):2905–13.CrossRef Chia CS, Tan GHC, Lim C, Soo KC, Teo MCC. Prospective quality of life study for colorectal cancer patients with peritoneal carcinomatosis undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2016;23(9):2905–13.CrossRef
14.
Zurück zum Zitat Kopanakis N, Argyriou EO, Vassiliadou D, Sidera C, Chionis M, Kyriazanos J, et al. Quality of life after cytoreductive surgery and HIPEC: a single centre prospective study. J BUON. 2018;23(2):488–93. Kopanakis N, Argyriou EO, Vassiliadou D, Sidera C, Chionis M, Kyriazanos J, et al. Quality of life after cytoreductive surgery and HIPEC: a single centre prospective study. J BUON. 2018;23(2):488–93.
15.
Zurück zum Zitat Steffens D, Beckenkamp PR, Young J, Solomon M, da Silva TM, Hancock MJ. Is preoperative physical activity level of patients undergoing cancer surgery associated with postoperative outcomes? A systematic review and meta-analysis. Eur J Surg Oncol. 2019;45(4):510–8.CrossRef Steffens D, Beckenkamp PR, Young J, Solomon M, da Silva TM, Hancock MJ. Is preoperative physical activity level of patients undergoing cancer surgery associated with postoperative outcomes? A systematic review and meta-analysis. Eur J Surg Oncol. 2019;45(4):510–8.CrossRef
16.
Zurück zum Zitat Hayashi K, Yokoyama Y, Nakajima H, Nagino M, Inoue T, Nagaya M, et al. Preoperative 6-minute walk distance accurately predicts postoperative complications after operations for hepato-pancreato-biliary cancer. Surgery. 2017;161(2):525–32.CrossRef Hayashi K, Yokoyama Y, Nakajima H, Nagino M, Inoue T, Nagaya M, et al. Preoperative 6-minute walk distance accurately predicts postoperative complications after operations for hepato-pancreato-biliary cancer. Surgery. 2017;161(2):525–32.CrossRef
17.
Zurück zum Zitat Sathyaprasad SL, Thomas M, Philip FA, Krishna KJ. Performance in 6-min walk test in prediction of post-operative pulmonary complication in major oncosurgeries: a prospective observational study. Indian J Anaesth. 2020;64(1):55–61.CrossRef Sathyaprasad SL, Thomas M, Philip FA, Krishna KJ. Performance in 6-min walk test in prediction of post-operative pulmonary complication in major oncosurgeries: a prospective observational study. Indian J Anaesth. 2020;64(1):55–61.CrossRef
18.
Zurück zum Zitat Gillis C, Fenton TR, Gramlich L, Sajobi TT, Culos-Reed SN, Bousquet-Dion G, et al. Older frail prehabilitated patients who cannot attain a 400 m 6-min walking distance before colorectal surgery suffer more postoperative complications. Eur J Surg Oncol. 2021;47(4):874–81.CrossRef Gillis C, Fenton TR, Gramlich L, Sajobi TT, Culos-Reed SN, Bousquet-Dion G, et al. Older frail prehabilitated patients who cannot attain a 400 m 6-min walking distance before colorectal surgery suffer more postoperative complications. Eur J Surg Oncol. 2021;47(4):874–81.CrossRef
19.
Zurück zum Zitat Minnella EM, Awasthi R, Gillis C, Fiore JF Jr, Liberman AS, Charlebois P, et al. Patients with poor baseline walking capacity are most likely to improve their functional status with multimodal prehabilitation. Surgery. 2016;160(4):1070–9.CrossRef Minnella EM, Awasthi R, Gillis C, Fiore JF Jr, Liberman AS, Charlebois P, et al. Patients with poor baseline walking capacity are most likely to improve their functional status with multimodal prehabilitation. Surgery. 2016;160(4):1070–9.CrossRef
20.
Zurück zum Zitat Makker PGS, Koh CE, Solomon MJ, Ratcliffe J, Steffens D. Functional outcomes following pelvic exenteration: results from a prospective cohort study. Colorectal Dis. 2021;23(10):2647–58.CrossRef Makker PGS, Koh CE, Solomon MJ, Ratcliffe J, Steffens D. Functional outcomes following pelvic exenteration: results from a prospective cohort study. Colorectal Dis. 2021;23(10):2647–58.CrossRef
21.
Zurück zum Zitat Steffens D, Ismail H, Denehy L, Beckenkamp PR, Solomon M, Koh C, et al. Preoperative cardiopulmonary exercise test associated with postoperative outcomes in patients undergoing cancer surgery: a systematic review and meta-analyses. Ann Surg Oncol. 2021;28(12):7120–46.CrossRef Steffens D, Ismail H, Denehy L, Beckenkamp PR, Solomon M, Koh C, et al. Preoperative cardiopulmonary exercise test associated with postoperative outcomes in patients undergoing cancer surgery: a systematic review and meta-analyses. Ann Surg Oncol. 2021;28(12):7120–46.CrossRef
22.
Zurück zum Zitat Merki-Künzli C, Kerstan-Huber M, Switalla D, Gisi D, Raptis DA, Greco N, et al. Assessing the value of prehabilitation in patients undergoing colorectal surgery according to the enhanced recovery after surgery (ERAS) pathway for the improvement of postoperative outcomes: protocol for a randomized controlled trial. JMIR Res Protoc. 2017;6(10):e199.CrossRef Merki-Künzli C, Kerstan-Huber M, Switalla D, Gisi D, Raptis DA, Greco N, et al. Assessing the value of prehabilitation in patients undergoing colorectal surgery according to the enhanced recovery after surgery (ERAS) pathway for the improvement of postoperative outcomes: protocol for a randomized controlled trial. JMIR Res Protoc. 2017;6(10):e199.CrossRef
23.
Zurück zum Zitat Minnella EM, Bousquet-Dion G, Awasthi R, Scheede-Bergdahl C, Carli F. Multimodal prehabilitation improves functional capacity before and after colorectal surgery for cancer: a five-year research experience. Acta Oncol. 2017;56(2):295–300.CrossRef Minnella EM, Bousquet-Dion G, Awasthi R, Scheede-Bergdahl C, Carli F. Multimodal prehabilitation improves functional capacity before and after colorectal surgery for cancer: a five-year research experience. Acta Oncol. 2017;56(2):295–300.CrossRef
24.
Zurück zum Zitat van Rooijen S, Carli F, Dalton S, Thomas G, Bojesen R, Le Guen M, et al. Multimodal prehabilitation in colorectal cancer patients to improve functional capacity and reduce postoperative complications: the first international randomized controlled trial for multimodal prehabilitation. BMC Cancer. 2019;19(1):98.CrossRef van Rooijen S, Carli F, Dalton S, Thomas G, Bojesen R, Le Guen M, et al. Multimodal prehabilitation in colorectal cancer patients to improve functional capacity and reduce postoperative complications: the first international randomized controlled trial for multimodal prehabilitation. BMC Cancer. 2019;19(1):98.CrossRef
25.
Zurück zum Zitat Steffens D, Beckenkamp PR, Hancock M, Solomon M, Young J. Preoperative exercise halves the postoperative complication rate in patients with lung cancer: a systematic review of the effect of exercise on complications, length of stay and quality of life in patients with cancer. Br J Sports Med. 2018;52(5):344.CrossRef Steffens D, Beckenkamp PR, Hancock M, Solomon M, Young J. Preoperative exercise halves the postoperative complication rate in patients with lung cancer: a systematic review of the effect of exercise on complications, length of stay and quality of life in patients with cancer. Br J Sports Med. 2018;52(5):344.CrossRef
26.
Zurück zum Zitat Steffens D, Young J, Beckenkamp PR, Ratcliffe J, Rubie F, Ansari N, et al. Feasibility and acceptability of PrE-operative Physical Activity to improve patient outcomes After major cancer surgery: study protocol for a pilot randomised controlled trial (PEPA Trial). Trials. 2018;19(1):112.CrossRef Steffens D, Young J, Beckenkamp PR, Ratcliffe J, Rubie F, Ansari N, et al. Feasibility and acceptability of PrE-operative Physical Activity to improve patient outcomes After major cancer surgery: study protocol for a pilot randomised controlled trial (PEPA Trial). Trials. 2018;19(1):112.CrossRef
27.
Zurück zum Zitat Ansari N, Brown KGM, McBride KE, Steffens D, Koh CE, Young CJ, et al. Accelerating the learning curve in cytoreductive surgery and hyperthermic intraperitoneal chemotherapy using an external mentor model. ANZ J Surg. 2019;89(9):1097–101.CrossRef Ansari N, Brown KGM, McBride KE, Steffens D, Koh CE, Young CJ, et al. Accelerating the learning curve in cytoreductive surgery and hyperthermic intraperitoneal chemotherapy using an external mentor model. ANZ J Surg. 2019;89(9):1097–101.CrossRef
28.
Zurück zum Zitat von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med. 2007;4(10):e296.CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med. 2007;4(10):e296.CrossRef
29.
Zurück zum Zitat Melo TA, Duarte ACM, Bezerra TS, França F, Soares NS, Brito D. The five times sit-to-stand test: safety and reliability with older intensive care unit patients at discharge. Rev Bras Ter Intensiva. 2019;31(1):27–33.CrossRef Melo TA, Duarte ACM, Bezerra TS, França F, Soares NS, Brito D. The five times sit-to-stand test: safety and reliability with older intensive care unit patients at discharge. Rev Bras Ter Intensiva. 2019;31(1):27–33.CrossRef
30.
Zurück zum Zitat Miccichè V, Esposito C, Santaniello W, Scarpati G, Zito Marinosci G, De Robertis E, et al. Six-minute walk test in pre-operative evaluation of patients for upper abdominal surgery. Eur J Anaesthesiol. 2019;36(2):164–6.CrossRef Miccichè V, Esposito C, Santaniello W, Scarpati G, Zito Marinosci G, De Robertis E, et al. Six-minute walk test in pre-operative evaluation of patients for upper abdominal surgery. Eur J Anaesthesiol. 2019;36(2):164–6.CrossRef
31.
Zurück zum Zitat Keeratichananont W, Thanadetsuntorn C, Keeratichananont S. Value of preoperative 6-minute walk test for predicting postoperative pulmonary complications. Ther Adv Respir Dis. 2016;10(1):18–25.CrossRef Keeratichananont W, Thanadetsuntorn C, Keeratichananont S. Value of preoperative 6-minute walk test for predicting postoperative pulmonary complications. Ther Adv Respir Dis. 2016;10(1):18–25.CrossRef
32.
Zurück zum Zitat Staartjes VE, Schröder ML. The five-repetition sit-to-stand test: evaluation of a simple and objective tool for the assessment of degenerative pathologies of the lumbar spine. J Neurosurg Spine. 2018;29(4):380–7.CrossRef Staartjes VE, Schröder ML. The five-repetition sit-to-stand test: evaluation of a simple and objective tool for the assessment of degenerative pathologies of the lumbar spine. J Neurosurg Spine. 2018;29(4):380–7.CrossRef
33.
Zurück zum Zitat Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.CrossRef Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.CrossRef
34.
Zurück zum Zitat Slankamenac K, Graf R, Barkun J, Puhan MA, Clavien PA. The comprehensive complication index: a novel continuous scale to measure surgical morbidity. Ann Surg. 2013;258(1):1–7.CrossRef Slankamenac K, Graf R, Barkun J, Puhan MA, Clavien PA. The comprehensive complication index: a novel continuous scale to measure surgical morbidity. Ann Surg. 2013;258(1):1–7.CrossRef
36.
Zurück zum Zitat Camarri B, Eastwood PR, Cecins NM, Thompson PJ, Jenkins S. Six minute walk distance in healthy subjects aged 55–75 years. Respir Med. 2006;100(4):658–65.CrossRef Camarri B, Eastwood PR, Cecins NM, Thompson PJ, Jenkins S. Six minute walk distance in healthy subjects aged 55–75 years. Respir Med. 2006;100(4):658–65.CrossRef
37.
Zurück zum Zitat Jones SE, Kon SS, Canavan JL, Patel MS, Clark AL, Nolan CM, et al. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax. 2013;68(11):1015–20.CrossRef Jones SE, Kon SS, Canavan JL, Patel MS, Clark AL, Nolan CM, et al. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax. 2013;68(11):1015–20.CrossRef
38.
Zurück zum Zitat Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018;18(3):91–3.CrossRef Akoglu H. User’s guide to correlation coefficients. Turk J Emerg Med. 2018;18(3):91–3.CrossRef
39.
Zurück zum Zitat Pillinger NL, Koh CE, Ansari N, Munoz PA, McNamara SG, Steffens D. Preoperative cardiopulmonary exercise testing improves risk assessment of morbidity and length of stay following cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. Anaesth Intensive Care. 2022. https://doi.org/10.1177/0310057X211064904. Pillinger NL, Koh CE, Ansari N, Munoz PA, McNamara SG, Steffens D. Preoperative cardiopulmonary exercise testing improves risk assessment of morbidity and length of stay following cytoreductive surgery with hyperthermic intraperitoneal chemotherapy. Anaesth Intensive Care. 2022. https://​doi.​org/​10.​1177/​0310057X21106490​4.
40.
Zurück zum Zitat Cortés-Guiral D, Mohamed F, Glehen O, Passot G. Prehabilitation of patients undergoing cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal malignancy. Eur J Surg Oncol. 2021;47(1):60–4.CrossRef Cortés-Guiral D, Mohamed F, Glehen O, Passot G. Prehabilitation of patients undergoing cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal malignancy. Eur J Surg Oncol. 2021;47(1):60–4.CrossRef
41.
Zurück zum Zitat Ali YM, Sweeney J, Shen P, Votanopoulos KI, McQuellon R, Duckworth K, et al. Effect of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy on quality of life in patients with peritoneal mesothelioma. Ann Surg Oncol. 2020;27(1):117–23.CrossRef Ali YM, Sweeney J, Shen P, Votanopoulos KI, McQuellon R, Duckworth K, et al. Effect of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy on quality of life in patients with peritoneal mesothelioma. Ann Surg Oncol. 2020;27(1):117–23.CrossRef
42.
Zurück zum Zitat Wesolowski S, Orlowski TM, Kram M. The 6-min walk test in the functional evaluation of patients with lung cancer qualified for lobectomy. Interact Cardiovasc Thorac Surg. 2020;30(4):559–64.CrossRef Wesolowski S, Orlowski TM, Kram M. The 6-min walk test in the functional evaluation of patients with lung cancer qualified for lobectomy. Interact Cardiovasc Thorac Surg. 2020;30(4):559–64.CrossRef
43.
Zurück zum Zitat Szekely LA, Oelberg DA, Wright C, Johnson DC, Wain J, Trotman-Dickenson B, et al. Preoperative predictors of operative morbidity and mortality in COPD patients undergoing bilateral lung volume reduction surgery. Chest. 1997;111(3):550–8.CrossRef Szekely LA, Oelberg DA, Wright C, Johnson DC, Wain J, Trotman-Dickenson B, et al. Preoperative predictors of operative morbidity and mortality in COPD patients undergoing bilateral lung volume reduction surgery. Chest. 1997;111(3):550–8.CrossRef
44.
Zurück zum Zitat Bohannon RW, Bubela DJ, Magasi SR, Wang YC, Gershon RC. Sit-to-stand test: performance and determinants across the age-span. Isokinet Exerc Sci. 2010;18(4):235–40.CrossRef Bohannon RW, Bubela DJ, Magasi SR, Wang YC, Gershon RC. Sit-to-stand test: performance and determinants across the age-span. Isokinet Exerc Sci. 2010;18(4):235–40.CrossRef
45.
Zurück zum Zitat Lord SR, Murray SM, Chapman K, Munro B, Tiedemann A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J Gerontol A Biol Sci Med Sci. 2002;57(8):M539–43.CrossRef Lord SR, Murray SM, Chapman K, Munro B, Tiedemann A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J Gerontol A Biol Sci Med Sci. 2002;57(8):M539–43.CrossRef
46.
Zurück zum Zitat Pecorelli N, Fiore JF Jr, Gillis C, Awasthi R, Mappin-Kasirer B, Niculiseanu P, et al. The six-minute walk test as a measure of postoperative recovery after colorectal resection: further examination of its measurement properties. Surg Endosc. 2016;30(6):2199–206.CrossRef Pecorelli N, Fiore JF Jr, Gillis C, Awasthi R, Mappin-Kasirer B, Niculiseanu P, et al. The six-minute walk test as a measure of postoperative recovery after colorectal resection: further examination of its measurement properties. Surg Endosc. 2016;30(6):2199–206.CrossRef
47.
Zurück zum Zitat Yanagisawa T, Tatematsu N, Horiuchi M, Migitaka S, Yasuda S, Itatsu K, et al. Preoperative physical activity predicts postoperative functional recovery in gastrointestinal cancer patients. Disabil Rehabil. 2021:1–6. Yanagisawa T, Tatematsu N, Horiuchi M, Migitaka S, Yasuda S, Itatsu K, et al. Preoperative physical activity predicts postoperative functional recovery in gastrointestinal cancer patients. Disabil Rehabil. 2021:1–6.
Metadaten
Titel
Functional Outcomes Following Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy: A Prospective Cohort Study
verfasst von
Preet G. S. Makker, BMedSci, PhD, MD
Cherry E. Koh, MBBS, MS, PhD, FRACS
Nabila Ansari, BMedSci, MBBS, FRACS
Nicole Gonzaga, BPubHlth
Jenna Bartyn, BHSc, MPH
Michael Solomon, MB, BCH, BAO, MSc, DMedSc, DMed (NUI), FRCSI, FRACS
Daniel Steffens, BPhyt, PhD
Publikationsdatum
28.10.2022
Verlag
Springer International Publishing
Erschienen in
Annals of Surgical Oncology / Ausgabe 1/2023
Print ISSN: 1068-9265
Elektronische ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-022-12691-x

Weitere Artikel der Ausgabe 1/2023

Annals of Surgical Oncology 1/2023 Zur Ausgabe

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.