Skip to main content
Erschienen in: Cardiovascular Toxicology 4/2010

01.12.2010

Glycolaldehyde Induces Oxidative Stress in the Heart: A Clue to Diabetic Cardiomyopathy?

verfasst von: Rodrigo Lorenzi, Michael Everton Andrades, Rafael Calixto Bortolin, Ryoji Nagai, Felipe Dal-Pizzol, José Cláudio Fonseca Moreira

Erschienen in: Cardiovascular Toxicology | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

Cardiovascular complications account for 80% of the mortality related to diabetes mellitus. Hyperglycemia is believed to be the major culprit of angiopathy and cardiomyopathy. High glucose levels and oxidative stress cause elevation of Advanced Glycation End-products that are known to contribute to diabetic complications and correlate with many diseases. However, there are few reports describing the effects of glycating agents other than glucose. Here, we aimed to evaluate the effects of glycolaldehyde (GA) on oxidative stress parameters in the heart of Wistar rats. Male Wistar rats received a single injection of GA (10, 50 or 100 mg/Kg) and were sacrificed 6, 12 or 24 h after injection. As indexes of oxidative stress, we quantified protein carbonylation, lipid peroxidation and total reduced thiols. The activities of superoxide dismutase, catalase and glyoxalase I were assayed. Also, the content of N ɛ-(carboxymethyl)lysine (CML) was quantified. Glycolaldehyde induced an imbalance in the redox status, with increased protein carbonylation and lipoperoxidation. Catalase and glyoxalase I had a decrease in their activities. Despite the oxidative stress, we observed no increase in CML content. These results suggest that short-chain aldehydes such as GA might have a significant role in the development of diabetic cardiomyopathy.
Literatur
1.
Zurück zum Zitat D’Souza, A., Hussain, M., Howarth, F. C., Woods, N. M., Bidasee, K., & Singh, J. (2009). Pathogenesis and pathophysiology of accelerated atherosclerosis in the diabetic heart. Molecular and Cellular Biochemistry, 331, 89–116.CrossRefPubMed D’Souza, A., Hussain, M., Howarth, F. C., Woods, N. M., Bidasee, K., & Singh, J. (2009). Pathogenesis and pathophysiology of accelerated atherosclerosis in the diabetic heart. Molecular and Cellular Biochemistry, 331, 89–116.CrossRefPubMed
2.
Zurück zum Zitat Natali, A., Vichi, S., Landi, P., Severi, S., L’Abbate, A., & Ferrannini, E. (2000). Coronary atherosclerosis in Type II diabetes: Angiographic findings and clinical outcome. Diabetologia, 43, 632–641.CrossRefPubMed Natali, A., Vichi, S., Landi, P., Severi, S., L’Abbate, A., & Ferrannini, E. (2000). Coronary atherosclerosis in Type II diabetes: Angiographic findings and clinical outcome. Diabetologia, 43, 632–641.CrossRefPubMed
3.
Zurück zum Zitat (1999). Effect of intensive diabetes treatment on carotid artery wall thickness in the epidemiology of diabetes interventions and complications. Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group. Diabetes, 48, 383–390. (1999). Effect of intensive diabetes treatment on carotid artery wall thickness in the epidemiology of diabetes interventions and complications. Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group. Diabetes, 48, 383–390.
4.
Zurück zum Zitat Vinik, A., & Flemmer, M. (2002). Diabetes and macrovascular disease. Journal of Diabetes Complications, 16, 235–245.CrossRef Vinik, A., & Flemmer, M. (2002). Diabetes and macrovascular disease. Journal of Diabetes Complications, 16, 235–245.CrossRef
5.
Zurück zum Zitat Yamagishi, S., & Imaizumi, T. (2005). Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Current Pharmaceutical Design, 11, 2279–2299.CrossRefPubMed Yamagishi, S., & Imaizumi, T. (2005). Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Current Pharmaceutical Design, 11, 2279–2299.CrossRefPubMed
6.
Zurück zum Zitat Yamagishi, S. (2009). Advanced glycation end products and receptor-oxidative stress system in diabetic vascular complications. Therapeutic Apheresis and Dialysis, 13, 534–539.CrossRefPubMed Yamagishi, S. (2009). Advanced glycation end products and receptor-oxidative stress system in diabetic vascular complications. Therapeutic Apheresis and Dialysis, 13, 534–539.CrossRefPubMed
7.
Zurück zum Zitat Choei, H., Sasaki, N., Takeuchi, M., Yoshida, T., Ukai, W., Yamagishi, S., et al. (2004). Glyceraldehyde-derived advanced glycation end products in Alzheimer’s disease. Acta Neuropathologica, 108, 189–193.CrossRefPubMed Choei, H., Sasaki, N., Takeuchi, M., Yoshida, T., Ukai, W., Yamagishi, S., et al. (2004). Glyceraldehyde-derived advanced glycation end products in Alzheimer’s disease. Acta Neuropathologica, 108, 189–193.CrossRefPubMed
8.
Zurück zum Zitat Peppa, M., Uribarri, J., & Vlassara, H. (2008). Aging and glycoxidant stress. Hormones (Athens), 7, 123–132. Peppa, M., Uribarri, J., & Vlassara, H. (2008). Aging and glycoxidant stress. Hormones (Athens), 7, 123–132.
9.
Zurück zum Zitat Yagmur, E., Tacke, F., Weiss, C., Lahme, B., Manns, M. P., Kiefer, P., et al. (2006). Elevation of Nepsilon-(carboxymethyl)lysine-modified advanced glycation end products in chronic liver disease is an indicator of liver cirrhosis. Clinical Biochemistry, 39, 39–45.CrossRefPubMed Yagmur, E., Tacke, F., Weiss, C., Lahme, B., Manns, M. P., Kiefer, P., et al. (2006). Elevation of Nepsilon-(carboxymethyl)lysine-modified advanced glycation end products in chronic liver disease is an indicator of liver cirrhosis. Clinical Biochemistry, 39, 39–45.CrossRefPubMed
10.
Zurück zum Zitat Semba, R. D., Fink, J. C., Sun, K., Windham, B. G., & Ferrucci, L. (2010). Serum carboxymethyl-lysine, a dominant advanced glycation end product, is associated with chronic kidney disease: The Baltimore longitudinal study of aging. Journal of Renal Nutrition, 20, 74–81.CrossRefPubMed Semba, R. D., Fink, J. C., Sun, K., Windham, B. G., & Ferrucci, L. (2010). Serum carboxymethyl-lysine, a dominant advanced glycation end product, is associated with chronic kidney disease: The Baltimore longitudinal study of aging. Journal of Renal Nutrition, 20, 74–81.CrossRefPubMed
11.
Zurück zum Zitat Aronson, D. (2003). Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. Journal of Hypertension, 21, 3–12.CrossRefPubMed Aronson, D. (2003). Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. Journal of Hypertension, 21, 3–12.CrossRefPubMed
12.
Zurück zum Zitat Humpert, P. M., Lukic, I. K., Thorpe, S. R., Hofer, S., Awad, E. M., Andrassy, M., et al. (2009). AGE-modified albumin containing infusion solutions boosts septicaemia and inflammation in experimental peritonitis. Journal of Leukocyte Biology, 86, 589–597.CrossRefPubMed Humpert, P. M., Lukic, I. K., Thorpe, S. R., Hofer, S., Awad, E. M., Andrassy, M., et al. (2009). AGE-modified albumin containing infusion solutions boosts septicaemia and inflammation in experimental peritonitis. Journal of Leukocyte Biology, 86, 589–597.CrossRefPubMed
13.
Zurück zum Zitat Tan, A. L., Sourris, K. C., Harcourt, B. E., Thallas-Bonke, V., Penfold, S., Andrikopoulos, S., et al. (2010). Disparate effects on renal and oxidative parameters following RAGE deletion, AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy. American Journal of Physiology and Renal Physiology, 298, F763–F770.CrossRef Tan, A. L., Sourris, K. C., Harcourt, B. E., Thallas-Bonke, V., Penfold, S., Andrikopoulos, S., et al. (2010). Disparate effects on renal and oxidative parameters following RAGE deletion, AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy. American Journal of Physiology and Renal Physiology, 298, F763–F770.CrossRef
14.
Zurück zum Zitat Kamata, K., Ozawa, Y., Kobayashi, T., & Matsumoto, T. (2009). Effect of N-epsilon-(carboxymethyl)lysine on coronary vasoconstriction in isolated perfused hearts from control and streptozotocin-induced diabetic rats. Journal of Smooth Muscle Research, 45, 125–137.CrossRefPubMed Kamata, K., Ozawa, Y., Kobayashi, T., & Matsumoto, T. (2009). Effect of N-epsilon-(carboxymethyl)lysine on coronary vasoconstriction in isolated perfused hearts from control and streptozotocin-induced diabetic rats. Journal of Smooth Muscle Research, 45, 125–137.CrossRefPubMed
15.
Zurück zum Zitat Shirpoor, A., Salami, S., Khadem-Ansari, M. H., Ilkhanizadeh, B., Pakdel, F. G., & Khademvatani, K. (2009). Cardioprotective effect of vitamin E: Rescues of diabetes-induced cardiac malfunction, oxidative stress, and apoptosis in rat. Journal of Diabetes and Its Complications, 23, 310–316.CrossRefPubMed Shirpoor, A., Salami, S., Khadem-Ansari, M. H., Ilkhanizadeh, B., Pakdel, F. G., & Khademvatani, K. (2009). Cardioprotective effect of vitamin E: Rescues of diabetes-induced cardiac malfunction, oxidative stress, and apoptosis in rat. Journal of Diabetes and Its Complications, 23, 310–316.CrossRefPubMed
16.
Zurück zum Zitat Lankin, V. Z., Lisina, M. O., Arzamastseva, N. E., Konovalova, G. G., Nedosugova, L. V., Kaminnyi, A. I., et al. (2005). Oxidative stress in atherosclerosis and diabetes. Bulletin of Experimental Biology and Medicine, 140, 41–43.CrossRefPubMed Lankin, V. Z., Lisina, M. O., Arzamastseva, N. E., Konovalova, G. G., Nedosugova, L. V., Kaminnyi, A. I., et al. (2005). Oxidative stress in atherosclerosis and diabetes. Bulletin of Experimental Biology and Medicine, 140, 41–43.CrossRefPubMed
17.
Zurück zum Zitat Gumieniczek, A. (2005). Modification of cardiac oxidative stress in alloxan-induced diabetic rabbits with repaglinide treatment. Life Science, 78, 259–263.CrossRef Gumieniczek, A. (2005). Modification of cardiac oxidative stress in alloxan-induced diabetic rabbits with repaglinide treatment. Life Science, 78, 259–263.CrossRef
18.
Zurück zum Zitat Glomb, M. A., & Monnier, V. M. (1995). Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. Journal of Biological Chemistry, 270, 10017–10026.CrossRefPubMed Glomb, M. A., & Monnier, V. M. (1995). Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. Journal of Biological Chemistry, 270, 10017–10026.CrossRefPubMed
19.
Zurück zum Zitat Anderson, M. M., Hazen, S. L., Hsu, F. F., & Heinecke, J. W. (1997). Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha, beta-unsaturated aldehydes by phagocytes at sites of inflammation. Journal of Clinical Investigation, 99, 424–432.CrossRefPubMed Anderson, M. M., Hazen, S. L., Hsu, F. F., & Heinecke, J. W. (1997). Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha, beta-unsaturated aldehydes by phagocytes at sites of inflammation. Journal of Clinical Investigation, 99, 424–432.CrossRefPubMed
20.
Zurück zum Zitat Al-Enezi, K. S., Alkhalaf, M., & Benov, L. T. (2006). Glycolaldehyde induces growth inhibition and oxidative stress in human breast cancer cells. Free Radical Biology and Medicine, 40, 1144–1151.CrossRefPubMed Al-Enezi, K. S., Alkhalaf, M., & Benov, L. T. (2006). Glycolaldehyde induces growth inhibition and oxidative stress in human breast cancer cells. Free Radical Biology and Medicine, 40, 1144–1151.CrossRefPubMed
21.
Zurück zum Zitat Andrades, M. E., Lorenzi, R., Berger, M., Guimaraes, J. A., Moreira, J. C., & Dal-Pizzol, F. (2009). Glycolaldehyde induces fibrinogen post-translational modification, delay in clotting and resistance to enzymatic digestion. Chemico-Biological Interactions, 180, 478–484.CrossRefPubMed Andrades, M. E., Lorenzi, R., Berger, M., Guimaraes, J. A., Moreira, J. C., & Dal-Pizzol, F. (2009). Glycolaldehyde induces fibrinogen post-translational modification, delay in clotting and resistance to enzymatic digestion. Chemico-Biological Interactions, 180, 478–484.CrossRefPubMed
22.
Zurück zum Zitat Mera, K., Takeo, K., Izumi, M., Maruyama, T., Nagai, R., & Otagiri, M. (2010). Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin. Journal of Pharmaceutical Sciences, 99, 1614–1625.PubMed Mera, K., Takeo, K., Izumi, M., Maruyama, T., Nagai, R., & Otagiri, M. (2010). Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin. Journal of Pharmaceutical Sciences, 99, 1614–1625.PubMed
23.
Zurück zum Zitat Brown, B. E., Dean, R. T., & Davies, M. J. (2005). Glycation of low-density lipoproteins by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of lipid-laden cells. Diabetologia, 48, 361–369.CrossRefPubMed Brown, B. E., Dean, R. T., & Davies, M. J. (2005). Glycation of low-density lipoproteins by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of lipid-laden cells. Diabetologia, 48, 361–369.CrossRefPubMed
24.
Zurück zum Zitat Morgan, P. E., Dean, R. T., & Davies, M. J. (2002). Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Archives of Biochemistry and Biophysics, 403, 259–269.CrossRefPubMed Morgan, P. E., Dean, R. T., & Davies, M. J. (2002). Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Archives of Biochemistry and Biophysics, 403, 259–269.CrossRefPubMed
25.
Zurück zum Zitat Ukeda, H., Hasegawa, Y., Ishi, T., & Sawamura, M. (1997). Inactivation of Cu, Zn-superoxide dismutase by intermediates of Maillard reaction and glycolytic pathway and some sugars. Bioscience, Biotechnology, and Biochemistry, 61, 2039–2042.CrossRefPubMed Ukeda, H., Hasegawa, Y., Ishi, T., & Sawamura, M. (1997). Inactivation of Cu, Zn-superoxide dismutase by intermediates of Maillard reaction and glycolytic pathway and some sugars. Bioscience, Biotechnology, and Biochemistry, 61, 2039–2042.CrossRefPubMed
26.
Zurück zum Zitat Lee, H. B., & Blaufox, M. D. (1985). Blood volume in the rat. Journal of Nuclear Medicine, 26, 72–76.PubMed Lee, H. B., & Blaufox, M. D. (1985). Blood volume in the rat. Journal of Nuclear Medicine, 26, 72–76.PubMed
27.
Zurück zum Zitat Levine, R. L., Williams, J. A., Stadtman, E. R., & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 233, 346–357.CrossRefPubMed Levine, R. L., Williams, J. A., Stadtman, E. R., & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 233, 346–357.CrossRefPubMed
28.
Zurück zum Zitat Draper, H. H., Hadley, M., Lester, P., & Alexander, N. G. (1990). [43] Malondialdehyde determination as index of lipid peroxidation. In Methods in enzymology (pp 421–431), Academic Press. Draper, H. H., Hadley, M., Lester, P., & Alexander, N. G. (1990). [43] Malondialdehyde determination as index of lipid peroxidation. In Methods in enzymology (pp 421–431), Academic Press.
29.
Zurück zum Zitat Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77.CrossRefPubMed Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77.CrossRefPubMed
30.
Zurück zum Zitat Aebi, H., & Lester, P. (1984). [13] Catalase in vitro. In Methods in enzymology (pp 121–126), Academic Press. Aebi, H., & Lester, P. (1984). [13] Catalase in vitro. In Methods in enzymology (pp 121–126), Academic Press.
31.
Zurück zum Zitat Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. The Journal of Biological Chemistry, 247, 3170–3175.PubMed Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. The Journal of Biological Chemistry, 247, 3170–3175.PubMed
32.
Zurück zum Zitat Mannervik, B., Aronsson, A. C., Marmstal, E., & Tibbelin, G. (1981). Glyoxalase I (rat liver). Methods in Enzymology, 77, 297–301.CrossRefPubMed Mannervik, B., Aronsson, A. C., Marmstal, E., & Tibbelin, G. (1981). Glyoxalase I (rat liver). Methods in Enzymology, 77, 297–301.CrossRefPubMed
33.
Zurück zum Zitat Imanaga, Y., Sakata, N., Takebayashi, S., Matsunaga, A., Sasaki, J., Arakawa, K., et al. (2000). In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques. Atherosclerosis, 150, 343–355.CrossRefPubMed Imanaga, Y., Sakata, N., Takebayashi, S., Matsunaga, A., Sasaki, J., Arakawa, K., et al. (2000). In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques. Atherosclerosis, 150, 343–355.CrossRefPubMed
34.
Zurück zum Zitat Mocatta, T. J., Pilbrow, A. P., Cameron, V. A., Senthilmohan, R., Frampton, C. M., Richards, A. M., et al. (2007). Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. Journal of the American College of Cardiology, 49, 1993–2000.CrossRefPubMed Mocatta, T. J., Pilbrow, A. P., Cameron, V. A., Senthilmohan, R., Frampton, C. M., Richards, A. M., et al. (2007). Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. Journal of the American College of Cardiology, 49, 1993–2000.CrossRefPubMed
35.
Zurück zum Zitat Yan, S. F., Ramasamy, R., & Schmidt, A. M. (2010). The RAGE axis: A fundamental mechanism signaling danger to the vulnerable vasculature. Circulation Research, 106, 842–853.CrossRefPubMed Yan, S. F., Ramasamy, R., & Schmidt, A. M. (2010). The RAGE axis: A fundamental mechanism signaling danger to the vulnerable vasculature. Circulation Research, 106, 842–853.CrossRefPubMed
36.
Zurück zum Zitat Park, L., Raman, K. G., Lee, K. J., Lu, Y., Ferran, L. J., Jr., Chow, W. S., et al. (1998). Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nature Medicine, 4, 1025–1031.CrossRefPubMed Park, L., Raman, K. G., Lee, K. J., Lu, Y., Ferran, L. J., Jr., Chow, W. S., et al. (1998). Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nature Medicine, 4, 1025–1031.CrossRefPubMed
37.
Zurück zum Zitat Kono, Y., & Fridovich, I. (1982). Superoxide radical inhibits catalase. The Journal of Biological Chemistry, 257, 5751–5754.PubMed Kono, Y., & Fridovich, I. (1982). Superoxide radical inhibits catalase. The Journal of Biological Chemistry, 257, 5751–5754.PubMed
38.
Zurück zum Zitat Adrover, M., Vilanova, B., Munoz, F., & Donoso, J. (2008). Kinetic study of the reaction of glycolaldehyde with two glycation target models. Annals of the New York Academy of Sciences, 1126, 235–240.CrossRefPubMed Adrover, M., Vilanova, B., Munoz, F., & Donoso, J. (2008). Kinetic study of the reaction of glycolaldehyde with two glycation target models. Annals of the New York Academy of Sciences, 1126, 235–240.CrossRefPubMed
39.
Zurück zum Zitat Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., & Hammond, C. L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biological Chemistry, 390, 191–214.CrossRefPubMed Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., & Hammond, C. L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biological Chemistry, 390, 191–214.CrossRefPubMed
40.
Zurück zum Zitat Paulsen, C. E., & Carroll, K. S. (2010). Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chemical Biology, 5, 47–62.CrossRefPubMed Paulsen, C. E., & Carroll, K. S. (2010). Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chemical Biology, 5, 47–62.CrossRefPubMed
41.
Zurück zum Zitat Vander Jagt, D. L., Hassebrook, R. K., Hunsaker, L. A., Brown, W. M., & Royer, R. E. (2001). Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: Roles for glutathione in both enzymes and implications for diabetic complications. Chemico-Biological Interactions, 130–132, 549–562.CrossRefPubMed Vander Jagt, D. L., Hassebrook, R. K., Hunsaker, L. A., Brown, W. M., & Royer, R. E. (2001). Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: Roles for glutathione in both enzymes and implications for diabetic complications. Chemico-Biological Interactions, 130–132, 549–562.CrossRefPubMed
42.
Zurück zum Zitat Atalay, M., Oksala, N. K., Laaksonen, D. E., Khanna, S., Nakao, C., Lappalainen, J., et al. (2004). Exercise training modulates heat shock protein response in diabetic rats. Journal of Applied Physiology, 97, 605–611.CrossRefPubMed Atalay, M., Oksala, N. K., Laaksonen, D. E., Khanna, S., Nakao, C., Lappalainen, J., et al. (2004). Exercise training modulates heat shock protein response in diabetic rats. Journal of Applied Physiology, 97, 605–611.CrossRefPubMed
43.
Zurück zum Zitat Aydemir-Koksoy, A., Bilginoglu, A., Sariahmetoglu, M., Schulz, R., & Turan, B. (2009). Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. Journal of Nutritional Biochemistry. Aydemir-Koksoy, A., Bilginoglu, A., Sariahmetoglu, M., Schulz, R., & Turan, B. (2009). Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. Journal of Nutritional Biochemistry.
44.
Zurück zum Zitat Bilginoglu, A., Seymen, A., Tuncay, E., Zeydanli, E., Aydemir-Koksoy, A., & Turan, B. (2009). Antioxidants but not doxycycline treatments restore depressed beta-adrenergic responses of the heart in diabetic rats. Cardiovascular Toxicology, 9, 21–29.CrossRefPubMed Bilginoglu, A., Seymen, A., Tuncay, E., Zeydanli, E., Aydemir-Koksoy, A., & Turan, B. (2009). Antioxidants but not doxycycline treatments restore depressed beta-adrenergic responses of the heart in diabetic rats. Cardiovascular Toxicology, 9, 21–29.CrossRefPubMed
45.
Zurück zum Zitat Nagai, R., Fujiwara, Y., Mera, K., Motomura, K., Iwao, Y., Tsurushima, K., et al. (2008). Usefulness of antibodies for evaluating the biological significance of AGEs. Annals of the New York Academy of Sciences, 1126, 38–41.CrossRefPubMed Nagai, R., Fujiwara, Y., Mera, K., Motomura, K., Iwao, Y., Tsurushima, K., et al. (2008). Usefulness of antibodies for evaluating the biological significance of AGEs. Annals of the New York Academy of Sciences, 1126, 38–41.CrossRefPubMed
46.
Zurück zum Zitat Nagai, R., Hayashi, C. M., Xia, L., Takeya, M., & Horiuchi, S. (2002). Identification in human atherosclerotic lesions of GA-pyridine, a novel structure derived from glycolaldehyde-modified proteins. Journal of Biological Chemistry, 277, 48905–48912.CrossRefPubMed Nagai, R., Hayashi, C. M., Xia, L., Takeya, M., & Horiuchi, S. (2002). Identification in human atherosclerotic lesions of GA-pyridine, a novel structure derived from glycolaldehyde-modified proteins. Journal of Biological Chemistry, 277, 48905–48912.CrossRefPubMed
Metadaten
Titel
Glycolaldehyde Induces Oxidative Stress in the Heart: A Clue to Diabetic Cardiomyopathy?
verfasst von
Rodrigo Lorenzi
Michael Everton Andrades
Rafael Calixto Bortolin
Ryoji Nagai
Felipe Dal-Pizzol
José Cláudio Fonseca Moreira
Publikationsdatum
01.12.2010
Verlag
Humana Press Inc
Erschienen in
Cardiovascular Toxicology / Ausgabe 4/2010
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-010-9083-x

Weitere Artikel der Ausgabe 4/2010

Cardiovascular Toxicology 4/2010 Zur Ausgabe