Skip to main content
Erschienen in: BMC Pregnancy and Childbirth 1/2022

Open Access 01.12.2022 | Research

Gestational weight gain as a risk factor for dystocia during first delivery: a multicenter retrospective cohort study in Japan

verfasst von: Hyo Kyozuka, Tsuyoshi Hiraiwa, Tsuyoshi Murata, Misa Sugeno, Toki Jin, Fumihito Ito, Daisuke Suzuki, Yasuhisa Nomura, Toma Fukuda, Shun Yasuda, Keiya Fujimori

Erschienen in: BMC Pregnancy and Childbirth | Ausgabe 1/2022

Abstract

Background

Dystocia is a common obstetric complication among nulliparous women, which requires medical intervention and carries the risk of negative maternal and neonatal outcomes. Our aim was to examine the association between body mass index (BMI) and the occurrence of dystocia. We also identified cutoffs of gestational weight gain, based on pre-pregnancy BMI, associated with the risk of dystocia.

Methods

This was a multicenter, retrospective, cohort study conducted in two tertiary Maternal–Fetal medicine units in Fukushima, Japan. The study population included nullipara women who delivered at either of the two units between January 1, 2013, and December 31, 2020. Women (n = 2597) were categorized into six groups (G) based on their pre-pregnancy BMI: G1 (< 18.5 kg/m2), G2 (18.5 to < 20.0 kg/m2), G3 (20.0 to < 23.0 kg/m2), G4 (23.0 to < 25.0 kg/m2), G5 (25.0 to < 30.0 kg/m2), and G6 (≥ 30.0 kg/m2). Using G3 as a reference, multiple logistic regression analyses were performed to estimate the risk of dystocia for each BMI category. Receiver operating characteristic curve analyses were performed to determine the cutoff value of gestational weight gain for the risk of dystocia.

Results

The highest BMI category (G6) was an independent risk factor for dystocia (adjusted odds ratio, 3.0; 95% confidence interval, 1.5–5.8). The receiver operating characteristic curve analysis revealed no association between gestational weight gain and the occurrence of dystocia in G5 and G6 (P = 0.446 and P = 0.291, respectively). For G1 to G4, AUC and predictive cutoffs of gestational weight gain for dystocia were as follows: G1, AUC 0.64 and cutoff 11.5 kg (P < 0.05); G2, AUC 0.63 and cutoff 12.3 kg (P < 0.05); G3, AUC 0.67 and cutoff 14.3 kg (P < 0.01); and G4, AUC 0.63 and cutoff 11.5 kg (P < 0.05).

Conclusion

A pre-pregnancy BMI > 30.0 kg/m2 was an independent risk factor for dystocia. For women with a pre-pregnancy BMI < 25.0 kg/m2, the risk of dystocia increases as a function of gestational weight gain. These findings could inform personalized preconception care for women to optimize maternal and neonatal health.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
aOR
Adjusted odds ratio
AUC
Area under curve
ART
Assisted reproductive technology
BMI
Body mass index
CS
Cesarean section
CHT
Chronic hypertension
CI
Confidential interval
GDM
Gestational diabetes mellitus
GH
Gestational hypertension
GCT
Glucose challenge test
HDP
Hypertension disorders of pregnancy
OGTT
Oral glucose tolerance test
PE
Preeclampsia
RBG
Random blood glucose
ROC
Receiver operating characteristic curve
SGA
Small for gestational age
SD
Standard deviation

Background

Dystocia, defined as an abnormality in the progression of labor, is one of the most common obstetric complications among nulliparous women for which medical intervention is justified [1, 2]. Identifying the risk of dystocia is essential as dystocia is associated with operative vaginal delivery, cesarean section (CS), and postpartum hemorrhage [3, 4]. In addition to being a maternal health risk, dystocia also increases the risk of intrauterine and fetal inflammation, which can have a negative impact on the neurodevelopment of neonates [5, 6].
Obesity during pregnancy has become a global health problem [7]. Dystocia is associated with obstetric issues, particularly among nullipara women who have a high pre-pregnancy body mass index (BMI) [79]. Although the underlying pathophysiology of dystocia remains unclear, a high maternal BMI has been associated with a higher frequency of a prolonged first stage of labor [8, 9]. In Japan, obesity in pregnant women is defined as a pre-pregnancy BMI ≥ 25.0 kg/m2 [10]. Generally, BMI is categorized into the following five validated groups (G): G1, < 18.5 kg/m2; G2, 18.5 to < 20.0 kg/m2; G3, 20.0 to < 23.0 kg/m2; G4, 23.0 to < 25.0 kg/m2; G5, 25.0 to < 30.0 kg/m2 (overweight); and G6, ≥ 30.0 kg/m2 (obesity) [7, 1115].
Recently in Japan, gestational weight gain, based on maternal pre-pregnancy BMI, has been recognized as an important modifiable determinant of pregnancy outcomes [1115]. While an association between gestational weight gain and adverse perinatal outcomes has previously been reported [1115], the association between gestational weight gain and dystocia as a function of pre-pregnancy BMI, based on the six BMI groups, remains to be clarified. Accordingly, our aim in this study was to examine the association between BMI and the occurrence of dystocia among nulliparous women in Japan, as well as to identify the appropriate gestational weight gain cutoffs, based on the pre-pregnancy BMI, to lower the risk of dystocia.

Methods

Study patients

This was a multicenter retrospective cohort study conducted in two tertiary Maternal–Fetal medicine units in the Fukushima Prefecture, Japan. The study population consisted of pregnant women who delivered at either of these two units between January 1, 2013, and December 31, 2020. Multiparous cases, cases with insufficient data, and cases in which delivery occurred before 22 weeks were excluded.

Statement of ethics

Our study was approved by the institutional review board (IRB) of Ohta Nishinouchi Hospital (No. 37). The requirement for informed consent was waived owing to the retrospective design of the study and use of anonymized data by the IRB of Ohta Nishinouchi Hospital (No. 37). All procedures performed in this study were in accordance with the ethical standards of our institutional and/or national research committee and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Maternal and neonatal information

Maternal and neonatal information was extracted from the medical records of the women included in the study sample at each medical unit. The following maternal information was collected: age at delivery, parity, maternal height, weight before pregnancy and at delivery, methods of conception and delivery, gestational weight gain, maternal smoking, and presence of uterine myoma. Neonatal information included gestational age at delivery and birth weight. As maternal age is not linearly associated with maternal complications [16], maternal age at delivery was categorized into the following four groups for analysis: < 20, 20–29, 30–39, and ≥ 40 years. The method of conception was dichotomized as presence or absence of assisted reproductive technology (ART) pregnancy, where ART pregnancy was defined as conception after in vitro fertilization and intracytoplasmic sperm injection or cryopreserved, frozen, or blastocyst embryo transfers [17]. Maternal BMI was calculated according to World Health Organization standards (body weight [kg] / height2 [m2], kg/m2). Participants were categorized into six groups (G) for analysis, according to their pre-pregnancy BMI: G1, < 18.5 kg/m2; G2, 18.5 to < 20.0 kg/m2; G3, 20.0 to < 23.0 kg/m2; G4, 23.0 to < 25.0 kg/m2; G5 (25.0 to < 30.0 kg/m2), and G6 (≥ 30.0 kg/m2).

Dystocia and other maternal complications

Dystocia is described as a cephalic presentation for delivery in a woman, requiring either (1) operative vaginal delivery with several trials of maternal effort due to arrest of the active phase of labor for at least 4 h, when cervical dilation is 10 cm, with or without the use of an augmentation agent or (2) no progression of cervical dilation despite clinically adequate effective labor, which is defined as one contraction every 10 min, irrespective of augmentation, such as the use of oxytocin or performance of amniotomy [5, 18].
Birth weight was measured by the midwife immediately after delivery. The z-scores of birth weight were calculated using the “New Japanese Neonatal Anthropometric Charts” [1921]. Small for gestation age (SGA) was defined as a birth weight less than − 1.5 SD below the population mean appropriate for gestational age [11, 20]. Hypertensive disorders of pregnancy (HDP) was defined as new-onset hypertension after 20 weeks of gestation or presence of chronic hypertension before pregnancy [22]. New-onset hypertension after 20 weeks was further categorized into preeclampsia (PE) and gestational hypertension (GH). Phenotype PE and GH is defined with or without proteinuria, SGA, and/or liver dysfunction [22]. All pregnant women included in our study sample had undergone screening for gestational diabetes mellitus (GDM), both in early and late pregnancy [23]. In Japan, glucose tolerance screening and testing for GDM are performed for every pregnant woman, according to the protocols recommended by the Obstetrics Society and Diabetes Society of Japan; depending on the local obstetrics institution, a two-step protocol is followed during both first and second or third trimesters [23]. The diagnostic criteria for GDM is reported elsewhere [24, 25].

Statistical analyses

First, we compared the maternal background and obstetric outcomes between women with and without dystocia using Student’s t-test for continuous variables and the chi-squared test for categorical variables. Obstetric outcomes were then compared between BMI categories to determine differences in occurrence of outcomes between BMI groups, using Jonckheere’s trend test and the extended Mantel–Haenszel chi-squared test for linear trends for continuous and categorical variables, respectively. To evaluate the association between BMI and the risk of dystocia, the odds ratios (ORs) and 95% confidence intervals (CIs) for dystocia using logistic regression analysis were calculated. In Model 1, univariate analysis was conducted using the G3 BMI as the reference. In Model 2, multivariate regression was performed controlling for the following independent variables and calculating the adjusted ORs (aORs) and 95% CIs for dystocia, again using G3 BMI as the reference: chronic HT, maternal smoking status, ART pregnancy, maternal age (20–29 years as reference), and myoma uteri. In Model 3, GDM was added to the variables controlled for in Model 2 and, again, the aOR and 95% CI were calculated. As weight gain during pregnancy is a continuous variable, a receiver operating characteristic curve (ROC) was constructed to predict the probability of dystocia due to weight gain during pregnancy. Area under the curve (AUC) analysis was performed to calculate the diagnostic ability of weight gain during pregnancy for dystocia and to determine the cutoffs of gestational weight gain associated with dystocia. All statistical analyses were performed using SPSS (v26; IBM Corp., Armonk, NY, USA), with a P-value of < 0.05 indicating statistical significance.

Results

Figure 1 shows the flowchart for the selection of pregnant women for the study sample. During the study period, there were 4,564 and 1,555 singleton deliveries at the Ohta Nishinouchi Hospital and Iwase Hospital, respectively. Among these, 3,185 were excluded because of multiparity, 331 due to insufficient available data, and 6 due to delivery before 22 weeks of gestation. After selection, 150 cases were classified in the “with” dystocia group and 2,447 in the “without” dystocia group.
The maternal background characteristics and obstetric outcomes for the with and without dystocia groups are reported in Table 1. Of these background maternal characteristics, the mean maternal age (P = 0.024), presence of uterine myoma (P = 0.042), ratio of ART to no ART pregnancy (P = 0.013), mean pre-pregnancy BMI (P < 0.001), and mean maternal weight at delivery (P < 0.001) were higher in the with dystocia than in the without dystocia group. Regarding neonatal characteristics, mean gestational weeks at delivery, mean birth weight, and SD of birth weight were significantly higher in the with dystocia group (all < 0.001). SGA was significantly higher in the without dystocia (9.6%) than in the with dystocia (4.7%) group (P = 0.048). The proportion of CS was higher in the with dystocia (76.7%) than in the without dystocia (15.8%) group (P < 0.001).
Table 1
Maternal characteristics and obstetric outcomes based on the “with” or “without” dystocia criterion
Variable
Study Sample
P-value
Without Dystocia
With Dystocia
n = 2447
n = 150
Maternal Background
 Age, years, mean (SD)
29.7 (5.6)
30.8 (5.6)
0.024a
 % in each age category, years
   ≤ 19
3.6
1.4
0.151b
  20–29
46.2
42.8
  30–39
45.3
47.6
   ≥ 40
5.0
8.3
 Smoking during pregnancy, %
8.8
12.2
0.167b
 Uterine myoma, %
4.9
8.7
0.042b
 ART pregnancy, %
6.2
11.3
0.013b
 BMI before pregnancy, kg/m2, mean (SD)
21.9 (4.0)
23.9 (6.0)
 < 0.001a
 % in each BMI category, kg/m2
   < 18.5
14.1
12.7
 < 0.001b
  18.5 to < 20.0
20.8
18.0
  20.0 to < 22.9
37.5
25.3
  23.0 to < 25.0
11.6
12.0
  25.0 to < 30.0
10.7
16.7
   ≥ 30.0
5.4
15.3
 Gestational weight gain, kg, mean (SD)
9.5 (5.0)
10.3 (4.8)
0.072a
 Weight at delivery, kg, mean (SD)
64.3 (10.3)
69.5 (14.1)
 < 0.001a
Obstetric outcomes
 Gestational age at delivery, weeks, mean (SD)
38.5 (2.5)
39.7 (1.2)
 < 0.001a
 Birthweight, g, mean (SD)
2836 (547)
3225 (409)
 < 0.001a
 SD of birthweight, mean (SD)
-0.14 (1.07)
0.46 (1.09)
 < 0.001a
 SGA, %
9.6
4.7
0.048b
 HDPs, %
9.6
14.7
0.046b
 GDM, %
4.9
6.7
0.350b
 CS, %
15.8
76.7
 < 0.001b
SD Standard deviation, ART Assisted reproductive technology, BMI Body mass index, SGA Small for gestational age, HDPs Hypertension disorders of pregnancy, GDM Gestational diabetes mellitus, CS Cesarean section, BMI Body mass index
ap value, Student’s t-test
bp value, chi-squared test
Obstetric outcomes for each BMI category are reported in Table 2. The occurrence of HDPs, PE, GH, and GDM significantly increased as a function of increasing BMI category (all P < 0.001). Jonckheere’s trend test revealed that maternal birth weight increased as a function of increasing BMI category (P < 0·001), while gestational weight gain decreased (P < 0·001). The occurrence of SGA and dystocia showed no significant trend (p = 0.386 and p = 0.165, respectively). The occurrence of dystocia was lowest in the G3 group (4.0%) and highest in the G6 group (14.9%).
Table 2
Trend in obstetrics outcome as a function of the body mass index category
BMI category (kg/m2)
 < 18.5 (G1)
18.5 to < 20.0 (G2)
20.0 to < 23.0 (G3)
23.0 to < 25.0 (G4)
25.0 to < 30.0 (G5)
 ≥ 30.0 (G6)
P-value
Number of patients
365
535
953
301
286
154
Gestational weight gain, kg, median (IQR)
10.5 (8.1–13.0)
10.3 (8.0–12.4)
10.1 (7.8–12.9)
9.9 (6.8–12.9)
7.9 (5.0–11.7)
4.4 (0.5–8.0)
 < 0.001a
Birthweight, g, median (IQR)
2840 (2535–3089)
2885 (2640–3145)
2924 (2630–3185)
2940 (2675–3285)
2997 (2665–3286)
3023 (2629–3287)
 < 0.001a
SGA, %
11.0
10.1
8.7
8.0
9.4
11.0
0.386b
HDPs, %
6.3
5.4
8.0
12.6
16.4
29.2
 < 0.001b
PE, %
4.4
3.5
5.3
7.3
7.7
13.6
 < 0.001b
GH, %
1.9
1.5
2.2
4.3
6.3
10.4
 < 0.001b
GDM, %
3.8
3.0
3.1
8.0
8.7
14.3
 < 0.001b
Dystocia, %
5.2
5.0
4.0
6.0
8.7
14.9
0.165b
BMI Body mass index, IQR Interquartile range, SGA Small for gestational age, HDP Hypertension disorders of pregnancy, PE Preeclampsia, GH Gestational hypertension, GDM Gestational diabetes mellitus, IRQ Interquartile range
ap value, Jonckheere’s trend test
bp value, Extended Mantel–Haenszel Chi-square test
The results of the logistic regression analysis evaluating the effect of pre-pregnancy BMI on dystocia occurrence are reported in Table 3. The occurrence of dystocia was lowest in the G3 BMI group, and this group was used as a reference for the analyses. No significant risk factors for dystocia were identified for G1, G2, G4, and G5 BMI, after adjusting for several confounding factors in Models 2 and 3. G6 BMI was an independent risk factor for dystocia [OR, 3.20; 95% CI, 1.69–6.06], which persisted even after adjusting for several confounding factors in Models 2 and 3.
Table 3
Effect of body mass index before pregnancy on the occurrence of dystocia
BMI category (kg/m2)
 < 18.5 (G1)
18.5 to < 20.0 (G2)
20.0 to < 23.0 (G3)
23.0 to < 25.0 (G4)
25.0 to < 30.0 (G5)
 ≥ 30.0
(G6)
Model1 OR (95% CI)
0.97 (0.53–1.77)
0.76 (0.43–1.33)
Ref
1.16 (0.60–-2.25)
1.74 (0.94–3.24)
3.20 (1.69–6.06)
Model 2 aOR (95% CI)
0.97 (0.52–1.80)
0.72 (0.40–1.28)
Ref
1.12 (0.56–2.22)
1.73 (0.91–3.23)
2.94 (1.50–5.77)
Model 3 aOR (95% CI)
0.97 (0.52–1.79)
0.72 (0.40–1.28)
Ref
1.12 (0.56–2.22)
1.72 (0.91–3.23)
2.95 (1.50–5.81)
BMI Body mass index, OR Odds ratio, aOR adjusted odds ratio, CI Confidence interval, Ref Reference group
Model 1 was calculated by univariate regression analysis, which calculated ORs
Model 2 adjusted for chronic maternal hypertension, maternal smoking, conception by assisted reproductive technology, maternal age (20–29 years as the reference), and uterine myoma
Model 3 adjusted as for Model 2 plus gestational diabetes mellitus
The ROC curve for dystocia according to weight gain during pregnancy for each BMI group is shown in Fig. 2. The AUC for G1 through G4 were 0.64, 0.63, 0.68, and 0.63, respectively (all P < 0.05). The cutoff values of gestational weight gain for each of these BMI groups were as follows: G1, 11.5 kg; G2, 12.3 kg; G3, 14.3 kg; and G4, 11.5 kg. Regarding G5 and G6, AUC was 0.54 (P = 0.45) and 0.57 (P = 0.29), respectively.

Discussion

The occurrence of dystocia was highest in the G6 group (14.9%), which is consistent with a previous report [3], and lowest in the G3 group. Using G3 as the reference group, a pre-pregnancy BMI ≤ 25 kg/m2 (G6) increased the risk of dystocia, after adjusting for several confounding factors. Moreover, while the ROC analysis revealed a positive association between maternal gestational weight gain and the risk of dystocia for G1 through G4, with cutoff gestational weight gain associated with dystocia identified, this association did not hold in G5 and G6.
We noted that although previous studies have identified nullipara, fetal macrosomia, older maternal age, infertility treatment as risk factors for dystocia [4, 5, 26, 27], data on the association between pre-pregnancy BMI and dystocia or optimal gestational weight gain to reduce the risk of dystocia have not been comprehensively examined among nulliparous women.
It is widely accepted that pre-pregnancy BMI and gestational weight gain are associated with adverse obstetric outcomes, such as SGA, large for gestational age (LGA), CS, GDM, and HDPs [28]. Evidence that increased pre-pregnancy BMI is associated with abnormal labor has been established. Verdiales et al. reported that obese women whose BMI was > 35 kg/m2 had significantly higher frequency of arrest of cervical dilation than those whose BMI was < 26 kg/m2 (17.6 vs 5.2%; p = 0.005) [29]. Walsh et al. reported the potential influence of increasing maternal BMI at the first perinatal visit on intrapartum events among 3,158 nulliparous women in a developed country [9]. Using the BMI of nulliparous women at admission, Kominiarek et al. reported that higher BMI at admission and being nulliparous was strongly associated with delivery route among 124,389 term delivery pregnancies in the US [30]. Compared with previous studies, we focused on both BMI before pregnancy and gestational weight gain. Obesity in women during their reproductive years is of great concern in Western countries and one that is increasingly recognized in Japan [31]. In the Fukushima Prefecture, Japan, 12.7% of women have a BMI ≥ 25 kg/m2 at the start of their pregnancies [16], with the two Maternal–Fetal medical units included in our study having 17.0% more cases of obesity than that of the general population of women in Fukushima. As obesity increases the risk of CS, our finding that a high BMI before pregnancy increased the risk of dystocia, which occasionally required emergent CS, is reasonable. However, if obesity independently increases the risk of dystocia, maternal weight at the time of delivery, which reflects gestational weight gain, could affect the occurrence of dystocia, regardless of a lower pre-pregnancy BMI. Our findings suggest that although controlling pre-pregnancy BMI as a preconception counsel to reduce the risk of dystocia is advisable, providing guidance on the optimal gestational weight gain for women whose pre-pregnancy BMI < 25 kg/m2 is also essential.
Compared with the perinatal period, the preconception period provides a suitable opportunity for pregnant women to reconsider their lifestyle, with several efforts having focused on nutritional counseling for women of childbearing age and screening for nutritional status [32]. Furthermore, preconception nutritional counseling could assist in providing the motivation to alter food intake behavior during pregnancy and after delivery [24, 3335], which could potentially affect neonatal neurodevelopment [36]. In Japan, the ratio of nullipara to mean maternal age at first delivery has increased in recent decades [20]. With this increase in maternal age, the number of pregnancies at risk of dystocia could increase. Therefore, the consensus about an gestational weight gain strategy to reduce the risk of dystocia will be required in the future.
The main strength of our study is that the data were derived from two tertiary care Maternal–Fetal medical units where all women who delivered were managed using approximately the same protocol [5, 37]. Furthermore, all participants in this study were Japanese women and, therefore, there were no effects of ethnic diversity on measured outcomes. This lack of ethnic diversity, however, also limits the generalizability of our findings. Other limitations of our study are as follows. We categorized women with a BMI ≥ 30.0 kg/m2 into one group. We noted that obesity has been further sub-classified as follows: class 1, BMI of 30 to < 35 kg/m2; class 2, BMI of 35 to < 40 kg/m2; and class 3, BMI ≥ 40 kg/m2 [38]. As obesity is a public health concern, a larger sample size to differentiate the risk between gestational weight gain and the risk of dystocia in both overweight and obese women would be warranted. In our multiple regression analyses we did not include several confounding factors previously identified as risk factors for dystocia (epidural analgesia, birth weight, and medical interventions, such as amniotomy) [4] as these were considered intermediate factors.

Conclusion

There is little information on appropriate weight gain during pregnancy to reduce the risk of dystocia. We identified that although a BMI ≥ 30 kg/m2 independently increased the risk of dystocia, regardless of gestational weight gain, excessive gestational weight also increased the risk of dystocia among women with a pre-pregnancy BMI < 25 kg/m2. Our data provide an insight into the possible magnitude of the effect of preconceptional weight control and periconceptional weight gain on the risk of dystocia.

Acknowledgements

None.

Declarations

This study was approved by the Institutional Review Board of Ohta Nishinouchi Hospital (No. 2218). The requirement for informed consent was waived by Ohta Nishinouchi Hospital Institutional Review Board and Ethics Committee because of retrospective design of the study. All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
Not applicable owing to the retrospective design of the study and use of anonymized data.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat America College of Obstetrics and Gynecology Committee on Practice Bulletins-Obstetrics. ACOG Practice Bulletin Number 49, December 2003: Dystocia and augmentation of labor. Obstet Gynecol. 2003;2003(102):1445–54. America College of Obstetrics and Gynecology Committee on Practice Bulletins-Obstetrics. ACOG Practice Bulletin Number 49, December 2003: Dystocia and augmentation of labor. Obstet Gynecol. 2003;2003(102):1445–54.
2.
Zurück zum Zitat Gifford DS, Morton SC, Fiske M, Keesey J, Keeler E, Kahn KL. Lack of progress in labor as a reason for cesarean. Obstet Gynecol. 2000;95:589–95.PubMed Gifford DS, Morton SC, Fiske M, Keesey J, Keeler E, Kahn KL. Lack of progress in labor as a reason for cesarean. Obstet Gynecol. 2000;95:589–95.PubMed
3.
Zurück zum Zitat Kjaergaard H, Olsen J, Ottesen B, Dykes AK. Incidence and outcomes of dystocia in the active phase of labor in term nulliparous women with spontaneous labor onset. Acta Obstet Gynecol Scand. 2009;88:402–7.PubMedCrossRef Kjaergaard H, Olsen J, Ottesen B, Dykes AK. Incidence and outcomes of dystocia in the active phase of labor in term nulliparous women with spontaneous labor onset. Acta Obstet Gynecol Scand. 2009;88:402–7.PubMedCrossRef
4.
Zurück zum Zitat Selin L, Wallin G, Berg M. Dystocia in labour - risk factors, management and outcome: a retrospective observational study in a Swedish setting. Acta Obstet Gynecol Scand. 2008;87:216–21.PubMedCrossRef Selin L, Wallin G, Berg M. Dystocia in labour - risk factors, management and outcome: a retrospective observational study in a Swedish setting. Acta Obstet Gynecol Scand. 2008;87:216–21.PubMedCrossRef
5.
Zurück zum Zitat Kyozuka H, Murata T, Fukuda T, Suzuki E, Yazawa R, Yasuda S, et al. Labor dystocia and risk of histological chorioamnionitis and funisitis: a study from a single tertiary referral center. BMC Pregnancy Childbirth. 2021;21:263.PubMedPubMedCentralCrossRef Kyozuka H, Murata T, Fukuda T, Suzuki E, Yazawa R, Yasuda S, et al. Labor dystocia and risk of histological chorioamnionitis and funisitis: a study from a single tertiary referral center. BMC Pregnancy Childbirth. 2021;21:263.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Bangma JT, Hartwell H, Santos HP Jr, O’Shea TM, Fry RC. Placental programming, perinatal inflammation, and neurodevelopment impairment among those born extremely preterm. Pediatr Res. 2021;89:326–35.PubMedCrossRef Bangma JT, Hartwell H, Santos HP Jr, O’Shea TM, Fry RC. Placental programming, perinatal inflammation, and neurodevelopment impairment among those born extremely preterm. Pediatr Res. 2021;89:326–35.PubMedCrossRef
7.
Zurück zum Zitat American College of Obstetrics and Gynecology Committee on Practice Bulletins-Obstetrics. Obesity in pregnancy: ACOG Practice Bulletin, Number 230. Obstet Gynecol. 2021;137:e128–44.CrossRef American College of Obstetrics and Gynecology Committee on Practice Bulletins-Obstetrics. Obesity in pregnancy: ACOG Practice Bulletin, Number 230. Obstet Gynecol. 2021;137:e128–44.CrossRef
8.
Zurück zum Zitat Baeten JM, Bukusi EA, Lambe M. Pregnancy complications and outcomes among overweight and obese nulliparous women. Am J Public Health. 2001;91:436–40.PubMedPubMedCentralCrossRef Baeten JM, Bukusi EA, Lambe M. Pregnancy complications and outcomes among overweight and obese nulliparous women. Am J Public Health. 2001;91:436–40.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Walsh J, Foley M, O’Herlihy C. Dystocia correlates with body mass index in both spontaneous and induced nulliparous labors. J Matern Fetal Neonatal Med. 2011;24:817–21.PubMedCrossRef Walsh J, Foley M, O’Herlihy C. Dystocia correlates with body mass index in both spontaneous and induced nulliparous labors. J Matern Fetal Neonatal Med. 2011;24:817–21.PubMedCrossRef
10.
Zurück zum Zitat Morisaki N, Nagata C, Jwa SC, Sago H, Saito S, Oken E, et al. Pre-pregnancy BMI-specific optimal gestational weight gain for women in Japan. J Epidemiol. 2017;27:492–8.PubMedPubMedCentralCrossRef Morisaki N, Nagata C, Jwa SC, Sago H, Saito S, Oken E, et al. Pre-pregnancy BMI-specific optimal gestational weight gain for women in Japan. J Epidemiol. 2017;27:492–8.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Jin T, Kyozuka H, Fukuda T, Fujimori M, Murata T, Nomura S, et al. Effect of gestational weight gain on placental weight: A single tertiary referral center study of Japanese women. J Obstet Gynaecol Res. 2021;47:4241–9.PubMedCrossRef Jin T, Kyozuka H, Fukuda T, Fujimori M, Murata T, Nomura S, et al. Effect of gestational weight gain on placental weight: A single tertiary referral center study of Japanese women. J Obstet Gynaecol Res. 2021;47:4241–9.PubMedCrossRef
12.
Zurück zum Zitat Murata T, Kyozuka H, Yamaguchi A, Fukuda T, Yasuda S, Sato A, et al. Gestational weight gain and foetal acidosis in vaginal and caesarean deliveries: the Japan Environment and Children’s Study. Sci Rep. 2020;10:20389.PubMedPubMedCentralCrossRef Murata T, Kyozuka H, Yamaguchi A, Fukuda T, Yasuda S, Sato A, et al. Gestational weight gain and foetal acidosis in vaginal and caesarean deliveries: the Japan Environment and Children’s Study. Sci Rep. 2020;10:20389.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Yamaguchi A, Kyozuka H, Kanno A, Murata T, Fukuda T, Yasuda S, et al. Gestational weight gain and risk factors for postpartum depression symptoms from the Japan Environment and Children’s Study: a prospective cohort study. J Affect Disord. 2021;283:223–8.PubMedCrossRef Yamaguchi A, Kyozuka H, Kanno A, Murata T, Fukuda T, Yasuda S, et al. Gestational weight gain and risk factors for postpartum depression symptoms from the Japan Environment and Children’s Study: a prospective cohort study. J Affect Disord. 2021;283:223–8.PubMedCrossRef
14.
Zurück zum Zitat Murata T, Kyozuka H, Yamaguchi A, Fukuda T, Yasuda S, Sato A, et al. Maternal pre-pregnancy body mass index and foetal acidosis in vaginal and caesarean deliveries: the Japan Environment and Children’s Study. Sci Rep. 2021;11:4350.PubMedPubMedCentralCrossRef Murata T, Kyozuka H, Yamaguchi A, Fukuda T, Yasuda S, Sato A, et al. Maternal pre-pregnancy body mass index and foetal acidosis in vaginal and caesarean deliveries: the Japan Environment and Children’s Study. Sci Rep. 2021;11:4350.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Kyozuka H, Jin T, Fujimori M, Nomura S, Suzuki D, Fukuda T, et al. Effect of gestational weight gain on preeclampsia among underweight women: a single tertiary referral center study in Japanese women. J Obstet Gynaecol Res. 2022;48:1141–8.PubMedCrossRef Kyozuka H, Jin T, Fujimori M, Nomura S, Suzuki D, Fukuda T, et al. Effect of gestational weight gain on preeclampsia among underweight women: a single tertiary referral center study in Japanese women. J Obstet Gynaecol Res. 2022;48:1141–8.PubMedCrossRef
16.
Zurück zum Zitat Kyozuka H, Fujimori K, Hosoya M, Yasumura S, Yokoyama T, Sato A, et al. The Japan Environment and Children’s Study (JECS) in Fukushima Prefecture: pregnancy outcome after the Great East Japan Earthquake. Tohoku J Exp Med. 2018;246:27–33.PubMedCrossRef Kyozuka H, Fujimori K, Hosoya M, Yasumura S, Yokoyama T, Sato A, et al. The Japan Environment and Children’s Study (JECS) in Fukushima Prefecture: pregnancy outcome after the Great East Japan Earthquake. Tohoku J Exp Med. 2018;246:27–33.PubMedCrossRef
17.
Zurück zum Zitat Kyozuka H, Yamaguchi A, Suzuki D, Fujimori K, Hosoya M, Yasumura S, et al. Risk factors for placenta accreta spectrum: findings from the Japan environment and Children’s study. BMC Pregnancy Childbirth. 2019;19:447.PubMedPubMedCentralCrossRef Kyozuka H, Yamaguchi A, Suzuki D, Fujimori K, Hosoya M, Yasumura S, et al. Risk factors for placenta accreta spectrum: findings from the Japan environment and Children’s study. BMC Pregnancy Childbirth. 2019;19:447.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Murata T, Kyozuka H, Yasuda S, Fukuda T, Kanno A, Yamaguchi A, et al. Effects of acute tocolysis using ritodrine hydrochloride on foetal heart rate patterns in intrauterine foetal resuscitation: a retrospective, single-centre observational study. J Obstet Gynaecol. 2021;16:1–6. Murata T, Kyozuka H, Yasuda S, Fukuda T, Kanno A, Yamaguchi A, et al. Effects of acute tocolysis using ritodrine hydrochloride on foetal heart rate patterns in intrauterine foetal resuscitation: a retrospective, single-centre observational study. J Obstet Gynaecol. 2021;16:1–6.
19.
Zurück zum Zitat Itabashi K, Miura F, Uehara R, Nakamura Y. New Japanese neonatal anthropometric charts for gestational age at birth. Pediatr Int. 2014;56:702–8.PubMedCrossRef Itabashi K, Miura F, Uehara R, Nakamura Y. New Japanese neonatal anthropometric charts for gestational age at birth. Pediatr Int. 2014;56:702–8.PubMedCrossRef
20.
Zurück zum Zitat Kyozuka H, Fujimori K, Hosoya M, Yasumura S, Yokoyama T, Sato A, et al. The effect of maternal age at the first childbirth on gestational age and birth weight: the Japan Environment and Children’s Study (JECS). J Epidemiol. 2019;29:187–91.PubMedPubMedCentralCrossRef Kyozuka H, Fujimori K, Hosoya M, Yasumura S, Yokoyama T, Sato A, et al. The effect of maternal age at the first childbirth on gestational age and birth weight: the Japan Environment and Children’s Study (JECS). J Epidemiol. 2019;29:187–91.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Ishibashi M, Kyozuka H, Yamaguchi A, Fujimori K, Hosoya M, Yasumura S, et al. Effect of proinflammatory diet before pregnancy on gestational age and birthweight: the Japan Environment and Children’s Study. Matern Child Nutr. 2020;16:e12899.PubMedCrossRef Ishibashi M, Kyozuka H, Yamaguchi A, Fujimori K, Hosoya M, Yasumura S, et al. Effect of proinflammatory diet before pregnancy on gestational age and birthweight: the Japan Environment and Children’s Study. Matern Child Nutr. 2020;16:e12899.PubMedCrossRef
22.
Zurück zum Zitat Magee LA, Pels A, Helewa M, Rey E, Von Dadelszen P. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy. Executive summary J Obstet Gynaecol Can. 2014;36:416–41.PubMedCrossRef Magee LA, Pels A, Helewa M, Rey E, Von Dadelszen P. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy. Executive summary J Obstet Gynaecol Can. 2014;36:416–41.PubMedCrossRef
23.
Zurück zum Zitat Kyozuka H, Jin T, Fujimori M, Matsuno M, Nomura S, Suzuki D, et al. Association of placenta previa with placental size in Japanese women: a study from a single tertiary referral center. J Obstet Gynaecol Res. 2022;48:379–84.PubMedCrossRef Kyozuka H, Jin T, Fujimori M, Matsuno M, Nomura S, Suzuki D, et al. Association of placenta previa with placental size in Japanese women: a study from a single tertiary referral center. J Obstet Gynaecol Res. 2022;48:379–84.PubMedCrossRef
24.
Zurück zum Zitat Kyozuka H, Murata T, Fukuda T, Yamaguchi A, Kanno A, et al. Effect of preconception selenium intake on the risk for gestational diabetes: the Japan Environment and Children’s Study. Antioxidants (Basel). 2021;10:568.PubMedCentralCrossRef Kyozuka H, Murata T, Fukuda T, Yamaguchi A, Kanno A, et al. Effect of preconception selenium intake on the risk for gestational diabetes: the Japan Environment and Children’s Study. Antioxidants (Basel). 2021;10:568.PubMedCentralCrossRef
25.
Zurück zum Zitat Kyozuka H, Yasuda S, Murata T, Fukuda T, Yamaguchi A, Kanno A, et al. Adverse obstetric outcomes in early-diagnosed gestational diabetes mellitus: the Japan Environment and Children’s Study. J Diabetes Investig. 2021;12:2071–9.PubMedPubMedCentralCrossRef Kyozuka H, Yasuda S, Murata T, Fukuda T, Yamaguchi A, Kanno A, et al. Adverse obstetric outcomes in early-diagnosed gestational diabetes mellitus: the Japan Environment and Children’s Study. J Diabetes Investig. 2021;12:2071–9.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Sheiner E, Levy A, Feinstein U, Hallak M, Mazor M. Risk factors and outcome of failure to progress during the first stage of labor: a population-based study. Acta Obstet Gynecol Scand. 2002;81:222–6.PubMed Sheiner E, Levy A, Feinstein U, Hallak M, Mazor M. Risk factors and outcome of failure to progress during the first stage of labor: a population-based study. Acta Obstet Gynecol Scand. 2002;81:222–6.PubMed
27.
Zurück zum Zitat Gilbert WM, Nesbitt TS, Danielsen B. Childbearing beyond age 40: pregnancy outcome in 24,032 cases. Obstet Gynecol. 1999;93:9–14.PubMed Gilbert WM, Nesbitt TS, Danielsen B. Childbearing beyond age 40: pregnancy outcome in 24,032 cases. Obstet Gynecol. 1999;93:9–14.PubMed
28.
Zurück zum Zitat Bouvier D, Forest JC, Dion-Buteau E, Bernard N, Bujold E, Pereira B, et al. Association of maternal weight and gestational weight gain with maternal and neonate outcomes: a prospective cohort study. J Clin Med. 2019;8:2074.PubMedCentralCrossRef Bouvier D, Forest JC, Dion-Buteau E, Bernard N, Bujold E, Pereira B, et al. Association of maternal weight and gestational weight gain with maternal and neonate outcomes: a prospective cohort study. J Clin Med. 2019;8:2074.PubMedCentralCrossRef
29.
Zurück zum Zitat Verdiales M, Pacheco C, Cohen WR. The effect of maternal obesity on the course of labor. J Perinat Med. 2009;37:651–5.PubMedCrossRef Verdiales M, Pacheco C, Cohen WR. The effect of maternal obesity on the course of labor. J Perinat Med. 2009;37:651–5.PubMedCrossRef
30.
Zurück zum Zitat Kominiarek MA, Vanveldhuisen P, Hibbard J, Landy H, Haberman S, Learman L, et al. The maternal body mass index: a strong association with delivery route. Am J Obstet Gynecol. 2010;203(264):e1-7. Kominiarek MA, Vanveldhuisen P, Hibbard J, Landy H, Haberman S, Learman L, et al. The maternal body mass index: a strong association with delivery route. Am J Obstet Gynecol. 2010;203(264):e1-7.
31.
Zurück zum Zitat Enomoto K, Aoki S, Toma R, Fujiwara K, Sakamaki K, Hirahara F. Pregnancy outcomes based on pre-pregnancy body mass index in Japanese women. PLoS ONE. 2016;11:e0157081.PubMedPubMedCentralCrossRef Enomoto K, Aoki S, Toma R, Fujiwara K, Sakamaki K, Hirahara F. Pregnancy outcomes based on pre-pregnancy body mass index in Japanese women. PLoS ONE. 2016;11:e0157081.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Stephenson J, Vogel C, Hall J, Hutchinson J, Mann S, Duncan H, et al. Preconception health in England: a proposal for annual reporting with core metrics. Lancet. 2019;393:2262–71.PubMedCrossRef Stephenson J, Vogel C, Hall J, Hutchinson J, Mann S, Duncan H, et al. Preconception health in England: a proposal for annual reporting with core metrics. Lancet. 2019;393:2262–71.PubMedCrossRef
33.
Zurück zum Zitat Kyozuka H, Fukusda T, Murata T, Yamaguchi A, Kanno A, Yasuda S, et al. Impact of preconception sodium intake on hypertensive disorders of pregnancy: the Japan Environment and Children’s study. Pregnancy Hypertens. 2021;23:66–72.PubMedCrossRef Kyozuka H, Fukusda T, Murata T, Yamaguchi A, Kanno A, Yasuda S, et al. Impact of preconception sodium intake on hypertensive disorders of pregnancy: the Japan Environment and Children’s study. Pregnancy Hypertens. 2021;23:66–72.PubMedCrossRef
34.
Zurück zum Zitat Kyozuka H, Murata T, Fukuda T, Yamaguchi A, Kanno A, Yasuda S, et al. Association between pre-pregnancy calcium intake and hypertensive disorders during the first pregnancy: the Japan environment and children’s study. BMC Pregnancy Childbirth. 2020;20:424.PubMedPubMedCentralCrossRef Kyozuka H, Murata T, Fukuda T, Yamaguchi A, Kanno A, Yasuda S, et al. Association between pre-pregnancy calcium intake and hypertensive disorders during the first pregnancy: the Japan environment and children’s study. BMC Pregnancy Childbirth. 2020;20:424.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Kyozuka H, Nishigori H, Murata T, Fukuda T, Yamaguchi A, Kanno A, et al. Prepregnancy antiinflammatory diet in pregnant women with endometriosis: the Japan Environment and Children’s Study. Nutrition. 2021;85:111129.PubMedCrossRef Kyozuka H, Nishigori H, Murata T, Fukuda T, Yamaguchi A, Kanno A, et al. Prepregnancy antiinflammatory diet in pregnant women with endometriosis: the Japan Environment and Children’s Study. Nutrition. 2021;85:111129.PubMedCrossRef
36.
Zurück zum Zitat Kyozuka H, Murata T, Fukuda T, Yamaguchi A, Kanno A, Yasuda S, et al. Dietary inflammatory index during pregnancy and the risk of intrapartum fetal asphyxia: the Japan Environment and Children’s Study. Nutrients. 2020;12:3482.PubMedCentralCrossRef Kyozuka H, Murata T, Fukuda T, Yamaguchi A, Kanno A, Yasuda S, et al. Dietary inflammatory index during pregnancy and the risk of intrapartum fetal asphyxia: the Japan Environment and Children’s Study. Nutrients. 2020;12:3482.PubMedCentralCrossRef
37.
Zurück zum Zitat Kyozuka H, Yasuda S, Hiraiwa T, Ishibashi M, Kato K, Fujimori K. Histological chorioamnionitis as a risk factor for preterm birth without disturbing fetal heart rate: a case-control study. Tohoku J Exp Med. 2017;243:289–95.PubMedCrossRef Kyozuka H, Yasuda S, Hiraiwa T, Ishibashi M, Kato K, Fujimori K. Histological chorioamnionitis as a risk factor for preterm birth without disturbing fetal heart rate: a case-control study. Tohoku J Exp Med. 2017;243:289–95.PubMedCrossRef
38.
Zurück zum Zitat Langley-Evans SC, Pearce J, Ellis S. Overweight, obesity and excessive weight gain in pregnancy as risk factors for adverse pregnancy outcomes: a narrative review. J Hum Nutr Diet. 2022;35(2):250–64.PubMedPubMedCentralCrossRef Langley-Evans SC, Pearce J, Ellis S. Overweight, obesity and excessive weight gain in pregnancy as risk factors for adverse pregnancy outcomes: a narrative review. J Hum Nutr Diet. 2022;35(2):250–64.PubMedPubMedCentralCrossRef
Metadaten
Titel
Gestational weight gain as a risk factor for dystocia during first delivery: a multicenter retrospective cohort study in Japan
verfasst von
Hyo Kyozuka
Tsuyoshi Hiraiwa
Tsuyoshi Murata
Misa Sugeno
Toki Jin
Fumihito Ito
Daisuke Suzuki
Yasuhisa Nomura
Toma Fukuda
Shun Yasuda
Keiya Fujimori
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Pregnancy and Childbirth / Ausgabe 1/2022
Elektronische ISSN: 1471-2393
DOI
https://doi.org/10.1186/s12884-022-05055-6

Weitere Artikel der Ausgabe 1/2022

BMC Pregnancy and Childbirth 1/2022 Zur Ausgabe

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Gestationsdiabetes: In der zweiten Schwangerschaft folgenreicher als in der ersten

13.05.2024 Gestationsdiabetes Nachrichten

Das Risiko, nach einem Gestationsdiabetes einen Typ-2-Diabetes zu entwickeln, hängt nicht nur von der Zahl, sondern auch von der Reihenfolge der betroffenen Schwangerschaften ab.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.