Skip to main content
Erschienen in: BMC Cancer 1/2009

Open Access 01.12.2009 | Research article

High resolution human leukocyte antigen (HLA) class I and class II allele typing in Mexican mestizo women with sporadic breast cancer: case-control study

verfasst von: David Cantú de León, Delia Pérez-Montiel, Verónica Villavicencio, Alejandro García Carranca, Alejandro Mohar Betancourt, Victor Acuña-Alonzo, Alberto López-Tello, Gilberto Vargas-Alarcón, Rodrigo Barquera, Neng Yu, Edmond J Yunis, Julio Granados

Erschienen in: BMC Cancer | Ausgabe 1/2009

Abstract

Background

The development of breast cancer is multifactorial. Hormonal, environmental factors and genetic predisposition, among others, could interact in the presentation of breast carcinoma. Human leukocyte antigen (HLA) alleles play an important role in immunity (cellular immunity) and may be important genetic traits. HLAAllele-specific interaction has not been well established. Recently, several studies had been conducted in order to do so, but the results are controversial and in some instances contradictory.

Methods

We designed a case-control study to quantify the association of HLA class I and II genes and breast cancer. HLA typing was performed by high resolution sequence-specific oligotyping after DNA amplification (PCR-SSOP) of 100 breast cancer Mexican mestizo patients and 99 matched healthy controls.

Results

HLA-A frequencies that we were able to observe that there was no difference between both groups from the statistical viewpoint. HLA-B*1501 was found three times more common in the case group (OR, 3.714; p = 0.031). HLA-Cw is not a marker neither for risk, nor protection for the disease, because we did not find significant statistical differences between the two groups. DRB1*1301, which is expressed in seven cases and in only one control, observing an risk increase of up to seven times and DRB1*1602, which behaves similarly in being present solely in the cases (OR, 16.701; 95% CI, 0.947 – 294.670). DQ*0301-allele expression, which is much more common in the control group and could be protective for the presentation of the disease (OR, 0.078; 95% CI, 0.027–0.223, p = 0.00001).

Conclusion

Our results reveal the role of the MHC genes in the pathophysiology of breast cancer, suggesting that in the development of breast cancer exists a disorder of immune regulation. The triggering factor seems to be restricted to certain ethnic groups and certain geographical regions since the relevant MHC alleles are highly diverse. This is the first study in Mexican population where high resolutions HLA typing has been performed in order to try to establish an association with malignancy.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

DCL: Study design, patient recruitment, article writing. DPM: Data collection, article writing. VV: Patient recruitment, data collection. AGC: Molecular analysis. AMB: Statistic evaluation and data analysis. VAA: Sample analysis. ALT: Molecular analysis. GVA: Sample analysis. RB: Sample analysis. NY: Genetic analysis. EJY: Study design, data analysis. JG: Study design, manuscript evaluation, data analysis. All authors read and approved the final manuscript.
Abkürzungen
HLA
human leukocyte antigen
MHC
Major histocompatibility
ACS
American cancer society
PCR
Polymerase chain reaction

Background

Breast cancer is a common neoplasm around the world with almost 1 million cases diagnosed every year, it is also considered the most frequent malignant neoplasm in developed countries, globally accounts for 18% of all female cancers [1]. In Mexico, this neoplasm occupies second place, preceded only by cancer of the cervix, which occupies 10.6% of all tumors and 16.4% of all tumors in women. It is considered that the combination of cervico-uterine cancer and breast cancer corresponds to 49% of all neoplasms in Mexican women [2].
Multiple factors are associated with an increase in breast cancer development, including age, family history, exposure to hormones (endo – as well as exogenous), diet, benign mammary disease, and environmental and genetic factors. The majority of these factors moderately increase the risk of developing cancer. It is estimated that at least 50 and up to 80% of women who develop breast cancer do not possess predisposing factors in addition to gender and age [3].
According to Rodríguez-Cuevas et al. [4], in Mexico from 1993 – 1995, 29,075 new cases of breast cancer were reported, of which 45.5% presented at the age of < 50 years; it is noteworthy that the most affected age group was that of 40 – 49 years, corresponding to 29.5% of all tumors. When a comparison was carried out with studies reported by other authors, it was found that in Mexico, this disease presented at least one decade prior to presentation in European countries or in the U.S. On conducting a comparative evaluation with other Latin American countries such as Venezuela [5], we found that the percentage of women < 50 years of age with a diagnosis of breast cancer is similar to that of Mexico. Thus, we concluded that Latin American women have the tendency to develop this type of neoplasm at an earlier age [4, 5].
This observation is similar to that for Japanese women, in whom 46.5% of women with this disease were aged < 50 years [6]. It appears that environmental or dietary factors are not responsible for this behavior, because reports in the literature evaluating Hispanic patients residing in Los Angeles, California, or in the U.S. state of New Mexico show a percentage of presentation (38 – 39%) similar to that of ages of women living in Mexico or other Latin American countries [7]. According to this information, it is possible that there is (are) some factor(s) that make(s) women present this disease when no other risk factor is found.
One of the predisposing factors can be genes located within the major histocompatibility complex (MHC) region; the association between human leukocyte antigen (HLA) gene products with a disease does not necessarily reflect the direct involvement of these molecules in the disease process [8], and because many genes can be in linkage disequilibrium with other MHC genes, this possible association could be due solely to a closely associated gene.
The HLA system involvement in the development of cancer is poorly understood; nonetheless, it is widely recognized that MHC genetic variations lead to greater susceptibility to neoplasm development [9]. Neoplastic cells express a number of genes not expressed by their normal counterpart, and also some peptides of some proteic products of these HLA molecule-associated genes [10].
The role of oncogene – and tumor suppressor gene-acquired changes is widely recognized; similarly, there is growing evidence suggesting that the immune system plays a protector role in tumorigenesis [11, 12]. In patients with cancer, HLA peptide complex-stimulated T-cell responses are not sufficiently effective for eliminating tumor cells. Loss of HLA expression or deregulation has been reported in a great variety of tumors, including breast cancer [13]; changes in the expression of these antigens have been associated with poor prognosis. Notwithstanding this, in tumoral tissue class I antigen expression is rarely lost in its entirety [14]. Such changes connote the possibility that this represents mechanisms by which neoplastic cells escape cell-mediated immunological surveillance – due to their being poor targets for cytotoxic T-cells – allowing for tumor dissemination and metastasis [15].
If immunological surveillance is important during tumorigenesis, certain individuals who inherit specific HLA class I alleles, which are highly polymorphic, such as DRB or DQB, can be more susceptible to developing tumors, or contrariwise, more resistant to the growth of these [13, 14].
In breast cancer, the study of HLA is reduced; the greatest number of studies is conducted on HLA class I expression. These studies have shown that up to 80% of tumors exhibit partial or total loss of HLA class I antigens [16, 17], while other tumors such as cervix, larynx, melanoma, colon, and pancreas demonstrate a loss of up to 40 – 50% [1820]. Evaluation has arrived at the field of prognosis; for example, in the study of Gudmundsdottir et al. [21], the authors showed that a cohort of 187 patients with clinical stages I and II, mixed HLA class I expression exhibited an increase in the probability of late recurrence and a greater probability of death (odds ratio [OR] = 3.42; p = 0.014) due to the disease in patients with negative auxiliary lymph nodes in comparison with patients demonstrating total negativity or positivity, especially after 5 years.
The first evaluation of HLA class II and their alleles was carried out by Chaudhuri et al. [13] in a group of 173 patient with breast cancer and 215 Caucasian-origin controls, showing the presence of the DRB3*0201/*0202 allele in 55% of cases and in 40.9% of controls (p = 0.0072) as risk factor. At the same time, the authors concluded that DQB*03032 and DRB1*11 alleles represent resistance factors toward the disease. HLA polymorphisms appear to be responsible for the immune response variations in different individuals to different antigens and can contribute to susceptibility to the disease, specifically to non virus-related tumors, because breast cancer frequency in Mexico is high, thus considered a health problem, and the disease is present in any age group, with the characteristic of presenting at an earlier age than in other countries, and with the evidence that between 50 and 80% [1, 3] of patients do not present the classical risk factors of the disease; therefore, it is necessary to investigate whether there is loss of control of the immune system regarding the tumor cell in this group of sick persons that allows neoplastic growth. At present, there are no reports of HLA system alleles in Mexican mestizo female population with breast cancer.

Methods

Subjects

We developed a case-control study at the National Institute of Cancerology (Instiuto Nacional de Cancerología de México, INCan) in Mexico City. A case was defined as a Mexican mestizo female patient with at least two previous generations born in Mexico, in whom breast cancer confirmed by histopathology has been diagnosed, who has been treated at the INCan Breast Tumor Service. A control was defined as a Mexican mestizo female patient who has at least two previous generations born in Mexico, from open population, without a family history of any type of cancer, with emphasis placed on breast, colon, ovary, and prostate cancer, without a history of autoimmune diseases, who has been submitted to breast and/or radiological exploration that discard pathology at this level according to patient age. We applied a clinical history oriented toward determination of personal and familial antecedents-of-interest; in the case of obtaining no response being or the response being positive, the patient was excluded from the study.
Determination of the absence of mammary pathology was performed according to patient age, with the following American Cancer Society (ACS) guidelines for detection of early breast cancer [22]: a) In women < 40 years of age, a clinical examination was conducted exclusively; in the case of requiring further evaluation, the patient was discarded as a control and excluded from the study, and b) in women aged > 40 years, we carried out a clinical examination as well as a mammographic study and breast ultrasound (US) to determine mammary pathology. In the case of obtaining an abnormal result or requiring further examination, the patient was discarded as a control.
The study was evaluated and approved by the Scientific and Ethical Committee of the Instituto Nacional de Cancerología de México, and all patients who were evaluated provided informed consent for radiographic studies, the taking of blood samples, and evaluation of genetic material. This study was performed in collaboration and with the technical and methodological support of the American Red Cross in Nedham Massachusetts, USA.

HLA typing

Genomic DNA was obtained from peripheral blood leukocytes and extracted by standard techniques [23, 24].

Amplification of genomic DNA

HLA-DQA1 and – DQB1 typing were amplified by PCR and hybridized to sequence specific oligonucleotide probes. Primers used for HLA-DQ amplification included DQAAMP-A,-B, DQBAMP-A, and -B. These were synthesized in a DNA-SM automated synthesizer (Beckman, Palo Alto, CA, USA). These typing techniques were approved by the 12th International Histocompatibility Workshop.

Dot blot hybridization

Five percent of the amplified DNA was denatured in 0.4 mol/L NaOH for 10 min, neutralized in 1 mol/L of ammonium acetate, and transferred to a Hybond-N membrane (Amersham, Bucks, UK). The filters were prehybridized at 42°C for 30 min in a solution containing 6× SSPE (30× SSPE: 4.5 mol/L NaCl, 0.3 mol/L NaH2PO4, 30 mmol/L EDTA, pH = 7.4), 5× Denhard solution (2% bovine serum albumin, 2% polyvinylpyrrolidone 40, 2% Ficoll 400), 0.1% Lauryl-sarcosine, and 0.02% SDS. Then, the oligonucleotide probes labeled with Digoxygenin dideoxy- Uridine-Triphosphate (Dig-11-ddUTP) were added and hybridized at 42°C for 3 h. The filters were washed twice in 2× SSPE, 0.1% SDS at room temperature for 10 min, once in TMAC solution [50 mmol/L Tris-HCl (pH = 8.0), 3 mol/L tetramethylammonium chloride, 2 mmol/L EDTA, 0.1% SDS] at room temperature for 10 min, and twice at 60°C for 10 min. Dots were revealed using the Dig Nucleic Acid Detection Kit (Boehringer Mannheim Biochemical, Mannheim, Germany).

Statistical analysis

HLA-A, HLA-B, HLA-C, allele and haplotype frequencies were estimated using the Arlequin program version 2.000 [25]. Significance of two-locus linkage disequilibrium (LD) was determined using Popgene program version 1.31 [26]. Odds ratio (OR) was calculated as per Haldane modified Woolf's formula [27]. OR = [(a + 0.5) (d + 0.5)/(b + 0.5) (c + 0.5)] where, a and b are the number of patients and controls positive for a given allele respectively, while c and d represent the number of patients and controls negative for the allele, respectively. The corrected P value was calculated using Bonferroni's inequality method [28] as, P corrected = 1- (1-p)n, where n = number of comparisons.
Association between HLA haplotype and breast cancer was examined using statistical analysis from a 2 × 2 table according to the method described by Svejgaard and Ryder [29].

Results

During the study period, we included 100 patients who fulfilled inclusion and exclusion criteria with a confirmed diagnosis of breast cancer. Similarly, we obtained 99 samples of healthy control subjects.
Age of patients with breast cancer ranged from 27 – 82 years (average age, 50.4 ± 12.8 years); distribution was normal. Seventy two cases did not present a familiar history of breast cancer, and in 28 cases, there was at least one first-degree family member with this neoplasm type; average age at menarche was 12.8 years. Seventy one percent of women used no family planning method, while use of oral hormones or another hormonal-therapy type was present only in 29 patients; the remainder of patients utilized some other family planning method. History of smoking as a risk factor was present in only 16% of patients.
Locally advanced and advanced clinical stages were the most frequent (64%) stages in comparison with early stages. It is noteworthy that in 15% of cases, it was not possible to determine the clinical stage because the patients had been care for previously at another hospital. It was possible to determine tumor size in 89 cases, with an average of 5.2 cm (standard deviation [SD] ± 3.49; range, 1 – 17 cm); in addition, it was possible to determine the distribution of clinical lymph node status in 94 patients, the most frequent lymph node status being N1 with 46 cases, and the second most frequent, N0 with 23 patients, according to the Tumor-Node-Metastasis (TNM) lymph node staging description.
As expected due to neoplasm frequency, distribution by histological type obtained 94 cases of infiltrating ductal carcinoma and only six cases of infiltrating lobular carcinoma. Concerning differentiation degree, we found poorly differentiated carcinoma in 56% of cases, while moderately and well differentiated presented in 38 and 6% of cases, respectively. Distribution of differentiation degree with respect to the Scarff-Bloom-Richardson Index exhibited the presence of high-grade tumors in 67% of patients; the hormonal receptors of these tumors were distributed as follows: Positive estrogenic receptors in 54 cases; negative estrogenic receptors in 45 cases; positive pregestational receptors in 29 cases, and negative pregestational receptors in 70 cases. In one case, it was not possible to conduct hormonal receptor determination. Patient clinical characteristics were shown, as well as those of the neoplasms in Table 1.
Table 1
Patient Clinical Characteristics and Neoplasm Characteristics
  
n
Age
50.4 +/- 12.8 (Mean +/- SD)
 
Menarche
12.8 (Median)
 
Family history
Positive
28
 
Negative
72
Family planning
Positive for hormonal
29
 
Negative
71
Tobbaco
Positive
16
Clinical stage
I
8
 
IIa
13
 
IIb
23
 
IIIa
19
 
IIIb
13
 
IV
9
 
No classified
15
Tumor size
5.2 +/- 3.49 (Mean +/- SD)
 
Nodal status
N0
26
 
N1
46
 
N2
21
 
N3
1
 
Missing
6
Histology
Ductal
94
 
Lobular
6
Grade
Well differentiated
6
 
Moderately
38
 
Poorly
56
Hormone receptor status
Estrogen positive
54
 
Estrogen negative
45
 
Progesterone positive
29
 
Progesterone negative
70
At the moment of performing the present study, 61 patients were found without evidence of disease, while 39 cases presented disease recurrence (data not shown, in that this was not the objective of the present work).
Table 2 shows the different HLA classes I and II alleles studied in the group of cases, as well as their genetic frequencies. Table 3 depicts the different HLA classes I and II alleles studied in the control group of patients, as well as the genetic frequencies of these.
Table 2
Frequencies (g.f) of HLA-A,-B, Cw, DRB1 and – DQB1 in Cases.
-A
n
g.f
-B
n
g.f
-Cw
n
g.f
-DRB1
n
g.f
-DQB1
n
ggg.f g.f
0201
39
0.224
1501
13
0.074
0401
34
0.195
0802
27
0.155
0300
54
0.310
2402
25
0.143
3501
13
0.074
0702
29
0.167
0407
22
0.126
0302
30
0.172
0206
20
0.114
4002
11
0.063
0102
16
0.092
1406
14
0.080
0402
29
0.167
3101
16
0.091
5101
9
0.051
0701
13
0.075
0404
12
0.069
0200
18
0.103
6801
8
0.045
5201
9
0.051
0602
11
0.063
0301
12
0.069
0501
10
0.057
1101
8
0.045
3905
9
0.051
0303
9
0.052
0701
11
0.063
0602
6
0.034
6803
7
0.040
3512
8
0.046
0304
8
0.046
1301
7
0.040
0603
5
0.029
0101
7
0.040
0801
8
0.046
1203
7
0.040
1602
7
0.040
0601
5
0.029
0301
5
0.028
3517
7
0.040
1502
7
0.040
1501
6
0.034
0600
4
0.023
2601
5
0.028
3906
6
0.034
0801
6
0.034
0102
6
0.034
0303
4
0.023
3201
5
0.028
4801
6
0.034
0305
6
0.034
1402
5
0.029
0202
2
0.011
2902
5
0.028
0702
5
0.029
1509
5
0.029
0403
4
0.023
0503
2
0.011
3001
4
0.023
3801
5
0.029
1202
4
0.023
0410
4
0.023
0502
1
0.006
6802
3
0.017
4403
4
0.023
0802
4
0.023
1502
4
0.023
0201
1
0.006
2425
2
0.011
5001
4
0.023
1601
4
0.023
0402
3
0.017
0604
1
0.006
2501
2
0.011
1402
4
0.023
0202
3
0.017
1302
3
0.017
   
3301
2
0.011
3514
4
0.023
1604
2
0.011
1101
3
0.017
   
3010
1
0.005
4402
3
0.017
0803
2
0.011
0411
3
0.017
   
0302
1
0.005
1530
3
0.017
0509
1
0.005
0401
2
0.011
   
2301
1
0.005
1302
3
0.017
1801
1
0.005
0101
2
0.011
   
6805
1
0.005
3508
3
0.017
1701
1
0.005
1104
2
0.011
   
2201
1
0.005
4006
2
0.011
0501
1
0.005
1305
2
0.011
   
7401
1
0.005
3908
2
0.011
   
0405
2
0.011
   
3131
1
0.005
1515
2
0.011
   
1503
1
0.005
   
6901
1
0.005
4101
2
0.011
   
1601
1
0.005
   
3002
1
0.005
1801
2
0.011
   
1448
1
0.005
   
0205
1
0.005
4501
2
0.011
   
1404
1
0.005
   
2403
1
0.005
3503
2
0.011
   
1202
1
0.005
   
   
2705
2
0.011
   
0302
1
0.005
   
   
3905
2
0.011
   
0103
1
0.005
   
   
4008
1
0.005
   
1001
1
0.005
   
   
other
18
0.114
   
1401
1
0.005
   
N = 174.
Table 3
Frequencies (g.f) of HLA-A,-B,-Cw,-DRB1 and – DQB1 in controls.
-A
n
g.f
-B
n
g.f
-Cw
n
g.f
-DRB1
n
g.f
-DBQ1
n
g.f
0201
41
0.220
3905
19
0.102
0702
40
0.215
0407
33
0.177
0302
51
0.274
2402
31
0.166
3512
14
0.075
0401
36
0.194
0802
25
0.134
0301
43
0.231
6801
19
0.102
4002
13
0.069
0304
16
0.086
0404
15
0.081
0402
28
0.151
3101
13
0.069
5101
11
0.059
0102
15
0.081
1406
15
0.081
Dqbx
21
0.113
AX
11
0.059
3501
11
0.059
Cwx
13
0.070
Drx
13
0.070
0501
12
0.065
0206
10
0.053
3906
10
0.053
0701
9
0.048
0701
12
0.065
0202
10
0.054
6803
8
0.03
BX
10
0.053
0602
8
0.043
1602
11
0.059
0201
6
0.032
3002
6
0.032
3514
6
0.032
0801
7
0.038
1501
7
0.038
0602
5
0.027
0301
6
0.032
4005
6
0.032
0802
7
0.038
1104
7
0.038
0603
3
0.016
3301
5
0.026
0702
6
0.032
0303
5
0.027
0301
6
0.032
0502
2
0.011
1101
4
0.021
4801
5
0.026
0501
4
0.022
0102
6
0.032
0303
2
0.011
0101
4
0.021
1402
5
0.026
1502
4
0.022
1402
5
0.027
0604
1
0.005
6802
4
0.021
5201
4
0.021
0305
3
0.016
0403
4
0.022
0601
1
0.005
2301
3
0.016
3543
4
0.021
1203
3
0.016
0101
3
0.016
0304
1
0.005
2601
3
0.016
0801
4
0.021
0202
3
0.016
0401
3
0.016
   
2902
3
0.016
1501
4
0.021
0306
3
0.016
1001
3
0.016
   
3201
3
0.016
3517
3
0.016
1601
2
0.010
0804
2
0.010
   
6805
2
0.010
1515
3
0.016
1402
2
0.010
0411
2
0.010
   
3001
2
0.010
1801
3
0.016
1509
2
0.010
0801
2
0.010
   
0204
1
0.005
3902
3
0.016
0704
2
0.010
1407
1
0.005
   
0224
1
0.005
3508
2
0.010
0401
1
0.005
1201
1
0.005
   
0205
1
0.005
4901
2
0.010
   
1302
1
0.005
   
6601
1
0.005
1401
2
0.010
   
1304
1
0.005
   
0102
1
0.005
1516
2
0.010
   
1502
1
0.005
   
2425
1
0.005
5301
2
0.010
   
0405
1
0.005
   
2301/05
1
0.005
3701
2
0.010
   
1102
1
0.005
   
   
4402
2
0.010
   
0809
1
0.005
   
2402/25
1
0.005
4501
2
0.010
   
1305
1
0.005
   
   
1302
2
0.010
   
1301
1
0.005
   
   
1517
2
0.010
         
   
3502
2
0.010
         
   
Other
20
0.107
         
N = 186.
In Table 4, we found alleles with the highest genetic HLA-A frequencies that were detected; we were able to observe that there was no difference between both groups from the statistical viewpoint, although we noted a tendency for risk in one of these (*0206), as well as one for protection in the other (*6801), after correction for multiple comparisons for the number of alleles of HLA-A locus (n = 11), the risk was not significant (Pc = 0.45). It is worthwhile mentioning that the following four alleles were the most frequent in both groups: HLA-A*0201; -*2402; -*0206, and -*3101. In addition, also depicted in this Table are high-resolution HLA-B typifications with greatest genetic frequency compared – if only one exhibited a statistically significant difference for the risk factor, on finding this with a three times greater frequency in the case group in comparison with the control group HLA-B*1501 (OR, 3.714; p = 0.031). After correction for multiple comparisons for the number of alleles of HLA-B locus (n = 17), the risk was not significant (Pc = 0.30).
Table 4
Risk assessment among different loci of HLA class I
 
CASES
N = 174
CONTROLS
N = 186
   
Locus
n
g.f
n
g.f
P
OR
C195%
HLA-A
       
0201
39
0.224
41
0.220
0.96
1.022
0.621–1.68
2402
25
0.143
31
0.166
0.648
0.839
0.473–1.48
0206
20
0.114
10
0.053
0.056
2.286
1.038–5.033*
3101
16
0.091
13
0.069
0.565
1.348
0.628–2.890
6801
8
0.045
19
0.102
0.068
0.424
0.180–0.995
HAL-B
       
1501
13
0.075
4
0.021
0.031
3.714
1.187–11.619+
3501
13
0.075
11
0.059
0.704
1.285
0.560–2.949
4002
11
0.063
13
0.069
0.966
0.898
0.391–2.062
5101
9
0.052
11
0.059
0.939
0.868
0.351–2.148
5201
9
0.052
4
0.021
0.21
2.482
0.750–8.211
HLA-Cw
       
0401
34
0.195
36
0.194
0.929
1.012
0.6–1.706
0702
29
0.167
40
0.215
0.302
0.73
0.430–1.241
0102
16
0.092
15
0.081
0.846
1.154
0.553–2.412
0701
13
0.075
9
0.048
0.411
1.588
0.661–3.814
0602
11
0.063
8
0.043
0.535
1.502
0.589–3.825
* Pc = 0.45. +Pc = 0.30.
HLA-Cw is a scarcely studied gene in this neoplasm type; we are able to say that at least in this group of women obtained from an ethnically similar population, HLA-Cw is not a marker for, nor a risk for, nor protection for the disease, because we did not find differences between the two groups.
In Table 5, we can observe HLA-DR distribution, in which we are able to identify two alleles that on being expressed comprise an associated risk factor for presenting the disease, such as DRB1*1301, which is expressed in seven cases and in only one control, observing an risk increase of up to seven times; notwithstanding this, it is important to mention that the confidence interval (CI) is very broad, which can be a reflection of its low genetic frequency (genetic frequency [g.f.] = 0.040) and DRB1*1602, which behaves similarly in being present solely in the cases (in seven of these) (OR, 16.701; 95% CI, 0.947 – 294.670), after correction for multiple comparisons for the number of alleles of HLA-DRB1 locus (n = 11), the risk was not significant (Pc = 0.24). Regarding HLA- DQ, we found two alleles of this gene associated with the disease, such as DQ*0302 with a g.f. of 0.454 in the group of cases, and a g.f. of 0.274 in the control group (OR, 2.201;95% CI,1.419–3.415), after correction for multiple comparisons for the number of alleles of HLA-DQ locus (n = 8), the risk was statistically significant (Pc = 0.0007). However, the allele commanding the majority of attention is DQ*0301-allele expression, which is much more common in the control group (g.f., of 0.231) being a protector presentation of the disease. This relationship is sustained after corrections for multiple comparisons (Pc = 0.00008) for HLA-DQB1 (n = 8).
Table 5
Risk assessment among different loci of HLA class II
 
CASES
N = 174
CONTROLS
N = 186
   
Locus
n
g.f
n
g.f
P
OR
C195%
HLA-DRB1
       
0802
27
0.155
25
0.134
0.682
1.183
0.657–2.130
0407
22
0.126
33
0.177
0.231
0.671
0.374–1.204
1406
14
0.080
15
0.081
0.851
0.998
0.467–2.132
1301
7
0.040
1
0.005
0.06
7.754
0.944–63.689
1602
7
0.040
0
0
0.025
16.701
0.947–294.670*
HLA-DQB1
       
0302
79
0.454
51
0.274
0.0001
2.201
1.419–3.415**
0402
29
0.167
28
0.151
0.784
1.129
0.641–1988
0202
18
0.103
10
0.054
0.118
2.031
0.910–4.531
0301
4
0.022
43
0.231
0.00001
0.078
0.027–0.223***
0201
2
0.011
0
0
0.524
5.406
0.258–113.402
0303
1
0.005
2
0.011
0.954
0.532
0.048–5.918
* Pc = 0.24. **Pc = 0.0007 ***Pc = 00008
Haplotypes were deduced both the results are highly heterogenic (data not show) therefore not conclusions could be drawn or associations performed.

Discussion

The origin of malignant neoplasms is multifactorial [1]; nevertheless, there are certain factors that can increase not only the risk for appearance of the disease, but even more so that the tumor would continue to grow and would produce distal disease or metastasis. Thus, if immunological surveillance is an important mechanism in the tumor genesis process, certain individuals who inherit specific HLA class II alleles can be resistant or more susceptible to tumor presentation [13]. The results of different works show few reproducible results because there are important differences in the expression of the different HLAs, depending on the geographical area to which reference is made [34]. This is due to that the frequency of presentation of the different HLA alleles is determined by the dominant pathogens of each geographic region in particular, and because these genes are highly polymorphic.
Breast cancer has exhibited an increase in incidence in recent years, it is the tumor second only to lung cancer as cause of death by cancer in females, and is the number one cause of death by cancer in women 15 – 54 years of age worldwide [31]. In Mexico, breast cancer is a very frequent tumor; thus, study of this disease and the factors that predispose its presentation is of prime importance for identification of at-risk groups, which translates into a more precise evaluation for each woman [5].
To date, few studies have been conducted to attempt to determine the association and impact that these represent in the risk of presenting breast cancer and the different HLA, especially HLA class II, and some studies lack sufficient power due to a reduced number of studied cases [33].
In 2005 Lavado et al. [34], compared 132 women with breast cancer and 382 healthy controls in the Spanish region of Málaga. They performed HLA-A,-B, -Cw, -DR, and -DQ typification. The most important differences were found in the HLA-B locus, where the HLA-B7 allele was present with greater frequency in the group of sick patients than in the control group (p = 0.0019; 95% CI, 1.337 – 3.409; Relative risk [RR], 2.135), explaining that in this geographical zone an environmental agent can be found (whether viral or bacterial) that can be associated with breast cancer. Our study reveals a significantly increased frequency of HLA-B*1501 in cancer patients in comparison to healthy controls (OR = 3.714; CI95%, 1.187–11.619, p = 0.031) but not in other HLA-B alleles.
Gopalkrishnan et al. [36], in a group of women from India, evaluated low- or intermediate-resolution gene expression of HLA-A,-B, and -C, finding the following two alleles as candidates for markers associated in risk modulation for breast cancer in Eastern Indian women: Alleles HLA-B*40 and -B*08, the first as a factor for early development of the disease, presenting in 16% of cases vs. 9.0% of controls (OR, 2.2; 95% CI, 1.15 – 4.34; p = 0.02), and the second, found to be a protector. These protective or high risk alleles even though were frequent in our population (HLA-B*40 g.f.= 0.080 and -B*08 g.f. = 0.046) associations were not statistically significant neither for risk not for protection to the development of the neoplasm.
We found HLA-DQB1*0302 to be protective as well as HLA-DQB1*0301 but not associated with age, which is contrary to what was reported by Chaudhuri et al. [13] in 2000, where he reports two important negative associations for the development of breast cancer at an early age, both of HLA class II: DRB*11, which was found expressed in 35 controls and only in six cases (p < 0.0001). These results reflect, at least in the patient group, that inheritance of the alleles of these genes (DQB*03032 and DRB1*11) represent alleles resistant to the presentation of early-age breast cancer.
Positive association of specific HLA class II alleles in any malignant-tumor type reflects the specific role of these molecules in the promotion of chronic inflammation. HLA expression suggests that immune-system evasion of certain cellular populations could be responsible for promoting survival of the neoplasm, thus rendering it necessary to continue evaluating these markers in different populations and to include greater numbers of patients to confirm the different associations and risks between alleles and haplotypes and to determine whether there are others that could be catalogued as risk factors for development of the neoplasm, and at a determined moment whether the fact that some allele, alleles, or haplotypes are found expressed consistently in some group of individuals affords the power to utilize HLA class II typifications as prognostic factors, at the present moment few authors had performed characterization of HLA in latin population, we could say this is the first attempt to characterize a Mexican mestizo population in order to try to find associations between HLA and breast cancer.

Conclusion

The results obtained by our group demonstrate the role of genetics in the multifactorial pathophysiology of breast malignant neoplasms. It also reveals the role of the MHC genes in the pathophysiology, suggesting that in the development of breast cancer exists a disorder of immune regulation.
Nevertheless, this triggering factor (MHC genes) seems to be restricted to certain ethnic groups as well as certain geographical regions since these relevant MHC alleles are highly diverse and confirms the relevance of HLA-DR alleles in the genetic susceptibility to develop this specific type of malignant disease.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

DCL: Study design, patient recruitment, article writing. DPM: Data collection, article writing. VV: Patient recruitment, data collection. AGC: Molecular analysis. AMB: Statistic evaluation and data analysis. VAA: Sample analysis. ALT: Molecular analysis. GVA: Sample analysis. RB: Sample analysis. NY: Genetic analysis. EJY: Study design, data analysis. JG: Study design, manuscript evaluation, data analysis. All authors read and approved the final manuscript.
Literatur
2.
Zurück zum Zitat Wall KM, Núñez-Rocha GM, Salinas-Martínez AM, Sánchez-Peña SR: Determinants of the use of breast cancer screening among women workers in urban Mexico. Prev Chronic Dis. 2008, 5: A50-PubMedPubMedCentral Wall KM, Núñez-Rocha GM, Salinas-Martínez AM, Sánchez-Peña SR: Determinants of the use of breast cancer screening among women workers in urban Mexico. Prev Chronic Dis. 2008, 5: A50-PubMedPubMedCentral
3.
Zurück zum Zitat Madigan MP, Ziegler RG, Benichou J, Byrne C, Hoover RN: Proportion of breast cancer cases in the United States explained by well-established risk factors. J Natl Cancer Inst. 1995, 87: 1681-5.CrossRefPubMed Madigan MP, Ziegler RG, Benichou J, Byrne C, Hoover RN: Proportion of breast cancer cases in the United States explained by well-established risk factors. J Natl Cancer Inst. 1995, 87: 1681-5.CrossRefPubMed
4.
Zurück zum Zitat Rodriguez-Cuevas S, Macías CG, Franceschi D, Labastida S: Breast carcinoma presents a decade earlier in mexican women than in women in the United States or european countries. Cancer. 2001, 91: 863-8.CrossRefPubMed Rodriguez-Cuevas S, Macías CG, Franceschi D, Labastida S: Breast carcinoma presents a decade earlier in mexican women than in women in the United States or european countries. Cancer. 2001, 91: 863-8.CrossRefPubMed
5.
Zurück zum Zitat Capote NL: Epidemiología del cáncer de la glándula mamaria. Avances en mastología. Edited by: Hernández MGA. 1996, Caracas, Venezuela, 170-81. 2 Capote NL: Epidemiología del cáncer de la glándula mamaria. Avances en mastología. Edited by: Hernández MGA. 1996, Caracas, Venezuela, 170-81. 2
6.
Zurück zum Zitat Parkin DM, Muir CS, Whealan Y, Gao T, Ferlay J, Powell J: Cancer incidence in five continents. 1992, International Agency for Research on Cancer Scientific Publication Lyon, France Parkin DM, Muir CS, Whealan Y, Gao T, Ferlay J, Powell J: Cancer incidence in five continents. 1992, International Agency for Research on Cancer Scientific Publication Lyon, France
9.
Zurück zum Zitat Boon T, Cerottini JC, Eynde Van den B, Bruggen van der P, Van Pel A: Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994, 12: 337-65.CrossRefPubMed Boon T, Cerottini JC, Eynde Van den B, Bruggen van der P, Van Pel A: Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994, 12: 337-65.CrossRefPubMed
10.
Zurück zum Zitat Seung S, Urban JL, Schreiber H: A tumor escape variant that has lost one major histocompatibility complex class I restriction element induces specific CD8+ T cells to an antigen that no longer serves as a target. J Exp Med. 1993, 178: 933-40.CrossRefPubMed Seung S, Urban JL, Schreiber H: A tumor escape variant that has lost one major histocompatibility complex class I restriction element induces specific CD8+ T cells to an antigen that no longer serves as a target. J Exp Med. 1993, 178: 933-40.CrossRefPubMed
11.
Zurück zum Zitat Boon T, Cerottni JC, Eynde Van den B, Brugen Van den P, Van Pel A: Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994, 12: 337-365.CrossRefPubMed Boon T, Cerottni JC, Eynde Van den B, Brugen Van den P, Van Pel A: Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994, 12: 337-365.CrossRefPubMed
12.
Zurück zum Zitat McMichael A: A new look in tumor immunology. 1992, Plainview, NY: Cold Spring Harbor Lab Press McMichael A: A new look in tumor immunology. 1992, Plainview, NY: Cold Spring Harbor Lab Press
13.
Zurück zum Zitat Chaudhuri S, Cariappa A, Tang M, Bell D, Haber DA, Isselbacher KJ, Finkelstein D, Forcione D, Pillai S: Genetic susceptibility to breast cancer: HLA DQB*03032 and HLA DRB1*11 may reprsent protective alleles. PNAS. 2000, 97: 11451-54.CrossRefPubMedPubMedCentral Chaudhuri S, Cariappa A, Tang M, Bell D, Haber DA, Isselbacher KJ, Finkelstein D, Forcione D, Pillai S: Genetic susceptibility to breast cancer: HLA DQB*03032 and HLA DRB1*11 may reprsent protective alleles. PNAS. 2000, 97: 11451-54.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Holland JF: Major histocompatibility complex antigens. Cancer Medicine. 1997, Williams and Wilkins. Philadelphia, 226- Holland JF: Major histocompatibility complex antigens. Cancer Medicine. 1997, Williams and Wilkins. Philadelphia, 226-
15.
Zurück zum Zitat Birkby CA, Curtis AS, McGrath M, Ripley BD: MHC control of cell position in vitro. J Cell Sci. 1988, 89 (Pt 2): 167-74.PubMed Birkby CA, Curtis AS, McGrath M, Ripley BD: MHC control of cell position in vitro. J Cell Sci. 1988, 89 (Pt 2): 167-74.PubMed
16.
Zurück zum Zitat Wintzer HO, Benzing M, von Kleist S: Lacking prognostic significance of beta 2-microglobulin, MCH class I and class II antigen expression in breast carcinomas. Br J Cancer. 1990, 62: 289-95.CrossRefPubMedPubMedCentral Wintzer HO, Benzing M, von Kleist S: Lacking prognostic significance of beta 2-microglobulin, MCH class I and class II antigen expression in breast carcinomas. Br J Cancer. 1990, 62: 289-95.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Klein T, Levin I, Niska A, Koren R, Gal R, Schachter J, Kfir B, Narinski R, Warchaizer S, Klein B: Correlation between tumor and serum beta 2 m expression in patients with breast cancer. Eur J Immunogen. 1996, 23: 417-23.CrossRefPubMed Klein T, Levin I, Niska A, Koren R, Gal R, Schachter J, Kfir B, Narinski R, Warchaizer S, Klein B: Correlation between tumor and serum beta 2 m expression in patients with breast cancer. Eur J Immunogen. 1996, 23: 417-23.CrossRefPubMed
18.
Zurück zum Zitat Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern PL: Implications for immunesurveillance of altered HLA class I phenotypes in human tumors. Immunol Today. 1997, 18: 89-95.CrossRefPubMed Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern PL: Implications for immunesurveillance of altered HLA class I phenotypes in human tumors. Immunol Today. 1997, 18: 89-95.CrossRefPubMed
19.
Zurück zum Zitat Esteban F, Concha A, Huelin C, Pérez-Ayala M, Pedrinaci S, Ruiz-Cabello F, Garrido F: Histocompatibility antigens in primary and metastatic squamous cell carcinoma of the larynx. Int J Cancer. 1989, 43: 436-42.CrossRefPubMed Esteban F, Concha A, Huelin C, Pérez-Ayala M, Pedrinaci S, Ruiz-Cabello F, Garrido F: Histocompatibility antigens in primary and metastatic squamous cell carcinoma of the larynx. Int J Cancer. 1989, 43: 436-42.CrossRefPubMed
20.
Zurück zum Zitat Ghosh AK, Moore M, Street AJ, Howat JM, Schofield PF: Expression of HLA-D sub-region products on human colorectal carcinoma. Int J Cancer. 1986, 38: 459-64.CrossRefPubMed Ghosh AK, Moore M, Street AJ, Howat JM, Schofield PF: Expression of HLA-D sub-region products on human colorectal carcinoma. Int J Cancer. 1986, 38: 459-64.CrossRefPubMed
21.
Zurück zum Zitat Gudmundsdóttir I, Gunnlaugur Jónasson J, Sigurdsson H, Olafsdóttir K, Tryggvadóttir L, Ogmundsdóttir HM: Altered expression of HLA class I antigens in breast cancer: association with prognosis. Int J Cancer. 2000, 89 (6): 500-505.CrossRefPubMed Gudmundsdóttir I, Gunnlaugur Jónasson J, Sigurdsson H, Olafsdóttir K, Tryggvadóttir L, Ogmundsdóttir HM: Altered expression of HLA class I antigens in breast cancer: association with prognosis. Int J Cancer. 2000, 89 (6): 500-505.CrossRefPubMed
23.
Zurück zum Zitat Davis RW, Thomas M, Cameron J, St John TP, Scherer S, Padgett RA: Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol. 1980, 65: 404-411.CrossRefPubMed Davis RW, Thomas M, Cameron J, St John TP, Scherer S, Padgett RA: Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol. 1980, 65: 404-411.CrossRefPubMed
24.
Zurück zum Zitat Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16: 1215-CrossRefPubMedPubMedCentral Miller SA, Dykes DD, Polesky HF: A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16: 1215-CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Haldane JBS: The estimation and significance of the logarithm of the ratio of frequencies. Ann Hum Genet. 1955, 20 (4): 309-311.CrossRef Haldane JBS: The estimation and significance of the logarithm of the ratio of frequencies. Ann Hum Genet. 1955, 20 (4): 309-311.CrossRef
28.
Zurück zum Zitat Bland JM, Altman DG: Multiple significance tests: the Bonferroni method. BMJ. 1995, 21 (6973): 170-CrossRef Bland JM, Altman DG: Multiple significance tests: the Bonferroni method. BMJ. 1995, 21 (6973): 170-CrossRef
29.
Zurück zum Zitat Svejgaard A, Ryder LP: HLA and disease associations: Detecting the strongest association. Tissue Antigens. 1994, 43: 18-27.CrossRefPubMed Svejgaard A, Ryder LP: HLA and disease associations: Detecting the strongest association. Tissue Antigens. 1994, 43: 18-27.CrossRefPubMed
30.
Zurück zum Zitat Han R, Breitburd F, Marche PN, Orth G: Linkage of regression and malignant conversion of rabbit viral papillomas to MHC class II genes. Nature. 1992, 356: 66-8.CrossRefPubMed Han R, Breitburd F, Marche PN, Orth G: Linkage of regression and malignant conversion of rabbit viral papillomas to MHC class II genes. Nature. 1992, 356: 66-8.CrossRefPubMed
31.
Zurück zum Zitat Gaderi A, Talei A, Gharesi-Fard B, Farjadian SH, Amirzargar A, Vasei M: HLA-DBR1 alleles and the susceptibility of Iranian patients with breast cancer. Pathol Oncol Res. 2001, 7: 39-41.CrossRef Gaderi A, Talei A, Gharesi-Fard B, Farjadian SH, Amirzargar A, Vasei M: HLA-DBR1 alleles and the susceptibility of Iranian patients with breast cancer. Pathol Oncol Res. 2001, 7: 39-41.CrossRef
32.
Zurück zum Zitat Kleinberg L, Flørenes VA, Skrede M, Dong HP, Nielsen S, McMaster MT, Nesland JM, Shih IeM, Davidson B: Expression of HLA-G in malignant mesothelioma and clinically aggressive breast carcinoma. Virchows Arch. 2006, 449: 31-9.CrossRefPubMed Kleinberg L, Flørenes VA, Skrede M, Dong HP, Nielsen S, McMaster MT, Nesland JM, Shih IeM, Davidson B: Expression of HLA-G in malignant mesothelioma and clinically aggressive breast carcinoma. Virchows Arch. 2006, 449: 31-9.CrossRefPubMed
33.
Zurück zum Zitat Baccar Harrath A, Yacoubi Loueslati B, Troudi W, Hmida S, Sedkaoui S, Dridi A, Jridi A, Ben Ayed F, Ben Rhomdhane K, Ben Ammar Elgaaied A: HLA class II polymorphism: protective or risk factors to breast cancer in Tunisia?. Pathol Oncol Res. 2006, 12: 79-81.CrossRefPubMed Baccar Harrath A, Yacoubi Loueslati B, Troudi W, Hmida S, Sedkaoui S, Dridi A, Jridi A, Ben Ayed F, Ben Rhomdhane K, Ben Ammar Elgaaied A: HLA class II polymorphism: protective or risk factors to breast cancer in Tunisia?. Pathol Oncol Res. 2006, 12: 79-81.CrossRefPubMed
34.
Zurück zum Zitat Lavado R, Benavides M, Villar E, Ales I, Alonso A, Caballero A: The HLA-B7 allele confers susceptibility to breast cancer in Spanish women. Immunol Lett. 2005, 101: 223-5.CrossRefPubMed Lavado R, Benavides M, Villar E, Ales I, Alonso A, Caballero A: The HLA-B7 allele confers susceptibility to breast cancer in Spanish women. Immunol Lett. 2005, 101: 223-5.CrossRefPubMed
35.
Zurück zum Zitat Casoli C, Zanelli P, Adorni A, Starcich BR, Neri T: Serological and molecular study on the HLA phenotype of female breast cancer patients. Eur J Cancer. 1994, 30A: 1207-8.CrossRefPubMed Casoli C, Zanelli P, Adorni A, Starcich BR, Neri T: Serological and molecular study on the HLA phenotype of female breast cancer patients. Eur J Cancer. 1994, 30A: 1207-8.CrossRefPubMed
36.
Zurück zum Zitat Gopalkrishnan L, Patil S, Chhaya S, Badwe R, Joshi N: HLA alleles in pre-menopausal breast cancer patients from western India. Indian J Med Res. 2006, 124: 305-12.PubMed Gopalkrishnan L, Patil S, Chhaya S, Badwe R, Joshi N: HLA alleles in pre-menopausal breast cancer patients from western India. Indian J Med Res. 2006, 124: 305-12.PubMed
37.
Zurück zum Zitat Brunner CA, Gokel JM, Riethmüller , Johnson JP: Expression of HLA-D subloci DR and DQ by breast carcinomas is correlated with distinct parameters of favourable prognosis. Eur J Cancer. 1991, 27: 411-6.CrossRefPubMed Brunner CA, Gokel JM, Riethmüller , Johnson JP: Expression of HLA-D subloci DR and DQ by breast carcinomas is correlated with distinct parameters of favourable prognosis. Eur J Cancer. 1991, 27: 411-6.CrossRefPubMed
Metadaten
Titel
High resolution human leukocyte antigen (HLA) class I and class II allele typing in Mexican mestizo women with sporadic breast cancer: case-control study
verfasst von
David Cantú de León
Delia Pérez-Montiel
Verónica Villavicencio
Alejandro García Carranca
Alejandro Mohar Betancourt
Victor Acuña-Alonzo
Alberto López-Tello
Gilberto Vargas-Alarcón
Rodrigo Barquera
Neng Yu
Edmond J Yunis
Julio Granados
Publikationsdatum
01.12.2009
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2009
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-9-48

Weitere Artikel der Ausgabe 1/2009

BMC Cancer 1/2009 Zur Ausgabe

Hodgkin Lymphom: BrECADD-Regime übertrifft die Erwartungen

05.06.2024 ASCO 2024 Kongressbericht

Das Kombinationsregime BrECADD mit Brentuximab vedotin ermöglichte in der Studie HD21 beim fortgeschrittenen klassischen Hodgkin-Lymphom eine unerwartet hohe progressionsfreie Überlebensrate von 94,3% nach vier Jahren. Gleichzeitig war das Regime besser tolerabel als der bisherige Standard eBEACOPP.

Antikörper-Drug-Konjugat verdoppelt PFS bei Multiplem Myelom

05.06.2024 ASCO 2024 Nachrichten

Zwei Phase-3-Studien deuten auf erhebliche Vorteile des Antikörper-Wirkstoff-Konjugats Belantamab-Mafodotin bei vorbehandelten Personen mit Multiplem Myelom: Im Vergleich mit einer Standard-Tripeltherapie wurde das progressionsfreie Überleben teilweise mehr als verdoppelt.

Neuer TKI gegen CML: Höhere Wirksamkeit, seltener Nebenwirkungen

05.06.2024 Chronische myeloische Leukämie Nachrichten

Der Tyrosinkinasehemmer (TKI) Asciminib ist älteren Vertretern dieser Gruppe bei CML offenbar überlegen: Personen mit frisch diagnostizierter CML entwickelten damit in einer Phase-3-Studie häufiger eine gut molekulare Response, aber seltener ernste Nebenwirkungen.

Brustkrebs-Prävention wird neu gedacht

04.06.2024 ASCO 2024 Kongressbericht

Zurzeit untersuchen Forschende verschiedene neue Ansätze zur Prävention von Brustkrebs bei Personen mit hohem Risiko. Darunter Denosumab, die prophylaktische Bestrahlung der Brust – und Impfungen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.