Skip to main content
Erschienen in: Current Osteoporosis Reports 3/2014

01.09.2014 | Skeletal Genetics (ML Johnson and S Ralston, Section Editors)

Genetics of Paget’s Disease of Bone

verfasst von: Stuart H. Ralston, Omar M. E. Albagha

Erschienen in: Current Osteoporosis Reports | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Paget’s disease of bone (PDB) is a common condition, which is characterised by focal areas of increased and disorganized bone remodeling. Genetic factors play an important role in the disease. In some cases, Paget’s disease is inherited in an autosomal dominant manner and the most common cause for this is a mutation in the SQSTM1 gene. Other familial cases have been linked to the OPTN locus on Chromosome 10p13 and still other variants have been identified by genome wide association studies that lie within or close to genes that play roles in osteoclast differentiation and function. Mutations in TNFRSF11A, TNFRSF11B and VCP have been identified in rare syndromes with PDB-like features. These advances have improved understanding of bone biology and the causes of PDB. The identification of genetic markers for PDB also raises the prospect that genetic profiling could identify patients at high risk of developing complications, permitting enhanced surveillance and early therapeutic intervention.
Literatur
1.•
Zurück zum Zitat Ralston SH. Clinical practice. Paget's disease of bone. N Engl J Med. 2013;368:644–50. Up-to-date review on clinical aspects of Paget’s disease, including clinical features and management. Ralston SH. Clinical practice. Paget's disease of bone. N Engl J Med. 2013;368:644–50. Up-to-date review on clinical aspects of Paget’s disease, including clinical features and management.
2.
Zurück zum Zitat Monsell EM, Bone HG, Cody DD, Jacobson GP, Newman CW, Patel SC, et al. Hearing loss in Paget's disease of bone: evidence of auditory nerve integrity. Am J Otol. 1995;16:27–33.PubMed Monsell EM, Bone HG, Cody DD, Jacobson GP, Newman CW, Patel SC, et al. Hearing loss in Paget's disease of bone: evidence of auditory nerve integrity. Am J Otol. 1995;16:27–33.PubMed
3.
Zurück zum Zitat van Staa TP, Selby P, Leufkens HG, Lyles K, Sprafka JM, Cooper C. Incidence and natural history of Paget's disease of bone in England and Wales. J Bone Miner Res. 2002;17:465–71.PubMedCrossRef van Staa TP, Selby P, Leufkens HG, Lyles K, Sprafka JM, Cooper C. Incidence and natural history of Paget's disease of bone in England and Wales. J Bone Miner Res. 2002;17:465–71.PubMedCrossRef
4.
Zurück zum Zitat Mays S. Archaeological skeletons support a northwest European origin for Paget's disease of bone. J Bone Miner Res. 2010;25:1839–41.PubMedCrossRef Mays S. Archaeological skeletons support a northwest European origin for Paget's disease of bone. J Bone Miner Res. 2010;25:1839–41.PubMedCrossRef
5.
Zurück zum Zitat Lucas GJ, Hocking LJ, Daroszewska A, Cundy T, Nicholson GC, Walsh JP, et al. Ubiquitin-associated domain mutations of SQSTM1 in Paget's disease of bone: evidence for a founder effect in patients of British descent. J Bone Miner Res. 2005;20:227–31.PubMedCrossRef Lucas GJ, Hocking LJ, Daroszewska A, Cundy T, Nicholson GC, Walsh JP, et al. Ubiquitin-associated domain mutations of SQSTM1 in Paget's disease of bone: evidence for a founder effect in patients of British descent. J Bone Miner Res. 2005;20:227–31.PubMedCrossRef
6.
Zurück zum Zitat Poor G, Donath J, Fornet B, Cooper C. Epidemiology of Paget's disease in Europe: the prevalence is decreasing. J Bone Miner Res. 2006;21:1545–9.PubMedCrossRef Poor G, Donath J, Fornet B, Cooper C. Epidemiology of Paget's disease in Europe: the prevalence is decreasing. J Bone Miner Res. 2006;21:1545–9.PubMedCrossRef
7.
Zurück zum Zitat Cundy HR, Gamble G, Wattie D, Rutland M, Cundy T. Paget's disease of bone in New Zealand: continued decline in disease severity. Calcif Tissue Int. 2004;75:358–64.PubMedCrossRef Cundy HR, Gamble G, Wattie D, Rutland M, Cundy T. Paget's disease of bone in New Zealand: continued decline in disease severity. Calcif Tissue Int. 2004;75:358–64.PubMedCrossRef
8.
Zurück zum Zitat Bolland MJ, Tong PC, Naot D, Callon KE, Wattie DJ, Gamble GD, et al. Delayed development of Paget's Disease in offspring inheriting SQSTM1 mutations. J Bone Miner Res. 2007;22:411–5.PubMedCrossRef Bolland MJ, Tong PC, Naot D, Callon KE, Wattie DJ, Gamble GD, et al. Delayed development of Paget's Disease in offspring inheriting SQSTM1 mutations. J Bone Miner Res. 2007;22:411–5.PubMedCrossRef
9.
Zurück zum Zitat Rebel A, Malkani K, Basle M, Bregeon C, Patezour A, Filmon R. Ultrastructural characteristics of osteoclasts in Paget's disease. Rev Rhum Mal Osteoartic. 1974;41:767–71.PubMed Rebel A, Malkani K, Basle M, Bregeon C, Patezour A, Filmon R. Ultrastructural characteristics of osteoclasts in Paget's disease. Rev Rhum Mal Osteoartic. 1974;41:767–71.PubMed
10.
Zurück zum Zitat Ralston SH, Layfield R. Pathogenesis of Paget disease of bone. Calcif Tissue Int. 2012;91:97–113.PubMedCrossRef Ralston SH, Layfield R. Pathogenesis of Paget disease of bone. Calcif Tissue Int. 2012;91:97–113.PubMedCrossRef
11.
Zurück zum Zitat Menaa C, Reddy SV, Kurihara N, Maeda H, Anderson D, Cundy T, et al. Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget's disease of bone. J Clin Invest. 2000;105:1833–8.PubMedCrossRefPubMedCentral Menaa C, Reddy SV, Kurihara N, Maeda H, Anderson D, Cundy T, et al. Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget's disease of bone. J Clin Invest. 2000;105:1833–8.PubMedCrossRefPubMedCentral
12.
Zurück zum Zitat Demulder A, Takahashi S, Singer FR, Hosking DJ, Roodman GD. Abnormalities in osteoclast precursors and marrow accessory cells in Paget's disease. Endocrinology. 1993;133:1978–82.PubMed Demulder A, Takahashi S, Singer FR, Hosking DJ, Roodman GD. Abnormalities in osteoclast precursors and marrow accessory cells in Paget's disease. Endocrinology. 1993;133:1978–82.PubMed
13.
Zurück zum Zitat Naot D, Bava U, Matthews B, Callon KE, Gamble GD, Black M, et al. Differential gene expression in cultured osteoblasts and bone marrow stromal cells from patients with Paget's disease of bone. J Bone Miner Res. 2007;22:298–309.PubMedCrossRef Naot D, Bava U, Matthews B, Callon KE, Gamble GD, Black M, et al. Differential gene expression in cultured osteoblasts and bone marrow stromal cells from patients with Paget's disease of bone. J Bone Miner Res. 2007;22:298–309.PubMedCrossRef
14.
Zurück zum Zitat Kurihara N, Zhou H, Reddy SV, Garcia Palacios V, Subler MA, Dempster D, et al. Expression of measles virus nucleocapsid protein in osteoclasts induces Paget's disease-like bone lesions in mice. J Bone Miner Res. 2006;21:446–55.PubMedCrossRef Kurihara N, Zhou H, Reddy SV, Garcia Palacios V, Subler MA, Dempster D, et al. Expression of measles virus nucleocapsid protein in osteoclasts induces Paget's disease-like bone lesions in mice. J Bone Miner Res. 2006;21:446–55.PubMedCrossRef
15.
Zurück zum Zitat Matthews BG, Afzal MA, Minor PD, Bava U, Callon KE, Pitto RP, et al. Failure to detect measles virus RNA in bone cells from patients with Paget's disease. J Clin Endocrinol Metab. 2008;93:1398–1401. Matthews BG, Afzal MA, Minor PD, Bava U, Callon KE, Pitto RP, et al. Failure to detect measles virus RNA in bone cells from patients with Paget's disease. J Clin Endocrinol Metab. 2008;93:1398–1401.
16.
Zurück zum Zitat Ralston SH, Afzal MA, Helfrich MH, Fraser WD, Gallagher JA, Mee A, et al. Multicenter blinded analysis of RT-PCR detection methods for paramyxoviruses in relation to Paget's disease of bone. J Bone Miner Res. 2007;22:569–77.PubMedCrossRef Ralston SH, Afzal MA, Helfrich MH, Fraser WD, Gallagher JA, Mee A, et al. Multicenter blinded analysis of RT-PCR detection methods for paramyxoviruses in relation to Paget's disease of bone. J Bone Miner Res. 2007;22:569–77.PubMedCrossRef
17.
Zurück zum Zitat Helfrich MH, Hobson RP, Grabowski PS, Zurbriggen A, Cosby SL, Dickson GR, et al. A negative search for a paramyxoviral etiology of Paget's disease of bone: molecular, immunological, and ultrastructural studies in UK patients. J Bone Miner Res. 2000;5:2315–29.CrossRef Helfrich MH, Hobson RP, Grabowski PS, Zurbriggen A, Cosby SL, Dickson GR, et al. A negative search for a paramyxoviral etiology of Paget's disease of bone: molecular, immunological, and ultrastructural studies in UK patients. J Bone Miner Res. 2000;5:2315–29.CrossRef
18.
Zurück zum Zitat Laurin N, Brown JP, Morissette J, Raymond V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget Disease of bone. Am J Hum Genet. 2002;70:1582–8.PubMedCrossRefPubMedCentral Laurin N, Brown JP, Morissette J, Raymond V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget Disease of bone. Am J Hum Genet. 2002;70:1582–8.PubMedCrossRefPubMedCentral
19.
Zurück zum Zitat Hocking LJ, Lucas GJA, Daroszewska A, Mangion J, Olavesen M, Nicholson GC, et al. Domain specific mutations in Sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum Mol Genet. 2002;11:2735–9.PubMedCrossRef Hocking LJ, Lucas GJA, Daroszewska A, Mangion J, Olavesen M, Nicholson GC, et al. Domain specific mutations in Sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum Mol Genet. 2002;11:2735–9.PubMedCrossRef
20.
Zurück zum Zitat Morissette J, Laurin N, Brown JP. Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget's Disease of bone. J Bone Miner Res. 2006;21 Suppl 2:38–44.CrossRef Morissette J, Laurin N, Brown JP. Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget's Disease of bone. J Bone Miner Res. 2006;21 Suppl 2:38–44.CrossRef
21.
Zurück zum Zitat Hocking LJ, Lucas GJA, Daroszewska A, Cundy T, Nicholson GC, Donath J, et al. Novel UBA domain mutations of SQSTM1 in Paget's disease of bone: genotype phenotype correlation, functional analysis and structural consequences. J Bone Miner Res. 2004;19:1122–7.PubMedCrossRef Hocking LJ, Lucas GJA, Daroszewska A, Cundy T, Nicholson GC, Donath J, et al. Novel UBA domain mutations of SQSTM1 in Paget's disease of bone: genotype phenotype correlation, functional analysis and structural consequences. J Bone Miner Res. 2004;19:1122–7.PubMedCrossRef
22.
Zurück zum Zitat Lucas G, Riches P, Hocking L, Cundy T, Nicholson G, Walsh J, et al. Identification of a major locus for Paget Disease on chromosome 10p13 in families of British descent. J Bone Miner Res. 2008;23:58–63.PubMedCrossRef Lucas G, Riches P, Hocking L, Cundy T, Nicholson G, Walsh J, et al. Identification of a major locus for Paget Disease on chromosome 10p13 in families of British descent. J Bone Miner Res. 2008;23:58–63.PubMedCrossRef
23.••
Zurück zum Zitat Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R, et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget's disease of bone. Nat Genet. 2010;42:520–4. Genome wide association study reporting the identification of three new loci for predisposition to PDB. All three loci contain genes that are involved in osteoclast function supporting the hypothesis that PDB is a genetic disorder of osteoclast function. Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R, et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget's disease of bone. Nat Genet. 2010;42:520–4. Genome wide association study reporting the identification of three new loci for predisposition to PDB. All three loci contain genes that are involved in osteoclast function supporting the hypothesis that PDB is a genetic disorder of osteoclast function.
24.
Zurück zum Zitat Laurin N, Brown JP, Lemainque A, Duchesne A, Huot D, Lacourciere Y, et al. Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am J Hum Genet. 2001;69:528–43.PubMedCrossRefPubMedCentral Laurin N, Brown JP, Lemainque A, Duchesne A, Huot D, Lacourciere Y, et al. Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am J Hum Genet. 2001;69:528–43.PubMedCrossRefPubMedCentral
25.
Zurück zum Zitat Hocking LJ, Herbert CA, Nicholls RK, Williams F, Bennett ST, Cundy T, et al. Genome wide search in familial Paget disease of bone shows evidence of genetic heterogeneity with candidate loci on chromosomes 2q36, 10p13, and 5q35. Am J Hum Genet. 2001;69:1055–61.PubMedCrossRefPubMedCentral Hocking LJ, Herbert CA, Nicholls RK, Williams F, Bennett ST, Cundy T, et al. Genome wide search in familial Paget disease of bone shows evidence of genetic heterogeneity with candidate loci on chromosomes 2q36, 10p13, and 5q35. Am J Hum Genet. 2001;69:1055–61.PubMedCrossRefPubMedCentral
26.
Zurück zum Zitat Cody JD, Singer FR, Roodman GD, Otterund B, Lewis TB, Leppert M, et al. Genetic linkage of Paget disease of the bone to chromosome 18q. Am J Hum Genet. 1997;61:1117–22.PubMedPubMedCentral Cody JD, Singer FR, Roodman GD, Otterund B, Lewis TB, Leppert M, et al. Genetic linkage of Paget disease of the bone to chromosome 18q. Am J Hum Genet. 1997;61:1117–22.PubMedPubMedCentral
27.
Zurück zum Zitat Hocking L, Slee F, Haslam SI, Cundy T, Nicholson G, Van Hul W, et al. Familial Paget's disease of bone: patterns of inheritance and frequency of linkage to chromosome 18q. Bone. 2000;26:577–80.PubMed Hocking L, Slee F, Haslam SI, Cundy T, Nicholson G, Van Hul W, et al. Familial Paget's disease of bone: patterns of inheritance and frequency of linkage to chromosome 18q. Bone. 2000;26:577–80.PubMed
28.
Zurück zum Zitat Hughes AE, Shearman AM, Weber JL, Barr RJ, Wallace RG, Osterberg PH, et al. Genetic linkage of familial expansile osteolysis to chromosome 18q. Hum Mol Genet. 1994;3:359–61.PubMed Hughes AE, Shearman AM, Weber JL, Barr RJ, Wallace RG, Osterberg PH, et al. Genetic linkage of familial expansile osteolysis to chromosome 18q. Hum Mol Genet. 1994;3:359–61.PubMed
29.
Zurück zum Zitat Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet. 2000;24:45–8.PubMed Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet. 2000;24:45–8.PubMed
30.
Zurück zum Zitat Whyte MP, Hughes AE. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res. 2002;17:26–9.PubMed Whyte MP, Hughes AE. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res. 2002;17:26–9.PubMed
31.
Zurück zum Zitat Nakatsuka K, Nishizawa Y, Ralston SH. Phenotypic characterization of early onset Paget's disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J Bone Miner Res. 2003;18:1381–5.PubMed Nakatsuka K, Nishizawa Y, Ralston SH. Phenotypic characterization of early onset Paget's disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J Bone Miner Res. 2003;18:1381–5.PubMed
32.
Zurück zum Zitat Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, et al. Osteoprotegerin deficiency and juvenile Paget's disease. N Engl J Med. 2002;347:175–84.PubMed Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, et al. Osteoprotegerin deficiency and juvenile Paget's disease. N Engl J Med. 2002;347:175–84.PubMed
33.
Zurück zum Zitat Chong B, Hegde M, Fawkner M, Simonet S, Cassinelli H, Coker M, et al. Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J Bone Miner Res. 2003;18:2095–104.PubMed Chong B, Hegde M, Fawkner M, Simonet S, Cassinelli H, Coker M, et al. Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J Bone Miner Res. 2003;18:2095–104.PubMed
34.
Zurück zum Zitat Watts GD, Wyme J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36:377–81.PubMed Watts GD, Wyme J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36:377–81.PubMed
35.••
Zurück zum Zitat Albagha OME, Wani S, Visconti MR, Alonso N, Goodman K, Cundy T, et al. Genome-wide association identifies three new susceptibility loci for Paget's disease of bone. Nat Genet. 2011;43:685–9. Extended genome wide association study building on observations in reference 23 to identify additional additional loci for predisposition to PDB, one of which contains a gene known to be involved in regulating fusion of osteoclast precursors. Albagha OME, Wani S, Visconti MR, Alonso N, Goodman K, Cundy T, et al. Genome-wide association identifies three new susceptibility loci for Paget's disease of bone. Nat Genet. 2011;43:685–9. Extended genome wide association study building on observations in reference 23 to identify additional additional loci for predisposition to PDB, one of which contains a gene known to be involved in regulating fusion of osteoclast precursors.
36.•
Zurück zum Zitat Albagha OM, Visconti MR, Alonso N, Wani S, Goodman K, Fraser WD, et al. Common susceptibility alleles and SQSTM1 mutations predict disease extent and severity in a multinational study of patients with Paget's disease. J Bone Miner Res. 2013;28:2238–46. Multinational study demonstrating that both SQSTM1 mutations and genetic variants identified from GWAS studies predict severity and complications of PDB with quite strong effects. The work raises the possibility that genetic profiling could be used to identify high risk patients for enhanced surveillance and early intervention. Albagha OM, Visconti MR, Alonso N, Wani S, Goodman K, Fraser WD, et al. Common susceptibility alleles and SQSTM1 mutations predict disease extent and severity in a multinational study of patients with Paget's disease. J Bone Miner Res. 2013;28:2238–46. Multinational study demonstrating that both SQSTM1 mutations and genetic variants identified from GWAS studies predict severity and complications of PDB with quite strong effects. The work raises the possibility that genetic profiling could be used to identify high risk patients for enhanced surveillance and early intervention.
37.
Zurück zum Zitat Langston AL, Campbell MK, Fraser WD, MacLennan GS, Selby PL, Ralston SH. Randomised trial of intensive bisphosphonate treatment vs symptomatic management in Paget's disease of bone. J Bone Miner Res. 2010;25:20–31.PubMed Langston AL, Campbell MK, Fraser WD, MacLennan GS, Selby PL, Ralston SH. Randomised trial of intensive bisphosphonate treatment vs symptomatic management in Paget's disease of bone. J Bone Miner Res. 2010;25:20–31.PubMed
38.
Zurück zum Zitat Visconti MR, Langston AL, Alonso N, Goodman K, Selby PL, Fraser WD, et al. Mutations of SQSTM1 are associated with severity and clinical outcome in Paget's disease of bone. J Bone Miner Res. 2010;25:2368–73.PubMed Visconti MR, Langston AL, Alonso N, Goodman K, Selby PL, Fraser WD, et al. Mutations of SQSTM1 are associated with severity and clinical outcome in Paget's disease of bone. J Bone Miner Res. 2010;25:2368–73.PubMed
39.
Zurück zum Zitat Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TR, Long JE, et al. Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget's disease of bone. Calcif Tissue Int. 2006;78:271–7.PubMed Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TR, Long JE, et al. Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget's disease of bone. Calcif Tissue Int. 2006;78:271–7.PubMed
40.
Zurück zum Zitat Wright T, Rea SL, Goode A, Bennett AJ, Ratajczak T, Long JE, et al. The S349T mutation of SQSTM1 links Keap1/Nrf2 signaling to Paget's disease of bone. Bone. 2013;52:699–706.PubMed Wright T, Rea SL, Goode A, Bennett AJ, Ratajczak T, Long JE, et al. The S349T mutation of SQSTM1 links Keap1/Nrf2 signaling to Paget's disease of bone. Bone. 2013;52:699–706.PubMed
41.
Zurück zum Zitat Goode A, Long JE, Shaw B, Ralston SH, Visconti MR, Gianfrancesco F, et al. Paget disease of bone-associated UBA domain mutations of SQSTM1 exert distinct effects on protein structure and function. Biochim Biophys Acta. 2014;1842:992–1000. Goode A, Long JE, Shaw B, Ralston SH, Visconti MR, Gianfrancesco F, et al. Paget disease of bone-associated UBA domain mutations of SQSTM1 exert distinct effects on protein structure and function. Biochim Biophys Acta. 2014;1842:992–1000.
42.
Zurück zum Zitat Chamoux E, Couture J, Bisson M, Morissette J, Brown JP, Roux S. The p62 P392L mutation linked to Paget's disease induces activation of human osteoclasts. Mol Endocrinol. 2009;23:1668–80.PubMed Chamoux E, Couture J, Bisson M, Morissette J, Brown JP, Roux S. The p62 P392L mutation linked to Paget's disease induces activation of human osteoclasts. Mol Endocrinol. 2009;23:1668–80.PubMed
43.
Zurück zum Zitat Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest. 2008;118:1858–1866. Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest. 2008;118:1858–1866.
44.
Zurück zum Zitat Sundaram K, Shanmugarajan S, Rao DS, Reddy SV. Mutant p62P392L stimulation of osteoclast differentiation in Paget's disease of bone. Endocrinology. 2011;152:4180–9.PubMedPubMedCentral Sundaram K, Shanmugarajan S, Rao DS, Reddy SV. Mutant p62P392L stimulation of osteoclast differentiation in Paget's disease of bone. Endocrinology. 2011;152:4180–9.PubMedPubMedCentral
45.
Zurück zum Zitat Kurihara N, Hiruma Y, Zhou H, Subler MA, Dempster DW, Singer FR, et al. Mutation of the sequestosome 1 (p62) gene increases osteoclastogenesis but does not induce Paget disease. J Clin Invest. 2007;117:133–42.PubMedPubMedCentral Kurihara N, Hiruma Y, Zhou H, Subler MA, Dempster DW, Singer FR, et al. Mutation of the sequestosome 1 (p62) gene increases osteoclastogenesis but does not induce Paget disease. J Clin Invest. 2007;117:133–42.PubMedPubMedCentral
46.
Zurück zum Zitat Daroszewska A, van't Hof RJ, Rojas JA, Layfield R, Landao-Basonga E, Rose L, et al. A point mutation in the ubiquitin associated domain of SQSMT1 is sufficient to cause a Paget's disease like disorder in mice. Hum Mol Genet. 2011;20:2734–44.PubMed Daroszewska A, van't Hof RJ, Rojas JA, Layfield R, Landao-Basonga E, Rose L, et al. A point mutation in the ubiquitin associated domain of SQSMT1 is sufficient to cause a Paget's disease like disorder in mice. Hum Mol Genet. 2011;20:2734–44.PubMed
47.
Zurück zum Zitat Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 2005;202:345–51.PubMedPubMedCentral Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 2005;202:345–51.PubMedPubMedCentral
48.
Zurück zum Zitat Kukita T, Wada N, Kukita A, Kakimoto T, Sandra F, Toh K, et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med. 2004;200:941–6.PubMedPubMedCentral Kukita T, Wada N, Kukita A, Kakimoto T, Sandra F, Toh K, et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med. 2004;200:941–6.PubMedPubMedCentral
49.
Zurück zum Zitat Beauregard M, Gagnon E, Guay-Belanger S, Morissette J, Brown JP, Michou L. Identification of rare genetic variants in novel loci associated with Paget's disease of bone. Hum Genet. 2013;133:755–768. Beauregard M, Gagnon E, Guay-Belanger S, Morissette J, Brown JP, Michou L. Identification of rare genetic variants in novel loci associated with Paget's disease of bone. Hum Genet. 2013;133:755–768.
50.
Zurück zum Zitat Middleton-Hardie C, Zhu Q, Cundy H, Lin JM, Callon K, Tong PC, et al. Deletion of aspartate 182 in OPG causes juvenile Paget's disease by impairing both protein secretion and binding to RANKL. J Bone Miner Res. 2006;21:438–45.PubMed Middleton-Hardie C, Zhu Q, Cundy H, Lin JM, Callon K, Tong PC, et al. Deletion of aspartate 182 in OPG causes juvenile Paget's disease by impairing both protein secretion and binding to RANKL. J Bone Miner Res. 2006;21:438–45.PubMed
51.
Zurück zum Zitat Beyens G, Daroszewska A, de Freitas F, Fransen E, Vanhoenacker F, Verbruggen L, et al. Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, TNFRSF11B, and Paget's disease of bone. J Bone Miner Res. 2007;22:1062–71.PubMed Beyens G, Daroszewska A, de Freitas F, Fransen E, Vanhoenacker F, Verbruggen L, et al. Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, TNFRSF11B, and Paget's disease of bone. J Bone Miner Res. 2007;22:1062–71.PubMed
52.
Zurück zum Zitat Daroszewska A, Hocking LJ, McGuigan FEA, Langdahl BL, Stone MD, Cundy T, et al. Susceptibility to Paget's disease of bone is influenced by a common polymorphic variant of Osteoprotegerin. J Bone Miner Res. 2004;19:1506–11.PubMed Daroszewska A, Hocking LJ, McGuigan FEA, Langdahl BL, Stone MD, Cundy T, et al. Susceptibility to Paget's disease of bone is influenced by a common polymorphic variant of Osteoprotegerin. J Bone Miner Res. 2004;19:1506–11.PubMed
53.
Zurück zum Zitat Watts GD, Thomasova D, Ramdeen SK, Fulchiero EC, Mehta SG, Drachman DA, et al. Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Clin Genet. 2007;72:420–6.PubMed Watts GD, Thomasova D, Ramdeen SK, Fulchiero EC, Mehta SG, Drachman DA, et al. Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Clin Genet. 2007;72:420–6.PubMed
54.
Zurück zum Zitat Mehta SG, Khare M, Ramani R, Watts GD, Simon M, Osann KE, et al. Genotype-phenotype studies of VCP-associated inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia. Clin Genet. 2013;83:422–31.PubMedPubMedCentral Mehta SG, Khare M, Ramani R, Watts GD, Simon M, Osann KE, et al. Genotype-phenotype studies of VCP-associated inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia. Clin Genet. 2013;83:422–31.PubMedPubMedCentral
55.
Zurück zum Zitat Lucas GJ, Mehta SG, Hocking LJ, Stewart TL, Cundy T, Nicholson GC, et al. Evaluation of the role of Valosin-containing protein in the pathogenesis of familial and sporadic Paget's disease of bone. Bone. 2006;38:280–5.PubMed Lucas GJ, Mehta SG, Hocking LJ, Stewart TL, Cundy T, Nicholson GC, et al. Evaluation of the role of Valosin-containing protein in the pathogenesis of familial and sporadic Paget's disease of bone. Bone. 2006;38:280–5.PubMed
56.
Zurück zum Zitat Lucas GJ, Mehta SG, Hocking LJ, Stewart TL, Cundy T, Nicholson GC, et al. Evaluation of the role of Valosin-containing protein in the pathogenesis of familial and sporadic Paget's disease of bone. Bone. 2006;38:280–5.PubMed Lucas GJ, Mehta SG, Hocking LJ, Stewart TL, Cundy T, Nicholson GC, et al. Evaluation of the role of Valosin-containing protein in the pathogenesis of familial and sporadic Paget's disease of bone. Bone. 2006;38:280–5.PubMed
57.
Zurück zum Zitat Chung PY, Beyens G, de Freitas F, Boonen S, Geusens P, Vanhoenacker F, et al. Indications for a genetic association of a VCP polymorphism with the pathogenesis of sporadic Paget's disease of bone, but not for TNFSF11 (RANKL) and IL-6 polymorphisms. Mol Genet Metab. 2011;103:287–92.PubMed Chung PY, Beyens G, de Freitas F, Boonen S, Geusens P, Vanhoenacker F, et al. Indications for a genetic association of a VCP polymorphism with the pathogenesis of sporadic Paget's disease of bone, but not for TNFSF11 (RANKL) and IL-6 polymorphisms. Mol Genet Metab. 2011;103:287–92.PubMed
58.
Zurück zum Zitat Obaid R, Wani S, Ralston SH, Albagha OME. OPTN negatively regulates osteoclast formation in vitro. Bone. 2012;50:S92–3. Obaid R, Wani S, Ralston SH, Albagha OME. OPTN negatively regulates osteoclast formation in vitro. Bone. 2012;50:S92–3.
59.•
Zurück zum Zitat Crockett JC, Mellis DJ, Shennan KI, Duthie A, Greenhorn J, Scott DI, et al. Signal peptide mutations in rank prevent downstream activation of NFkappaB. J Bone Miner Res. 2011;26:1926–38. An interesting study which shows that the insertion mutations in TNFRSF11A that cause FEO, ESH and early onset PDB actually inhibit NFkB signaling in vitro. This illustrates that further work is required to fully understand why they cause osteoclast activation in vivo. Crockett JC, Mellis DJ, Shennan KI, Duthie A, Greenhorn J, Scott DI, et al. Signal peptide mutations in rank prevent downstream activation of NFkappaB. J Bone Miner Res. 2011;26:1926–38. An interesting study which shows that the insertion mutations in TNFRSF11A that cause FEO, ESH and early onset PDB actually inhibit NFkB signaling in vitro. This illustrates that further work is required to fully understand why they cause osteoclast activation in vivo.
60.••
Zurück zum Zitat Schafer AL, Mumm S, El-Sayed I, McAlister WH, Horvai AE, Tom AM, et al. Panostotic expansile bone disease with massive jaw tumor formation and a novel mutation in the signal peptide of RANK. J Bone Miner Res. 2014;29:911–21. Report of extraordinarily severe PDB-like phenotype in patient with insertion mutation in TNFRSF11A illustrating that subtle differences in mutations in exon 1 of this gene can have major clinical consequences. Schafer AL, Mumm S, El-Sayed I, McAlister WH, Horvai AE, Tom AM, et al. Panostotic expansile bone disease with massive jaw tumor formation and a novel mutation in the signal peptide of RANK. J Bone Miner Res. 2014;29:911–21. Report of extraordinarily severe PDB-like phenotype in patient with insertion mutation in TNFRSF11A illustrating that subtle differences in mutations in exon 1 of this gene can have major clinical consequences.
61.•
Zurück zum Zitat Gianfrancesco F, Rendina D, DiStefano M, Mingione A, Esposito T, Merlotti D, et al. A nonsynonymous TNFRSF11A variation increases NFkappaB activity and the severity of Paget's disease. J Bone Miner Res. 2012;27:443–52. A phenotype-genotype analysis which reports an association between TNFRSF11A variants and severity of PDB as well as providing evidence that two common coding variants of TNFRSF11A might have functional significance in altering NFkB signaling. Gianfrancesco F, Rendina D, DiStefano M, Mingione A, Esposito T, Merlotti D, et al. A nonsynonymous TNFRSF11A variation increases NFkappaB activity and the severity of Paget's disease. J Bone Miner Res. 2012;27:443–52. A phenotype-genotype analysis which reports an association between TNFRSF11A variants and severity of PDB as well as providing evidence that two common coding variants of TNFRSF11A might have functional significance in altering NFkB signaling.
62.
Zurück zum Zitat Chung PY, Beyens G, Riches PL, Van Wesenbeeck L, de Freitas F, Jennes K, et al. Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget's disease of bone. J Bone Miner Res. 2010;25:2316–29. Chung PY, Beyens G, Riches PL, Van Wesenbeeck L, de Freitas F, Jennes K, et al. Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget's disease of bone. J Bone Miner Res. 2010;25:2316–29.
63.
Zurück zum Zitat Janson C, Kasahara N, Prendergast GC, Colicelli J. RIN3 is a negative regulator of mast cell responses to SCF. PLoS One. 2012;7:e49615.PubMedPubMedCentral Janson C, Kasahara N, Prendergast GC, Colicelli J. RIN3 is a negative regulator of mast cell responses to SCF. PLoS One. 2012;7:e49615.PubMedPubMedCentral
64.
Zurück zum Zitat Taylor A, Mules EH, Seabra MC, Helfrich MH, Rogers MJ, Coxon FP. Impaired prenylation of Rab GTPases in the gunmetal mouse causes defects in bone cell function. Small GTPases. 2011;2:131–42.PubMedPubMedCentral Taylor A, Mules EH, Seabra MC, Helfrich MH, Rogers MJ, Coxon FP. Impaired prenylation of Rab GTPases in the gunmetal mouse causes defects in bone cell function. Small GTPases. 2011;2:131–42.PubMedPubMedCentral
65.
Zurück zum Zitat Ralston SH. Paget's disease of bone. Br Med J. 1993;306:332–3. Ralston SH. Paget's disease of bone. Br Med J. 1993;306:332–3.
66.
Zurück zum Zitat Merchant A, Smielewska M, Patel N, Akunowicz JD, Saria EA, Delaney J. Somatic mutations in SQSTM1 detected in affected tissues from patients with sporadic Paget's disease of bone. J Bone Miner Res. 2009;24:484–94.PubMedPubMedCentral Merchant A, Smielewska M, Patel N, Akunowicz JD, Saria EA, Delaney J. Somatic mutations in SQSTM1 detected in affected tissues from patients with sporadic Paget's disease of bone. J Bone Miner Res. 2009;24:484–94.PubMedPubMedCentral
67.
Zurück zum Zitat Matthews BG, Naot D, Bava U, Callon KE, Pitto RP, McCowan SA, et al. Absence of somatic SQSTM1 mutations in Paget's disease of bone. J Clin Endocrinol Metab. 2009;94:691–4.PubMed Matthews BG, Naot D, Bava U, Callon KE, Pitto RP, McCowan SA, et al. Absence of somatic SQSTM1 mutations in Paget's disease of bone. J Clin Endocrinol Metab. 2009;94:691–4.PubMed
68.
Zurück zum Zitat Michou L, Collet C, Laplanche JL, Orcel P, Cornelis F. Genetics of Paget's disease of bone. Joint Bone Spine. 2006;73:243–8.PubMed Michou L, Collet C, Laplanche JL, Orcel P, Cornelis F. Genetics of Paget's disease of bone. Joint Bone Spine. 2006;73:243–8.PubMed
Metadaten
Titel
Genetics of Paget’s Disease of Bone
verfasst von
Stuart H. Ralston
Omar M. E. Albagha
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 3/2014
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-014-0219-y

Weitere Artikel der Ausgabe 3/2014

Current Osteoporosis Reports 3/2014 Zur Ausgabe

Bone Quality in Osteoporosis (MD Grynpas and JS Nyman, Section Editors)

Changes in the Degree of Mineralization with Osteoporosis and its Treatment

Bone Quality in Osteoporosis (MD Grynpas and JS Nyman, Section Editors)

Biological Regulation of Bone Quality

Bone Quality in Osteoporosis (MD Grynpas and JS Nyman, Section Editors)

The Role of Nanoscale Toughening Mechanisms in Osteoporosis

Pediatrics (M Leonard and L Ward, Section Editors)

Osteogenesis Imperfecta: Diagnosis and Treatment

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Knie-TEP: Kein Vorteil durch antibiotikahaltigen Knochenzement

29.05.2024 Periprothetische Infektionen Nachrichten

Zur Zementierung einer Knie-TEP wird in Deutschland zu über 98% Knochenzement verwendet, der mit einem Antibiotikum beladen ist. Ob er wirklich besser ist als Zement ohne Antibiotikum, kann laut Registerdaten bezweifelt werden.

Häusliche Gewalt in der orthopädischen Notaufnahme oft nicht erkannt

28.05.2024 Häusliche Gewalt Nachrichten

In der Notaufnahme wird die Chance, Opfer von häuslicher Gewalt zu identifizieren, von Orthopäden und Orthopädinnen offenbar zu wenig genutzt. Darauf deuten die Ergebnisse einer Fragebogenstudie an der Sahlgrenska-Universität in Schweden hin.

Fehlerkultur in der Medizin – Offenheit zählt!

28.05.2024 Fehlerkultur Podcast

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.