Skip to main content
Erschienen in: Behavioral and Brain Functions 1/2013

Open Access 01.12.2013 | Short paper

GPA-14, a Gαi subunit mediates dopaminergic behavioral plasticity in C. elegans

verfasst von: Mahlet Mersha, Rosaria Formisano, Rochelle McDonald, Pratima Pandey, Nektarios Tavernarakis, Singh Harbinder

Erschienen in: Behavioral and Brain Functions | Ausgabe 1/2013

Abstract

Background

Precise levels of specific neurotransmitters are required for appropriate neuronal functioning. The neurotransmitter dopamine is implicated in modulating behaviors, such as cognition, reward and memory. In the nematode Caenorhabditis elegans, the release of dopamine during behavioral plasticity is in part modulated through an acid-sensing ion channel expressed in its eight dopaminergic neurons. A D2-like C. elegans dopamine receptor DOP-2 co-expresses along with a Gαi subunit (GPA-14) in the anterior deirid (ADE) pair of dopaminergic neurons.

Findings

In follow-up experiments to our recently reported in vitro physical interaction between DOP-2 and GPA-14, we have behaviorally characterized worms carrying deletion mutations in gpa-14 and/or dop-2. We found both mutants to display behavioral abnormalities in habituation as well as associative learning, and exogenous supply of dopamine was able to revert the observed behavioral deficits. The behavioral phenotypes of dop-2 and gpa-14 loss-of-function mutants were found to be remarkably similar, and we did not observe any cumulative defects in their double mutants.

Conclusion

Our results provide genetic and phenotypic support to our earlier in vitro results where we had shown that the DOP-2 dopamine receptor and the GPA-14 Gαi subunit physically interact with each other. Results from behavioral experiments presented here together with our previous in-vitro work suggests that the DOP-2 functions as a dopamine auto-receptor to modulate two types of learning, anterior touch habituation and chemosensory associative conditioning, through a G-protein complex that comprises GPA-14 as its Gα subunit.
Begleitmaterial
Additional file 3: A model for the molecular interactions modulating neurotransmitter levels at a C. elegans dopaminergic synapse {modified from[8]}. Release of dopamine can activate auto-receptor function of DOP-2 to initiate signal transduction through GPA-14 ([21], and this report). In parallel, the accompanying drop in synaptic pH due to the release of H+ ions from the acidified vesicles activates acid sensing cation channels (ASIC). Stimulation of DOP-2 and activation of ASIC call allow two molecular loops in the presynaptic neuron so as to modulate levels of dopamine in the synaptic cleft. These two pathways are likely to crosstalk through relay molecule/s that remain unknown as yet. (PPT 116 KB)
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1744-9081-9-16) contains supplementary material, which is available to authorized users.
Mahlet Mersha, Rosaria Formisano contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Conceived project: NT, SH. Designed experiments: MM, RF, PP, SH. Performed experiments: MM, RF, RM. Wrote manuscript: NT, SH. All authors have read and approve the final manuscript.
Abkürzungen
gpa-14
Gene for G-protein alpha subunit-14
GPA-14
Protein product coded by gpa-14
dop-2
Gene for D2 like dopamine receptor
DOP-2
dop-2 protein product
ASIC
Acid sensing ion channel
asic-1
Gene for a subunit of C. elegans ASIC.

Findings

Neural plasticity is dependent upon various neurotransmitters, including the catecholamine dopamine [1, 2] and abnormal dopaminergic transmission is associated with memory disorders [3]. Dopamine receptive neurons have dopamine receptors mainly localized to the morphologically plastic dendritic spine regions [4]. In humans, these seven-transmembrane G-protein coupled dopamine receptors are classified into D1- and D2-types. Activated D1-type receptors couple to Gαs and activate adenylyl cyclase, and D2-receptors tend to act antagonistically to D1-receptors, mediating the signal transduction through Gαi[5]. Dopamine released into the synaptic cleft by presynaptic neurons interacts with its receptors after which it is either degraded by monoamine oxidase or taken up through a dopamine transporter [6]. The release of dopamine from acidic vesicles is accompanied by increase in H+ ion concentrations stimulating presynaptic acid-sensing ion channels (ASICs) that are proposed to modulate levels of dopamine in the synaptic cleft [7, 8]. Some mammalian D2-receptors are localized to dopamine releasing neurons in a pre-synaptic configuration and thereby act as auto-receptors [9].
Caenorhabditis elegans is an ideal invertebrate model to study genes involved in behavioral plasticity [1012]. In the adult hermaphrodite C. elegans, dopamine is synthesized in eight neurons: two anterior deirid neurons (ADEs), two posterior deirid neurons (PDEs) and four cephalic neurons (CEPs) [13]. Four dopamine receptor genes have been identified in the C. elegans genome: dop-1, dop-2, dop-3 and dop-4. Based on pharmacological properties of their protein products and their sequence profiles, DOP-1 is classified as a D1-type receptor, while DOP-2 and DOP-3 are classified as D2-type receptors and DOP-4 is invertebrate specific [14]. Loss-of-function mutants for dop-1 tend to habituate faster [15, 16] and loss-of-function dop-2 mutants display associative learning deficits [8]. DOP-3 and DOP-4 have both been implicated in response to aversive soluble repellents [17, 18]. Seven-transmembrane receptors such as the dopamine receptors typically transduce their signal through G-proteins. The C. elegans genome encodes for 21 Gα, 2 Gβ and 2 Gγ genes; one particular gene, gpa-14, codes for a Gαi subunit and shows expression overlap with DOP-2 as well as with ASIC-1 in the ADE dopaminergic neurons [8, 19, 20]. We have recently reported physical interaction between DOP-2 and GPA-14 and that the third intracellular loop of DOP-2 is essential for binding to GPA-14 in vitro[21]. To study the functional significance of the above molecular interaction in the intact organism, results from follow-up behavioral and genetic experiments are presented here.

Hypothesis

Considering the role of dopamine in plasticity and the interaction of DOP-2 with GPA-14, we hypothesized that deletion of gpa-14 will cause behavioral abnormalities similar to dop-2 mutants [8, 21]. Towards this end, we report that both dop-2(vs105) and gpa-14(pk347) loss-of-function mutants display associative learning deficits as well as faster habituation at remarkably similar rates. Additionally, the phenotype of the gpa-14(pk347);dop-2(vs105) double mutant is virtually identical to either single-mutant, and exogenous dopamine tends to revert the mutant behavior.

gpa-14 and dop-2 mutants display similar behavioral deficits

We carried out a behavioral profiles for gpa-14(pk347) and dop-2(vs105) mutants obtained through the Caenorhabditis Genetic Center, and cultured on standard nematode growth media with E. coli OP50 at 20°C. Compared to wild type N2 animals, individuals of both strains are phenotypically normal in terms of body size, shape, growth, movement and locomotion and they respond normally to gentle touch, and display normal chemotaxis to both soluble and volatile chemicals. Dopamine has been reported to mediate movement and food sensing behaviors in that when C. elegans encounter food, they move more slowly [2]. Our basal slowing assays did not reveal any significant difference between wild type animals and the deletion mutants (Additional file 1). A modified habituation assay was used in which a forward moving worm was gently touched on the anterior with an eyelash hair causing the worm to move backwards [22]. The mechanical stimulus was repeated with 10 sec intervals until the animal no longer responded to the stimulus. In order to confirm that the novel anterior touch based assay used here was in fact measuring habituation, we initially provided 20 gentle anterior touches (with 10 sec inter-stimulus intervals) to each worm and their response was scored after each stimulus as 1 or 0 (1 = worm moves away, and 0 = no response or worm continues moving in same direction). We observed that increasing number of touches decreased the probability of the worms’ response and we did not observe abrupt disruption in their ability to respond (Figure 1A). The latter would have indicated sensory fatigue. We also plotted the same data in terms of the average point at which worms stopped responding to the anterior touch stimulus (Figure 1B). Based on assay similarities and substantial neural circuitry overlap of the observed behavior with the extensively studied mechanical tap habituation, we consider that a decrease in response to anterior touch is a form of habituation, although additional tests will allow necessary verification [22, 23]. Our subsequent assays recorded the number of mechanical stimuli repeated with 10 second intervals until the response failed as a measure of habituation of individual worms. The results are noteable in that both dop-2(vs105) and gpa-14(pk247) mutants exhibited significantly faster habituation rates compared to wild-type (Figures 1A and B, 2A).
It has been previously reported that dop-2(vs105) mutants are deficient in chemotaxis based associative learning paradigms [9]. We tested the performance of gpa-14(pk347) in a learning assay in which the chemo-attractant isoamyl alcohol (IAA) was paired with starvation [9]. For conditioning, the animals were exposed to 3 μl of IAA for 90 minutes. IAA (2μl) diluted to 1/100 in ethanol was applied to the gradient spot and ethanol (2μl) was applied to the diluent point, and worms were placed equidistant to the two points. Plates were left undisturbed for one hour, after which the animals were counted to calculate a chemotaxis index for each plate [9, 24]. Naive worms showed strong attraction towards to 1:100 dilution of IAA. After conditioning, N2 worms displayed significantly reduced attraction to isoamyl alcohol compared to both gpa-14(pk347) and dop-2(vs105) (Figure 3A). Additionally, there was no significant difference between the learning capacity of the gpa-14(pk347) or the dop-2(vs105) strains. Similar associative learning results were obtained using paradigms that used non-volatile sodium chloride as unconditioned stimulus (Additional file 2). In control experiments we did not observe any decrease in attraction to isoamyl alcohol when the animals had been previously exposed to isoamyl alcohol in the presence of food/E. coli, confirming that the decrease in response observed upon conditioning in the absence of E. coli is a learned response and not due to adaptation [Figure 3C].
In order to test whether DOP-2 and GPA-14 exert their influence on the observed adaptive behavior through the same pathway, a gpa-14(pk347);dop-2(vs105) double mutant was generated. This double mutant adapted significantly faster than N2 at rates similar to those observed for gpa-14(pk347) or dop-2(vs105) single mutants (Figure 2A). No cumulative abnormalities were observed in the double mutant indicating a genetic interaction between dop-2 and gpa-14.

Dopamine supplements revert behavioral deficits in mutants

It has been shown that dopamine deficiency results in faster habituation rates while abundance in dopamine has been correlated with slower habituation rates [16, 17]. Behavioral deficits attributed to low levels of dopamine have been ameliorated by providing exogenous dopamine [8, 15, 16]. Upon assaying in the presence of 5mM exogenous dopamine, we were able to bring habituation rates of both the single-mutants [gpa-14(pk347) and dop-2(vs105)] as well as the double mutant [gpa-14(pk347);dop-2(vs105)] to levels similar to the habituation rate of wild type N2 animals (Figure 2B). Addition of exogenous dopamine was also able to rescue the conditioned associative learning deficits for the gpa-14(pk347) and dop-2(vs105) deletions as well as the gpa-14(pk347);dop-2(vs105) double deletion mutants (Figure 3B).

Discussion

We provide genetic and phenotypic support to our previously reported in vitro interaction between the DOP-2 dopamine receptor and the GPA-14 Gαi subunit [21]. The gpa-14(pk347) and dop-2(vs105) mutants display faster rates of habituation and diminished associative learning capacities. Faster mechanosensitive habituation has been reported for mutants in dop-1, which codes for a D1-like receptor [15], and crosstalk between AVM touch neurons (which express a D1-like receptor, DOP-1) and ADE dopaminergic neurons (which express the D2-like DOP-2 receptor) has been proposed previously [16]. It will be interesting to explore whether DOP-1 and DOP-2 work as an antagonistically coordinating pair as indicated by the pharmacological properties of D1- and D2- receptor types [5]. Supplementary exogenous dopamine in either of the single mutant or the double mutant used in this study reverted the observed phenotypic abnormalities, indicating that DOP-2 and GPA-14 play an upstream role in regulating the dopaminergic pathway of behavioral plasticity in worms. In addition to its role in learning and memory, dopamine has been reported to regulate food encounter response of C. elegans[2]. According to our results, the deletion of dop-2 or gpa-14 has no effect on their food encounter response. This could imply that, although dopamine activity is reduced in these mutants, its reduction may not be significant enough to affect their food encounter response. Another possibility is that basal slowing may not be as sensitive to dopamine levels as mechanosensation and chemosensensation.
Absence of any additional or cumulative abnormalities in the gpa-14(pk347);dop-2(vs105) double mutant provides genetic support towards an interaction between dop-2 and gpa-14 and that their protein products participate in the same molecular pathway during behavior plasticity. Apparently, the observed habituation and associative learning behaviors in both mutants [gpa-14(pk347) and dop-2(vs105)] may give an impression of contradictory phenotypes. While diminished associative learning clearly correlates with poorer neuronal summation, faster habituation does not necessarily draw a parallel with an antagonistic explanation. On the other hand faster habituation may correlate with ignoring a cue earlier than optimum assuming that WT habituation represents an optimal rate. In summary, examining the behavioral profile of dop-2(vs105) and gpa-14(pk347) deletion mutants has revealed that both show similar aberrations in plasticity, and our results with the dop-2;gpa-14 double mutant indicate that GPA-14 and DOP-2 work together in the same pathway. In order to rule out the contribution of background mutations, follow-up experiments using RNAi knockdowns or transgenic rescue of the mutants can provide required validation of the results presented here.
These results are significant in that neuroimaging studies in humans indicate that deficient feedback monitoring in the cortex is associated with learning deficits due to D2 receptor polymorphisms [25, 26]. The ASIC and DAT-1 pathways are also known to modulate dopamine release in the dopaminergic neurons including ADEs and have been proposed to work in conjunction with DOP-2 ([8] and Additional file 3). However, the nature of the upstream or parallel role of DOP-2 in the plasticity pathway is not understood at the molecular level. It is conceivable that DOP-2 may act as an auto-receptor in the ADE neurons and upon stimulation it transduces the extracellular dopamine signal through the GPA-14 Gαi subunit [8, 21]. Alternately, DOP-2 may exert its influence at the somatodendritic membrane, given the dual localization of mammalian D2 receptors at both cellular compartments of dopaminergic neurons [27]. Further investigations are needed and it will be interesting to identify downstream components of the ASIC, DAT-1 and DOP-2 pathways and their crosstalk in modulating precise levels of neurotransmitter in the synaptic cleft.

Acknowledgement

Thanks to Drs. Geraldine Seydoux, Jeff Rosen, Len Davis, Melissa Harrington and anonymous reviewers for valuable suggestions and comments, CGC for providing C. elegans strains (supported by the NIH Office of Research Infrastructure Programs grant P40 OD010440). Funding to the lab by NIH is gratefully acknowledged (NIGMS-COBRE 1P20GM103653 - 01A1).
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Conceived project: NT, SH. Designed experiments: MM, RF, PP, SH. Performed experiments: MM, RF, RM. Wrote manuscript: NT, SH. All authors have read and approve the final manuscript.
Anhänge

Electronic supplementary material

Additional file 3: A model for the molecular interactions modulating neurotransmitter levels at a C. elegans dopaminergic synapse {modified from[8]}. Release of dopamine can activate auto-receptor function of DOP-2 to initiate signal transduction through GPA-14 ([21], and this report). In parallel, the accompanying drop in synaptic pH due to the release of H+ ions from the acidified vesicles activates acid sensing cation channels (ASIC). Stimulation of DOP-2 and activation of ASIC call allow two molecular loops in the presynaptic neuron so as to modulate levels of dopamine in the synaptic cleft. These two pathways are likely to crosstalk through relay molecule/s that remain unknown as yet. (PPT 116 KB)

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Kandel ER: The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep. 2001, 21 (5): 565-611. 10.1023/A:1014775008533.CrossRefPubMed Kandel ER: The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep. 2001, 21 (5): 565-611. 10.1023/A:1014775008533.CrossRefPubMed
2.
Zurück zum Zitat Sawin ER, Ranganathan R, Horvitz HR: C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron. 2000, 26: 619-631. 10.1016/S0896-6273(00)81199-X.CrossRefPubMed Sawin ER, Ranganathan R, Horvitz HR: C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron. 2000, 26: 619-631. 10.1016/S0896-6273(00)81199-X.CrossRefPubMed
3.
Zurück zum Zitat Khan ZU, Muly EC: Molecular mechanisms of working memory. Behav Brain Res. 2011, 219 (2): 329-341. 10.1016/j.bbr.2010.12.039.CrossRefPubMed Khan ZU, Muly EC: Molecular mechanisms of working memory. Behav Brain Res. 2011, 219 (2): 329-341. 10.1016/j.bbr.2010.12.039.CrossRefPubMed
4.
Zurück zum Zitat Wei-Dong Y, Spealman RD, Zhang J: Dopaminergic signaling in dendritic spines. Biochem Pharmacol. 2009, 75 (11): 2055-2069. Wei-Dong Y, Spealman RD, Zhang J: Dopaminergic signaling in dendritic spines. Biochem Pharmacol. 2009, 75 (11): 2055-2069.
5.
Zurück zum Zitat Beaulieu JM, Gainetdinov RR: The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011, 63: 182-217. 10.1124/pr.110.002642.CrossRefPubMed Beaulieu JM, Gainetdinov RR: The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011, 63: 182-217. 10.1124/pr.110.002642.CrossRefPubMed
6.
Zurück zum Zitat Williams JM, Galli A: The dopamine transporter: a vigilant border control for psychostimulant action. Handb Exp Pharmacol. 2006, 175: 215-232. 10.1007/3-540-29784-7_11.CrossRefPubMed Williams JM, Galli A: The dopamine transporter: a vigilant border control for psychostimulant action. Handb Exp Pharmacol. 2006, 175: 215-232. 10.1007/3-540-29784-7_11.CrossRefPubMed
7.
Zurück zum Zitat Pidoplichko VI, Dani JA: Acid-sensitive ionic channels in midbrain dopamine neurons are sensitive to ammonium, which may contribute to hyperammonemia damage. Proc Natl Acad Sci USA. 2006, 103 (30): 11376-11380. 10.1073/pnas.0600768103.PubMedCentralCrossRefPubMed Pidoplichko VI, Dani JA: Acid-sensitive ionic channels in midbrain dopamine neurons are sensitive to ammonium, which may contribute to hyperammonemia damage. Proc Natl Acad Sci USA. 2006, 103 (30): 11376-11380. 10.1073/pnas.0600768103.PubMedCentralCrossRefPubMed
8.
Zurück zum Zitat Voglis G, Tavernarakis N: A synaptic DEGENaC ion channel mediates learning in C. elegans by facilitating dopamine signaling. EMBO J. 2008, 27: 3288-3299. 10.1038/emboj.2008.252.PubMedCentralCrossRefPubMed Voglis G, Tavernarakis N: A synaptic DEGENaC ion channel mediates learning in C. elegans by facilitating dopamine signaling. EMBO J. 2008, 27: 3288-3299. 10.1038/emboj.2008.252.PubMedCentralCrossRefPubMed
9.
Zurück zum Zitat L’hirondel M, Cheramy A, Godeheu G, Artaud F, Saiardi A, Borrelli E, Glowinski J: Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res. 1998, 792: 253-262. 10.1016/S0006-8993(98)00146-2.CrossRefPubMed L’hirondel M, Cheramy A, Godeheu G, Artaud F, Saiardi A, Borrelli E, Glowinski J: Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res. 1998, 792: 253-262. 10.1016/S0006-8993(98)00146-2.CrossRefPubMed
10.
Zurück zum Zitat Nuttley W, Harbinder S, van der Kooy D: Genetic dissection and kinetics of opposing attractive and aversive components triggered in response to benzaldehyde in C. elegans. Learn Mem. 2001, 8 (3): 170-181. 10.1101/lm.36501.PubMedCentralCrossRefPubMed Nuttley W, Harbinder S, van der Kooy D: Genetic dissection and kinetics of opposing attractive and aversive components triggered in response to benzaldehyde in C. elegans. Learn Mem. 2001, 8 (3): 170-181. 10.1101/lm.36501.PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Saeki S, Yamamoto M, Iino Y: Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol. 2001, 204 (10): 1757-1764.PubMed Saeki S, Yamamoto M, Iino Y: Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol. 2001, 204 (10): 1757-1764.PubMed
12.
Zurück zum Zitat Ardiel EL, Rankin CH: An elegant mind: Learning and memory in Caenorhabditis elegans. Learn Memory. 2010, 17: 191-201. 10.1101/lm.960510.CrossRef Ardiel EL, Rankin CH: An elegant mind: Learning and memory in Caenorhabditis elegans. Learn Memory. 2010, 17: 191-201. 10.1101/lm.960510.CrossRef
13.
Zurück zum Zitat White JG, Southgate E, Thomson JN, Brenner S: The structure of the nervous system in the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986, 314: 1-340. 10.1098/rstb.1986.0056.CrossRefPubMed White JG, Southgate E, Thomson JN, Brenner S: The structure of the nervous system in the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986, 314: 1-340. 10.1098/rstb.1986.0056.CrossRefPubMed
14.
Zurück zum Zitat Suo S, Sasagawa N, Ishiura S: Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J Neurochem. 2003, 86: 869-878. 10.1046/j.1471-4159.2003.01896.x.CrossRefPubMed Suo S, Sasagawa N, Ishiura S: Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J Neurochem. 2003, 86: 869-878. 10.1046/j.1471-4159.2003.01896.x.CrossRefPubMed
15.
Zurück zum Zitat Sanyal S, Wintle RF, Kindt KS, Nuttley WM, Arvan R, Fitzmaurice P, Bigras E, Merz DC, Hébert TW, van der Kooy D, Schafer WR, Culotti JG, Van Tol HH: Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J. 2004, 23: 473-482. 10.1038/sj.emboj.7600057.PubMedCentralCrossRefPubMed Sanyal S, Wintle RF, Kindt KS, Nuttley WM, Arvan R, Fitzmaurice P, Bigras E, Merz DC, Hébert TW, van der Kooy D, Schafer WR, Culotti JG, Van Tol HH: Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J. 2004, 23: 473-482. 10.1038/sj.emboj.7600057.PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Kindt KS, Quast KB, Giles AC, De S, Hendrey D, Nicastro I, Rankin CH, Schafer WR: Dopamine mediates context-dependent modulation of sensory plasticity in C. elegans. Neuron. 2007, 55 (4): 662-676. 10.1016/j.neuron.2007.07.023.CrossRefPubMed Kindt KS, Quast KB, Giles AC, De S, Hendrey D, Nicastro I, Rankin CH, Schafer WR: Dopamine mediates context-dependent modulation of sensory plasticity in C. elegans. Neuron. 2007, 55 (4): 662-676. 10.1016/j.neuron.2007.07.023.CrossRefPubMed
17.
Zurück zum Zitat Ezak MJ, Ferkey DM: The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol. PLoS One. 2010, 5 (3): e9487-10.1371/journal.pone.0009487.PubMedCentralCrossRefPubMed Ezak MJ, Ferkey DM: The C. elegans D2-like dopamine receptor DOP-3 decreases behavioral sensitivity to the olfactory stimulus 1-octanol. PLoS One. 2010, 5 (3): e9487-10.1371/journal.pone.0009487.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Ezcurra M, Tanizawa Y, Swaboda P, Schafer WR: Food sensitizes C. elegans avoidance behaviours through acute dopamine signaling. EMBO J. 2011, 30 (6): 1110-1122. 10.1038/emboj.2011.22.PubMedCentralCrossRefPubMed Ezcurra M, Tanizawa Y, Swaboda P, Schafer WR: Food sensitizes C. elegans avoidance behaviours through acute dopamine signaling. EMBO J. 2011, 30 (6): 1110-1122. 10.1038/emboj.2011.22.PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Bastiani C, Mendel J: Heterotrimeric G proteins in C. elegans. WormBook, ed. The C. elegans Research Community. WormBook. 2006, 10.1895/wormbook.1.75.1.http://www.wormbook.org, Bastiani C, Mendel J: Heterotrimeric G proteins in C. elegans. WormBook, ed. The C. elegans Research Community. WormBook. 2006, 10.1895/wormbook.1.75.1.http://​www.​wormbook.​org,
20.
Zurück zum Zitat Jansen G, Thijssen KL, Werner P, Van der Horst M, Hazendonk E, Plasterk RH: The complete family of genes encoding G-proteins of Caenorhabditis elegans. Nat Genet. 1999, 21: 414-419. 10.1038/7753.CrossRefPubMed Jansen G, Thijssen KL, Werner P, Van der Horst M, Hazendonk E, Plasterk RH: The complete family of genes encoding G-proteins of Caenorhabditis elegans. Nat Genet. 1999, 21: 414-419. 10.1038/7753.CrossRefPubMed
21.
Zurück zum Zitat Pandey P, Harbinder S: The Caenorhabditis elegans D2-like dopamine receptor DOP-2 physically interacts with GPA-14, a Gαi subunit. J Mol Signal. 2012, 7 (1): 3-10.1186/1750-2187-7-3.PubMedCentralCrossRefPubMed Pandey P, Harbinder S: The Caenorhabditis elegans D2-like dopamine receptor DOP-2 physically interacts with GPA-14, a Gαi subunit. J Mol Signal. 2012, 7 (1): 3-10.1186/1750-2187-7-3.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Rose JK, Rankin CH: Analysis of Habituation in Caenorhabditis elegans. Learn Mem. 2001, 8: 63-69. 10.1101/lm.37801.CrossRefPubMed Rose JK, Rankin CH: Analysis of Habituation in Caenorhabditis elegans. Learn Mem. 2001, 8: 63-69. 10.1101/lm.37801.CrossRefPubMed
23.
Zurück zum Zitat Giles AC, Rankin CH: Behavioral and genetic characterization of habituation using Caenorhabditis elegans. Neurobiol Learn Mem. 2009, 92 (2): 139-146. 10.1016/j.nlm.2008.08.004.CrossRefPubMed Giles AC, Rankin CH: Behavioral and genetic characterization of habituation using Caenorhabditis elegans. Neurobiol Learn Mem. 2009, 92 (2): 139-146. 10.1016/j.nlm.2008.08.004.CrossRefPubMed
24.
Zurück zum Zitat Bargmann CI, Horvitz HR: Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in Caenorhabditis elegans. Neuron. 1991, 7 (5): 729-742. 10.1016/0896-6273(91)90276-6.CrossRefPubMed Bargmann CI, Horvitz HR: Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in Caenorhabditis elegans. Neuron. 1991, 7 (5): 729-742. 10.1016/0896-6273(91)90276-6.CrossRefPubMed
25.
Zurück zum Zitat Klein TA, Neumann J, Reuter M, Hennig J, von Cramon DY, Ullsperger M: Genetically determined differences in learning from errors. Science. 2007, 2007 (318): 1642-1645.CrossRef Klein TA, Neumann J, Reuter M, Hennig J, von Cramon DY, Ullsperger M: Genetically determined differences in learning from errors. Science. 2007, 2007 (318): 1642-1645.CrossRef
26.
Zurück zum Zitat Jocham G, Klein TA, Neumann J, Cramon DY, Reuter M, Ullsperger M: Dopamine DRD2 polymorphism alters reversal learning and associated neural activity. J Neurosci. 2009, 29 (12): 3695-3704. 10.1523/JNEUROSCI.5195-08.2009.PubMedCentralCrossRefPubMed Jocham G, Klein TA, Neumann J, Cramon DY, Reuter M, Ullsperger M: Dopamine DRD2 polymorphism alters reversal learning and associated neural activity. J Neurosci. 2009, 29 (12): 3695-3704. 10.1523/JNEUROSCI.5195-08.2009.PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Jomphe C, Tiberi M, Trudeau LE: Expression of D2 receptor isoforms in cultured neurons reveals equipotent autoreceptor function. Neuropharmacol. 2006, 50 (5): 595-605. 10.1016/j.neuropharm.2005.11.010.CrossRef Jomphe C, Tiberi M, Trudeau LE: Expression of D2 receptor isoforms in cultured neurons reveals equipotent autoreceptor function. Neuropharmacol. 2006, 50 (5): 595-605. 10.1016/j.neuropharm.2005.11.010.CrossRef
Metadaten
Titel
GPA-14, a Gαi subunit mediates dopaminergic behavioral plasticity in C. elegans
verfasst von
Mahlet Mersha
Rosaria Formisano
Rochelle McDonald
Pratima Pandey
Nektarios Tavernarakis
Singh Harbinder
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
Behavioral and Brain Functions / Ausgabe 1/2013
Elektronische ISSN: 1744-9081
DOI
https://doi.org/10.1186/1744-9081-9-16

Weitere Artikel der Ausgabe 1/2013

Behavioral and Brain Functions 1/2013 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.