Skip to main content
Erschienen in: Nutrition Journal 1/2010

Open Access 01.12.2010 | Review

Immunomodulatory dietary polysaccharides: a systematic review of the literature

verfasst von: Jane E Ramberg, Erika D Nelson, Robert A Sinnott

Erschienen in: Nutrition Journal | Ausgabe 1/2010

Abstract

Background

A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides.

Methods

Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition.

Results

We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated.

Conclusions

Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor mushroom improved survival and immune function in human RCTs of cancer patients; glucans, arabinogalactans and fucoidans elicited immunomodulatory effects in controlled studies of healthy adults and patients with canker sores and seasonal allergies. This review provides a foundation that can serve to guide future research on immune modulation by well-characterized polysaccharide compounds.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1475-2891-9-54) contains supplementary material, which is available to authorized users.

Competing interests

The authors are employees of the Research & Development Department at Mannatech, Incorporated, which sells two of the polysaccharide products (Ambrotose® powder and Advanced Ambrotose® powder) discussed in this review.

Authors' contributions

JER and EDN conducted literature searches and wrote the manuscript. RAS provided technical guidance. All authors read and approved the final manuscript.
Abkürzungen
female
male
Ab
antibody
AIDS
autoimmune deficiency syndrome
AOM
azoxymethane
BBN
N-butyl-N'-butanolnitrosamine
BLCL
Burkitt's Lymphoma Cell Line
BW
body weight
CBC
complete blood count
CD
cluster of differentiation
CFU
colony forming unit
ConA
concanavalin A
CXCR
CXC chemokine receptor
DMBA
7,12-dimethylbenz(a)anthracene
DMH
N-N'-dimethylhydrazine
DMN
dimethylhydrazine
DSS
dextran sulfate sodium
EBV
Epstein-Barr virus
GALT
gut-associated lymphoid tissue
GI
gastrointestinal
HSV
herpes simplex virus
ICR
imprinting control region
ID
intradermal
IEL
intraepithelial lymphocytes
IFN-λ
interferon gamma
IG
intragastric
IgA
immunoglobulin A
IgE
immunoglobulin E
IgG
immunoglobulin G
IgM
immunoglobulin M
IL
interleukin
IMC
invasive micropapillary carcinoma
IN
intranasally
IP
intraperitoneal
IV
intravenous
LPS
lipopolysaccharide
macrophage
mAb
monoclonal antibody
3-MCA
methylcholanthrene
MLN
mesenteric lymph nodes
MM-46 carcinoma
mouse mammary carcinoma
MW
molecular weight
NK
natural killer
NOAEL
no observable adverse effect level
OVA
ovalbumin
PBL
peripheral blood leukocytes
PBMC
peripheral blood mononuclear cells
PHA
phytohaemagglutinin
PMA
phorbol 12-myristate 13-acetate
PML
polymorphonuclear lymphocyte
RCT
randomized, controlled trial
RNA
ribonucleic acid
SC
subcutaneous
SD rats
Sprague Dawley
TCR
T cell receptor
TLR
toll like receptor
TNF-α
tumor necrosis factor alpha
UC
ulcerative colitis
WT
wild type.

Background

Polysaccharide-rich fungi and plants have been employed for centuries by cultures around the world for their dietary and medicinal benefits [15]. Often thought to merely support normal bowel function and blood glucose and lipid levels [68], certain polysaccharides have attracted growing scientific interest for their ability to exert marked effects on immune system function, inflammation and cancers [911]. Many of these chemically and structurally diverse, non- to poorly-digestible polysaccharides have been shown to beneficially affect one or more targeted cellular functions in vitro [1116], but much of the in vivo literature consists of studies in which polysaccharides were injected [1, 2]. For clinicians and scientists interested in immunologic effects following dietary intake, the value of such studies is uncertain. Polysaccharides that elicit effects in vitro or by injection may be ineffective or have different effects when taken orally [17]. We thus decided to conduct a systematic review to evaluate the specific immunologic effects of dietary polysaccharide products on rodents and human subjects.

Methods

Literature review

Studies were identified by conducting electronic searches of PubMed and Google Scholar from their inception to the end of October 2009. The reference lists of the selected articles were checked for additional studies that were not originally found in the search.

Study selection and data extraction

The following search terms were combined with the term polysaccharide: dietary AND immune, or oral AND immune, or dietary AND inflammation, or oral AND inflammation. When specific polysaccharides or polysaccharide-rich plants and fungi were identified, further searches were conducted using their names with the same search terms. Studies were selected based on the following inclusion criteria:
1. Rodent or human studies
2. The presence of test group and control group (using either placebo, crossover, sham, or normal care)
3. Studies reporting statistically significant immunomodulatory effects
4. English language
5. Studies published up to October 2009.
Two researchers (JER, EDN) reviewed the list of unique articles for studies that fit the inclusion criteria. Uncertainties over study inclusion were discussed between the researchers and resolved through consensus. Searches were then conducted to obtain specific polysaccharide product information: safety (using the search terms: toxicity, NOAEL, LD50), composition and structure, and disposition.

Quality assessment

Each study was assessed as to whether or not it reported a significant outcome measure for the polysaccharide intervention group.

Results

A total of 62 rodent publications (Tables 1, 2 and 3) and 15 human publications (Table 4) were deemed appropriate for inclusion in this review. Available structural and compositional information for these immunomodulatory polysaccharides are provided in Table 5 and safety information is provided in Table 6. The majority of animal studies explored models in which animals were injected or implanted with cancer cells or tumors, were healthy, or were exposed to carcinogens. Other studies investigated immunodeficient, exercise-stressed, aged animals, or animals exposed to inflammatory agents, viruses, bacterial pathogens, pathogenic protozoa, radiation or mutagens. Human studies assessed immunomodulatory effects in healthy subjects, or patients with cancers, seasonal allergic rhinitis or aphthous stomatitis. Because of the limited number of human studies, we included some promising open-label controlled trials. Human study durations ranged from four days to seven years; daily doses ranging from 100-5,400 mg were reported to be well-tolerated.
Table 1
Immunomodulatory Glucan Extracts: Oral Animal Studies
Source
Extract
Animal
Dose/day
Duration of study
Treatment
Effects
Reference
Agaricus
(A. blazei) subrufescens
α-1,6 and
α-1,4 glucans
8-week ♀ C3H/He mice (5/group)
100 mg/kg IG every 3 days
1 month
Healthy animals
↑ #s splenic T lymphocytes (Thy1.2, CD4+ and CD8+)
[24]
 
Aqueous
7-9-week ♂ Balb/cByJ mice (40/group)
1 ml 0.45N, 0.6N, or 3N aqueous extract
2 months
 
All doses ↑ serum IgG levels, CD3+ T cell populations and PML phagocytic activity
[22]
  
7-9-week male Balb/cByJ mice (40/group)
1 ml 0.45N, 0.6N, or 3N aqueous extract
10 weeks
IP injection of OVA at 4 weeks
0.6N and 3N ↑ levels of OVA-specific serum IgG 28 days post-immunization; all doses ↑ delayed-type hypersensitivity and TNF-α secreted from splenocytes at 10 weeks; 0.6N ↑ splenocyte proliferation at 10 weeks
 
  
5-6 -week ♀ BALB/cHsdOla mice (8/group × 2)
One 200 μl extract day 1, orogastric intubation
1 week
Injected IP fecal solution day 2
↓ CFU in blood of mice with severe peritonitis & improved overall survival rate in all peritonitis groups
[46]
  
6-week BALB/c nu/nu mice (7/group)
2.5 mg extract days 20-41, drinking water
41 days
Injected SC Sp-2 myeloma cells day 1
↓ tumor size & weight after 21 days treatment
[65]
 
Aqueous, acid treated
6-week ♀ C57BL/6 mice (10/group)
20, 100 or 500 μg/ml, drinking water
9 days
Injected IP human ovarian cancer cells day 1
500 μg/ml ↓ tumor weight
[66]
   
20, 100 or 500 μg/ml, drinking water
3 weeks
Injected IV murine lung cancer (3LL) cells
100 & 500 μg/ml ↓ #s metastatic tumors
 
 
Aqueous, with 200 ng/day
β-glucan
6-week ♀ BALB/c mice (10/group)
200 ng days 5-21
3 weeks
Injected Meth A tumor cells day 1
↓ tumor size & weight
[23]
    
2 weeks
Injected Meth A tumor cells
↑ cytotoxic T lymphocyte activity & spleen cell IFN-α protein
 
   
300 mg
5 days
Healthy animals
↑ splenic NK cell activity
 
Avena spp.
β-glucans (particulate)
6-7 -week ♀ C57BL/6 mice (7/group)
3 mg every 48 h, days 1-3
1 month
Oral E. vermiformis oocytes day 10
E. vermiformis fecal oocyte #s; increased intestinal anti-merozoite IgA; ↓ # of IL-4-secreting MLN cells
[42]
   
3 mg on alternating days, days 1-10
22 days
Injected IP Eimeria vermiformis day 10
E. vermiformis fecal oocyte #s; ↑ anti-merozoite intestinal IgA
[43]
 
β-glucans (soluble)
4-week ♂ CD-1 mice (24/group)
0.6 mg/ml 68% β-glucan, drinking water
1 month
Resting or exercise-stressed (days 8-10) animals administered HSV-1 IN
day 10
↓ morbidity in resting and exercise-stressed animals; ↓ mortality in exercise-stressed animals; pre-infection, ↑ Mø anti-viral resistance in resting and exercise-stressed animals
[38]
   
~3.5 mg days
1-10, drinking water
 
Resting or exercise-stressed (days 5-10) animals administered HSV-1 IN
day 10
Pre-infection, ↑ Mø antiviral resistance in resting animals
[41]
  
4-week ♂ CD-1 mice (10/group)
0.6 mg/ml 68% β-glucan, drinking water
10 days
Resting animals or animals exposed to a bout of fatiguing exercise days 8-10 or moderate exercise days 5-10, injected IP with thioglycollate on day 10
↑ neutrophil mobilization in resting & moderately exercised animals; ↑ neutrophil respiratory burst activity in resting and fatiguing exercised animals
[37]
  
4-week ♂ CD-1 mice (19-30/group)
0.8 mg/ml 50% β-glucan, days
1-10, drinking water
1 month
Resting or exercise-stressed (days 8-10) animals administered IN clodronate-filled liposomes to deplete Mø days 8 & 14 & infected IN with HSV-1 day 10
↓ morbidity, mortality, symptom severity in exercise-stressed animals, without Mø depletion
[40]
  
4-week ♂ CD-1 mice (20/group)
  
Resting or exercise-stressed (days 8-10) animals administered HSV-1 IN day 10
↓ morbidity in exercise-stressed & resting animals; ↓ mortality in exercise-stressed animals
[39]
Ganoderma lucidum
Aqueous
7-week ♂ CD-1 mice (26/group)
5% of diet
5 months
Injected IM DMH once a week, weeks 1-10
↓ aberrant crypt foci per colon, tumor size, cell proliferation, nuclear staining of β-catenin
[69]
  
4-8-week BALB/c mice (10/group)
50, 100 or 200 mg/kg, oral
10 days
Injected SD Sarcoma 180 cells
↓ of tumor weight was dose dependent: 27.7, 55.8, 66.7%, respectively
[67]
Ganoderma lucidum (mycelia)
Aqueous
7-week ♂ F344/Du Crj rats (16/group)
1.25% or 2.5% of diet
6 months
Injected SC AOM once a week, weeks2-5
Both doses ↓ colonic adenocarcinoma incidence; 2.5% ↓ total tumor incidence; both doses ↓ nuclear staining of β-catenin and cell proliferation
[68]
Ganoderma tsugae
Aqueous
8-week ♀ BALB/cByJNarl mice (14/group)
0.2-0.4% of diet (young fungi); 0.33 or 0.66% of diet (mature fungi)
5 weeks
Injected IP OVA days 7, 14, 21; aerosolized OVA twice during week 4
In splenocytes, both doses of both extracts ↑ IL-2 and IL-2/IL-4 ratios, 0.2% young extract and 0.66% mature extract ↓ IL-4; in Mø, 0.66% mature extract ↑ IL-1β, both doses of both extracts ↑ IL-6
[53]
Grifola frondosa
D fraction
Mice: 1) ICR, 2) C3H/HeN, 3) CDF1 (10/group)
1.5 mg every other day, beginning day 2
13 days
Implanted SC: 1) Sarcoma-180, 2) MM-46 carcinoma, or 3) IMC carcinoma cells
↓ tumor weight & tumor growth rate: 1) 58%, 2) 64%, and 3) 75%, respectively
[71]
  
5-week ♂ BALB/c mice (10/group)
2 mg,
days 15-30
45 days
Injected in the back with 3-MCA, day 1
↓ (62.5%) # of animals with tumors; ↑ H202 production by plasma Mø; ↑ cytotoxic T cell activity
[72]
Hordeum vulgare
β-1,3;1,4 or β-1,3;1,6-D-glucans
Athymic nu/nu mice
(4-12/group)
40 or 400 μg IG for 4 weeks
31 weeks
Mice with human xenografts (SKMel28 melanoma, A431 epidermoid carcinoma, BT474 breast carcinoma, Daudi lymphoma, or LAN-1 neuroblastoma) ± mAb (R24, 528, Herceptin, Rituximab, or 3F8, respectively) therapy twice weekly
400 μg + mAb ↓ tumor growth & ↑ survival; higher MW ↓ tumor growth rate for both doses
[75]
 
β-1,3;1,4-D-glucans
Athymic BALB/c mice
4, 40, or 400 μg for 3-4 weeks
1 month
Mice with neuroblastoma (NMB7, LAN-1, or SK-N-ER) xenografts, ± 3F8 mAb therapy twice weekly
40 and 400 μg doses + mAB ↓ tumor growth; 400 μg dose ↑ survival. Serum NK cells required for effects on tumor size
[76]
  
C57BL/6 WT and CR3-deficient mice (10/group)
0.4 mg for 3 weeks
100 days
Injected SC RMA-S-MUC1 lymphoma cells day 1 ± IV 14.G2a or anti-MUC1 mAb every 3rd day
±mAB ↓ tumor diameter; ↑ survival
[73]
 
β-glucans
♀ Fox Chase ICR immune-deficient (SCID) mice (9/group)
400 μg days 1-29
50 days
Mice with human (Daudi, EBV-BLCL, Hs445, or RPMI6666) lymphoma xenografts, ± Rituximab mAb therapy twice weekly
+mAB ↓ tumor growth and ↑ survival
[74]
Laminaria digitata
Laminarin
♂ ICR/HSD mice (3/group)
1 mg
1 day
Healthy animals
↑ Mø expression of Dectin-1 in GALT cells; ↑ TLR2 expression in Peyer's patch dendritic cells
[29]
  
♂ Wistar rats (7/group)
5% of diet days 1-4, 10% of diet days 5-25
26 days
Injected IP E. coli LPS day 25
↓ liver ALT, AST, and LDH enzyme levels; ↑ ED2-positive cells, .↓ peroxidase-positive cells in liver; ↓ serum monocytes, TNF-α, PGE2, NO2
[44]
Lentinula edodes
SME
6-week nude mice
0.1 ml water with10% SME/10 g body weight days 1-19, 33-50
50 days
Injected SC prostate cancer (PC-3) cells day 1
↓ tumor size
[80]
 
β-glucans
♀ 3- and 8-week BALB/c mice (15/group)
50, 100 or 250 μg
1-2 weeks
Healthy animals
250 μg dose ↑ spleen cell IL-2 secretion
[27]
  
♀ 3- and 8-week BALB/c mice (15/group)
50, 100 or 250 μg
1-2 weeks
Injected murine mammary carcinoma (Ptas64) cells into mammary fat pads 2 weeks before treatment
↓ tumor weight
 
 
Lentinan
6-week ♂ Wistar-Imamichi specific-pathogen free rats (10/group)
1 mg twice weekly
1-2 months
Healthy animals
↑ T cell #s, helper-cell #s & helper/suppressor ratio, ↓ suppressor cell level at 4, but not 8 weeks
[26]
  
5-6-week ♂
pre-leukemic AKR mice (10/group)
3 mg, days 1-7
3 weeks
Injected SC K36 murine lymphoma cells day 7
↓ tumor weight; ↑ tumor inhibition rate (94%)
[82]
  
5-6-week athymic mice (10/group)
 
5 weeks
Injected SC colon cancer (LoVo and SW48, SW480 and SW620, or SW403 and SW1116) cells day 7
↓ tumor weight, ↑ tumor inhibition rate (>90%)
 
  
♂ AKR mice
3 mg
1 day
Pre-leukemic mice
↑ serum IFN-α and TNF-α, peak at 4 h and then back to normal at 24 h; ↑ IL-2 and IL-1α, peak at 2 h and back to normal at 24 h; ↑ CD3+ T, CD4+ T, CD8+ T, B lymphocytes
[81]
Phellinus linteus
Aqueous, alcohol-precipitated
6-7-week C57BL/6 mice (10-50/group)
200 mg/kg in drinking water
1 month
Healthy animals
↑ production and secretion of IFN-γ by con A stimulated T cells
[32]
Saccharomyces cerevisiae
Scleroglucan
♂ ICR/HSD mice (3/group)
1 mg one day before challenge (day 1)
6 days
IV Staphylococcus aureus or Candida albicans day 2
↑ long-term survival
[29]
 
β-1,3;1,6 glucans (particulate)
3 and 8-week ♀ BALB/c mice (15/group)
50, 100 or 250 μg
1-2 weeks
Injected murine mammary carcinoma (Ptas64) cells into mammary fat pads 2 weeks before treatment
↓ tumor weight
[27]
 
β-1,3-glucan
   
Healthy animals
All 3 doses ↑ phagocytic activity of blood monocytes & neutrophils & ↑ spleen cell IL-2 secretion
 
  
WT or CCD11b-/- C57BL/6 mice (2/group)
0.4 mg for 3 weeks
100 days
Injected SC RMA-S-MUC1 lymphoma cells ± 14.G2a or anti-MUC1 mAb IV injection every 3rd day
↓ tumor diameter when included with mAb; ↑ survival with and without mAb
[73]
  
C57BL/6mice (4/group)
25 mg
1 week
Healthy animals
↑ # intestinal IELs; ↑ # TCRαβ+, TCR γδ+, CD8+, CD4+, CD8αα+, CD8αβ+ T cells in IELs; ↑ IFN-γ mRNA expression in IELs and spleen
[28]
Sclerotinia sclerotiorum
SSG
6-8-week specific pathogen-free ♂ CDF1 mice (3/group)
40 or 80 mg/kg days 1-10
2 weeks
Healthy animals
10 mg dose ↑ acid phosphatase activity of peritoneal Mø (day 14)
[30]
   
40, 80 or 160 mg/kg days 2-6
35 days
Implanted SC Metha A fibrosarcoma cells day 1
80 mg dose ↓ tumor weight
 
  
6-8-week specific pathogen-free ♂ CDF1 mice (10/group)
40, 80 or 160 mg/kg days 2-11
 
Injected ID IMC carcinoma cells day 1
  
  
6-8-week specific-pathogen free ♂ mice of BDF1 and C57BL/6 mice (7/group)
0.5, 1, 2, or 4 mg days 1-10
2-3 weeks
Injected IV Lewis lung carcinoma (3LL) cells
2 mg ↓ # of 3LL surface lung nodules at 2 weeks
[83]
Sclerotium rofsii
Glucan phosphate
♂ ICR/HSD mice (3/group)
1 mg
1 day
Healthy animals
↑ systemic IL-6; ↑ Mø expression of Dectin-1 in GALT cells; ↑ TLR2 expression in dendritic cells from Peyer's patches
[29]
Trametes (Coriolus) versicolor
PSP
6-8-week ♂ BALB/c mice (10/group)
35 μg days 5-29 in drinking water
29 days
Implanted SC Sarcoma-180 cells day 1
↓ tumor growth & vascular density
[94]
Table 2
Immunomodulatory Non-Glucan Extracts: Oral Animal Studies
Extract
Source
Animal
Oral dose/day
Duration
Treatment
Significant effects
Reference
Fucoidans
Cladosiphon okamuranus Tokida
8-week ♀ BALB/c mice, 10/group
0.05% w/w of diet
56 days
DSS-induced UC
↓ disease activity index and myeloperoxidase activity; ↓ # of B220-positive colonic B cells; ↓ colonic MLN IFN-γ and IL-6 and ↑ IL-10 and TGF-β; ↓ colonic IgG; ↓ colonic epithelial cell IL-6, TNF-α, and TLR4 mRNA expression
[49]
 
Undaria pinnatifida
5-week ♀ BALB/c mice (10-12/group)
5 mg, days 1-14 or 7-14
2 weeks
Injected HSV into cornea day 7
↓ facial herpetic lesions; ↑ survival, particularly in pre-treated animals
[45]
   
10 mg
1 week
Administered
5-fluorouracil
↑ plasma NK cell activity
 
     
Injected SC HSV
↑ cytotoxic splenic T lymphocyte activity
 
   
0.1 or 0.5 mg
3 weeks
Injected IP HSV
Both doses ↑ serum neutralizing Ab titers, weeks 2 and 3
 
  
6-week ♂ ddY mice (5/group)
50, 100, 200 400 or
500 mg/kg
days 1-28
3 weeks
Injected with Ehrlich carcinoma in back day 14
200-500 mg/kg ↓ tumor growth
[116]
  
6-week ♂ BALB/c mice (8/group)
40 mg/kg alternating days
7-19
19 days
Injected IP Meth A fibrosarcoma day 1
↓ tumor growth
 
Furanose (COLD-FX®)
Panax quinquefolium
Weanling ♂ SD rats (10/group)
450 or
900 mg/kg in food
1 week
Healthy animals
Both doses ↑ spleen Il-2 and IFN-γ production following ConA or LPS stimulation; ↓ proportion of total MLN and Peyer's patch CD3+ cells & activated T cells; high dose ↑ spleen cell IL-1β production following 48 h ConA stimulation.
[33]
Galacto-mannan (partially hydrolyzed guar gum)
Cyamopsis tetragonolobus
10-week ♀ BALB/c mice,
11-15/group
5% of diet
3 weeks
DSS-induced UC at beginning of
week 3
↓ disease activity index scores, ↓ colonic mucosal myeloperoxidase activity & lipid peroxidation; ↓ colonic TNF-α protein levels & mRNA expression up regulated by DSS exposure
[50]
Galacto-mannans
(guar gum)
 
8-month- SD rats, 5/group
5% of diet
3 weeks
Older animals
↓ serum IgG; ↑ MLN lymphocyte IgA, IgM and IgG production
[36]
Glucomannan (KS-2)
Lentinula edodes
DD1 mice (10-20/group)
140 mg/kg days
2-13
50 days
Injected IP Ehrlich ascites tumor cells day 1
↑ survival
[84]
   
0.1, 1, 10, or 100 mg/kg dose days 2-13
100 days
Injected Sarcoma-180 tumor cells
day 1
1, 10, and 100 mg/kg doses ↑ survival
 
Heteroglycan (ATOM)
A. subrufescens
Mice (10/group): 1) 5-week ♂ Swiss/NIH; 6 week- ♀ DS mice; 3) 8-week ♀ BALB/c nude; 4) 5-week C3H/HcN
100 or
300 mg/kg
days 2-11
8 weeks
Implanted SC 1) Sarcoma-180, 2) Shionogi carcinoma 42, 3) Meth A fibrosarcoma, or 4) Ehrlich ascites carcinoma cells
Both doses ↓ Sarcoma-180 tumor size at 4 weeks & ↑ survival; 300 mg/kg ↑ peritoneal macrophage and C3-positive cells; 300 mg/kg ↓ Shionogi and Meth A tumor sizes at 4 weeks. Both doses ↑ survival of Ehrlich ascites mice
[93]
Heteroglycan (LBP3p)
Lycium barbarum
♂ Kunming mice (10/group)
5, 10 or
20 mg/kg
10 days
Injected SC Sarcoma-180 cells
5 & 10 mg/kg ↑ thymus index; all doses ↓ weight, ↓ lipid peroxidation in serum, liver and spleen & ↑ spleen lymphocyte proliferation, cytotoxic T cell activity, IL-2 mRNA
[91]
Heteroglycan (PNPS-1)
Pholiota nameko
SD rats (5/group)
100, 200 or 400 mg/kg days 1-8
8 days
Implanted SC cotton pellets in scapular region
day 1
↓ granuloma growth positively correlated with dose: 11%, 18% and 44%, respectively
[55]
Heteroglycan (PG101)
Lentinus lepideus
8-10-week ♀ BALB/c mice (3/group)
10 mg
24 days
6 Gy gamma irradiation
↑ colony forming cells, granulocyte CFUs/Mø, erythroid burst-forming units, and myeloid progenitor cells in bone marrow; induced proliferation of granulocyte progenitor cells in bone marrow; ↑ serum levels of GM-CSF, IL-6, IL-1β
[92]
Mixed poly-saccharides (Ambrotose® or Advanced Ambrotose® powders)
Aloe barbadensis, Larix spp, and other plant poly-saccharides
♂ SD rats (10/group)
37.7 or 377 mg/kg Ambrotose® powder or 57.4 or 574 mg/kg Advanced Ambrotose® powder
2 weeks
5% DSS in drinking water beginning day 6
574 mg/kg Advanced Ambrotose powder ↓ DAI scores; 377 mg/kg Ambrotose complex & both doses Advanced Ambrotose powder ↑ colon length and ↓ blood monocyte count
[52]
Pectin
Pyrus pyrifolia
6-8-week ♂ BALB/c mice (11/group)
100 μg
days 1-7
22 days
Injected IP OVA day 7, provoked with OVA aerosol day 21
bronchial fluid:↓ IFN-γ & ↑ IL-5; splenic cells: ↑ IFN-γ, ↓ IL-5; normalized pulmonary histopathological changes; ↓ serum IgE
[54]
Pectins (bupleurum 2IIc)
Bupleurum falcatum
6-8-week ♀ specific-pathogen-free C3H/HeJ mice
250 mg/kg
1 week
Healthy animals
↑ spleen cell proliferation
[35]
Pectins (highly methoxylated)
Malus spp.
8-month- SD rats (5/group)
5% of diet vs. cellulose control
3 weeks
Older animals
↑ MLN lymphocyte IgA & IgG
[36]
Pectins
Citrus spp.
5-week ♀ F344 rats (30/group)
15% of diet
34 weeks
Injected SC AOM once a week, weeks 4-14
↓ colon tumor incidence
[86]
 
Malus spp.
5-week ♀ BALB/c mice (6/group)
5% of diet
2 weeks
Healthy animals
↑ fecal IgA and MLN CD4+/CD8+ T lymphocyte ratio & IL-2 & IFN-γ secretion by ConA-stimulated MLN lymphocytes
[51]
  
5-week ♀ BALB/c mice (6/group)
5% of diet days 5-19 vs. cellulose control
19 days
DSS-induced UC days 1-5
Significantly increased MLN lymphocytes IgA, and significantly decreased IgE; significantly decreased ConA-stimulated IL-4 and IL-10
 
  
4-week ♂ Donryu rats (20-21/group)
20% of diet
32 weeks
Injected SC AOM once a week,
weeks 2-12
↓ colon tumor incidence
[85]
  
4-week ♂ Donryu rats (19-20/group)
10 or 20% of diet
32 weeks
Injected SC AOM once a week,
weeks 2-12
Both doses ↓ colon tumor incidence; 20% ↓ tumor occupied area & ↓ portal blood and distal colon PGE2
[90]
Pectins (modified)
Citrus spp.
2-4-month BALB/c mice (9-10/group)
0.8 or 1.6 mg/ml drinking water,
days 8-20
20 days
Injected SC with 2 × 2 mm section of human colon-25 tumor on day 1
Both doses ↓ tumor size
[87]
  
NCR nu/nu mice (10/group)
1% (w/v) drinking water
16 weeks
Orthotopically injected human breast carcinoma cells (MDA-MB-435) into mammary fat pad on day 7
↓ tumor growth rate & volume at 7 weeks, lung metastases at 15 weeks, # of blood vessels/tumor at 33 days post-injection
[89]
  
NCR nu/nu mice (10/group)
1% (w/v) drinking water
7 weeks
Injected human colon carcinoma cells (LSLiL6) into cecum on day 7
↓ tumor weights and metastases to the lymph nodes and liver
 
  
SD rats (7-8/group)
0.01%, 0.1% or 1.0% wt/vol of drinking water, days 4-30
1 month
Injected SC MAT-LyLu rat prostate cancer cells
0.1% and 1.0% ↓ lung metastases; 1.0% ↓ lymph node disease incidence
[88]
Table 3
Immunomodulatory Polysaccharide-Rich Plant Powders: Oral Animal Studies
Source
Animal
Oral dose/day
Duration
Treatment
Significant effects
Reference
Agaricus (A. blazei) subrufescens (fruit bodies)
6-week ♂ C57BL/6, C3H/HeJ and BALB/c mice (3/group)
16, 32 or 64 mg
2 weeks
Healthy animals
32 and 64 mg ↑ liver mononuclear cell cytotoxicity
[25]
Grifola frondosa
6-week ♀ ICR mice (10-15/group)
5% of diet
36 weeks
Oral N-butyl-N'-butanolnitrosamine daily for first 8 weeks
↓ #s of animals with bladder tumors; ↓ tumor weight; ↑ peritoneal Mø chemotactic activity, splenic lymphocyte blastogenic response & cytotoxic activity
[70]
Laminaria angustata
Weanling SD rats (58/group)
5% of diet
26 weeks
IG DMBA, beginning of week 5
↑ time to tumor development and ↓ # of adenocarcinomas in adenocarcinoma-bearing animals
[77]
Lentinula (Lentinus) edodes
6-week ♀ ICR mice (10-17/group)
5% of diet
36 weeks
Oral BBN daily for first 8 weeks
↓ # of animals with bladder tumors; ↓ tumor weight; ↑ Mø chemotactic activity, splenic lymphocyte blastogenic response, cytotoxic activity
[70]
 
7-8 -week ♂ Swiss mice (10/group)
1%, 5% or 10% of diet of 4 different lineages days 1-15
16 days
Injected IP N-ethyl-N-nitrosourea day 15
All 3 doses of one lineage and the 5% dose of two other lineages ↓ #s of micronucleated bone marrow polychromatic erythrocytes
[79]
Lentinula edodes (fruit bodies)
5-week ♀ ICR mice
(14/group × 2)
10%, 20% or 30% of diet
25 days
Injected IP Sarcoma-180 ascites
All 3 doses ↓ Sarcoma-180 tumor weight
[78]
 
Mice: 1) CDF1; 2) C3H; 3) BALB/c; 4,5) C57BL/6N (9/group × 3)
20% of diet
25 days
Injected SC 1) IMC carcinoma, 2) MM-46 carcinoma, 3) Meth-A fibrosarcoma, 4) B-16 melanoma, or 5) Lewis lung carcinoma cells
↓ growth of MM-46, B-16, Lewis lung, and IMC tumors; ↑ lifespan in Lewis lung and MM-46 animals
 
 
ICR mice (14/group × 2)
20% of diet days 1-7, days 7-31 or days 14-31
31 days
Injected IP Sarcoma-180 ascites
↓ tumor weight & growth when fed days 7-31 or 14-31
 
 
Mice: 1) CDF1; 2) C3 H (5/group × 4)
20% of diet
7-12 days
Injected SC: 1) IMC carcinoma or 2) MM-46 carcinoma cells
↑ spreading rate of activated Mø ↑ phagocytic activity
 
Phellinus linteus
4-week ♂ ICR mice (10/group)
2 mg
1 month
Healthy animals
↓ serum & splenocyte IgE production; ↑ proportion of splenic CD4+ T cells & splenocyte IFN-γ production
[31]
Pleurotus ostreatus
6-week ♀ ICR mice
(10-20/group)
5% of diet
36 weeks
Oral BBN daily for first 8 weeks
↓ #s of animals with bladder tumors; ↓ tumor weight; ↑ plasma Mø chemotactic activity, splenic lymphocyte blastogenic response, cytotoxic activity
[70]
Table 4
Immunomodulatory Polysaccharide Products: Oral Human Studies
Extract
Source
Study design
Population
N (experimental/control)
Dose/day
Dura-tion
Significant effects
Reference
Arabino-galactans
Larix occidentalis
Randomized, double-blind, placebo-controlled
Healthy adults
8/15
4 g
6 weeks
↑ % CD8+ lymphocytes & blood lymphocyte proliferation
[18]
Arabino-galactans (ResistAid™)
  
Healthy adults given pneumococcal vaccinations day 30
21/24
4.5 g
72 days
↑ plasma IgG subtypes
[19]
Fucoidans
Undaria pinnatifida sporophylls
Randomized, single-blind, placebo-controlled
Healthy adults
25 (75% fucoidan, 6 (10% fucoidan)/6
3 g
12 days
75% fucoidan: ↓ #s blood leukocytes, lymphocytes' ↑ plasma stromal derived factor-1, IFN-γ, CD34+ cells; ↑ % CXCR4-expressing CD34+ cells
[21]
Furanose extract (Cold-FX®)
Panax quinque-folium
Randomized, double-blind, placebo-controlled
Healthy older adults given influenza immunization at the end of week 4
22/21
400 mg
4 months
During weeks 9-16, ↓ incidence of acute respiratory illness, symptom duration
[20]
Glucans
Agaricus subru-fescens
Randomized, double-blind, placebo-controlled
Cervical, ovarian or endometrial cancer patients receiving 3 chemotherapy cycles
39/61
5.4 g (estimated)
6 weeks
↑ NK cell activity, ↓ chemotherapy side effects
[64]
Glucans
(β-1,3;1,6)
Not identified
Placebo-controlled
Recurrent aphthous stomatitis patients
31/42
20 mg
20 days
↑ PBL lymphocyte proliferation,↓ Ulcer Severity Scores
[48]
Glucans
(β-1,3;1-6)
S. cerevisiae
Randomized, double-blind, placebo-controlled
Adults with seasonal allergic rhinitis
12/12
20 mg
12 weeks
30 minutes after nasal allergen provocation test, nasal lavage fluid: ↓ IL-4, IL-5, % eosinophils, ↑ IL-12
[47]
Glucans (PSK)
Trametes versicolor
Randomized, controlled
Patients with curatively resected colorectal cancer receiving chemotherapy
221/227
200 mg
3-5 years
↑ disease-free survival and overall survival
[56]
  
Controlled
Post-surgical colon cancer patients receiving chemotherapy
123/121
3 g for 4 weeks, alternating with 10 4-week courses of chemo-therapy
7 years
↑ survival from cancer deaths; no difference in disease-free or overall survival
[57]
   
Post-surgical colorectal cancer patients receiving chemotherapy
137/68
3 g daily
2 years
↑survival in stage III patients; ↓ recurrence in stage II & III patients
[58]
   
Post-surgical gastric cancer patients receiving chemotherapy
124/129
3 g for 4 weeks, alternating with 10 4-week courses of chemo-therapy
5-7 years
↑ 5-year disease-free survival rate, overall 5-year survival
[59]
   
Pre-surgical gastric or colorectal cancer patients
16 daily; 17 every other day/13
3 g daily or on alternate days before surgery
<14 days or 14-36 days
≥14 day treatment: ↑ peripheral blood NK cell activity, PBL cytotoxicity, proportion of PBL helper cells; ↓ proportion of PBL inducer cells; <14 day treatment: ↑ PBL response to PSK and Con A, proportion of regional node lymphocyte suppressor cells
[62]
  
Randomized, double-blind, placebo-controlled
Post-surgical stage III-IV colorectal cancer patients
56/55
3 g for 2 months, 2 g for 22 months, 1 g thereafter
8-10 years
↑ remission & survival rates
[61]
  
Controlled
Post-surgical stage III gastric cancer patients receiving chemotherapy
32/21
3 g
1 year
↑ survival time
[60]
Glucans (PSP)
Trametes versicolor
Randomized, double-blind, placebo-controlled
Conventionally-treated stage III-IV non-small cell lung cancer patients
34/34
3.06 g
1 month
↑ blood IgG & IgM, total leukocyte and neutrophil counts, % body fat; ↓ patient withdrawal due to disease progression
[63]
Table 5
Immunomodulatory Polysaccharide Products: Composition and Structure
Source
Category
Features
MW
Monosaccharide composition
Reference
Agaricus subrufescens (A. blazei)
Extract
β-1,6-D-glucan
10,000
NA
[66]
Agaricus subrufescens (fruit body)
Extract
α-1,6- and α-1,4 glucans with β-1,6-glucopyranosyl backbone (629.2 mcg/mg polysaccharides, 43.5 mcg/mg protein)
170,000
glucose
[24]
  
α-1,4 glucans & β-1,6 glucans with β-1,3 side branches; α-1,6 glucans; β-1,6; 1-3 glucans, β-1,4 glucans; β-1,3 glucans; β-1,6; α-1,3 glucans; riboglucans, galactoglucomannans, β-1,2; β-1,3 glucomannans
NA
glucose, mannose, galactose, ribose
[25, 117, 118]
Agaricus subrufescens (mycelia)
Extract (ATOM)
β-1,6-D-glucan, protein complex, 5% protein
100,000-1,000,000
glucose, mannose, galactose, ribose
[93]
Aloe barbadensis (leaf gel)
Whole tissue
Dry weight: 10% polysaccharides; acemannan, aloemannan, aloeride, pectic acid, galactans, arabinans, glucomannans
average 2,000,000
mannose, glucose, galactose, arabinose, xylose, rhamnose
[119, 120]
 
Extract (aloemannan)
neutral partially acetylated glucomannan, mainly β-1,4-mannans
>200,000
mannose, glucose
[121]
 
Extract (aloeride)
NA
4,000,000-7,000,000
37% glucose, 23.9% galactose, 19.5% mannose, 10.3% arabinose
[122]
 
Extract (acemannan)
β-1,4 acetylated mannan
80,000
mannose
[123]
Aloe barbadensis, (leaf gel), Larix sp. (bark), Anogeissus latifolia (bark), Astragalus gummifer (stem), Oryza sativa (seed), glucosamine
Extracts (Ambrotose® powder)
β-1,4 acetylated mannan, arabinogalactans, polysaccharide gums, rice starch, 5.4% protein
57.3% ≥ 950,000; 26.4% < 950,000 and ≥80,000; 16.3% ≤ 10,000
mannose, galactose, arabinose, glucose, galacturonic acid, rhamnose, xylose, fructose, fucose, glucosamine, galacturonic acid
(unpublished data, Mannatech Incorporated)
Aloe barbadensis (leaf gel), Larix sp. (bark), Undaria pinnatifida (frond), Anogeissus latifolia (bark), Astragalus gummifer (stem), Oryza sativa (seed), glucosamine
Extracts (Advanced Ambrotose® powder)
β-1,4 acetylated mannan, arabinogalactans, polysaccharide gums, fucoidans, rice starch, 6% protein, 1% fatty acids
13% = 1,686,667; 46% = 960,000 30% <950,000 and ≥70,000; 11% ≤ 10,000
  
Avena spp. (seed endosperm)
Extract
β-1,3;1,4 particulate (1-3 μ) glucans
1,100,000
glucose
[43]
Avena spp. (seed)
Extract
β-1,4,1,3 particulate glucans (linear chains of β-D-glycopyranosyl units; 70% β 1-4 linked)
2,000,000
NA
[41, 124]
Buplerum falcatum (root)
Extract (bupleuran 2IIc)
6 linked galactosyl chains with terminal glucuronic acid substituted to β-galactosyl chains
NA
galactose, glucuronic acid, rhamnose
[35]
Citrus spp. (fruit)
Extract
α-1,4-linked partially esterified D-anhydrogalacturonic acid units interrupted periodically with 1,2-rhamnose
70,000-100,000
galactose, galacturonic acid, arabinose, glucose, xylose, rhamnose
[125]
Cladosiphon okamuranus (frond)
Extract
α-1,3-fucopyranose sulfate
56,000
fucose:glucuronic acid (6.1:1.0)
[126]
Cordyceps sinensis (mycelia)
Extract
β-1,3-D-glucan with 1,6-branched chains
NA
NA
[127]
Cyamopsis tetragonolobus (seed)
Extract (guar gum)
Main chain of β-1,4-mannopyranosyl units with α-galactopyranosyl units
220,000
mannose, galactose
[36, 128]
 
Extract (partially-hydrolyzed guar gum)
NA
20,000
mannose, galactose
[50]
Flammulina velutipes
Extract
NA
NA
glucose, mannose, galactose
[117]
Flammulina velutipes (fruit body)
Extract
β-1,3 glucan
NA
glucose
[129]
Ganoderma lucidum
Whole tissue
Linear β-1,3-glucans with varying degrees of
D-glucopyranosyl branching, β-glucan/protein complexes, heteropolysaccharides
400,000-1,000,000
glucose, galactose, mannose, xylose, uronic acid
[130]
 
Extract
NA
7,000-9,000
NA
[67]
Ganoderma lucidum (fruit body)
Extract
NA
7,000-9,000
NA
 
  
β-linked heteroglycan peptide
513,000
fructose, galactose, glucose, rhamnose, xylose (3.167:
0.556:6.89:0.549:3.61)
[15]
Ganoderma tsugae
Extract
55.6% carbohydrates (12.5% polysaccharides); 12% triterpenes, 1.7% sodium, 0.28% protein, 0% lipid
NA
NA
[53]
Ginkgo biloba (seed)
Extract
89.7% polysaccharides
NA
glucose, fructose, galactose, rhamnose
[131]
Grifola frondosa
Whole tissue
β-1,3; 1, 6-glucans, α-glucans, mannoxyloglucans, xyloglucans, mannogalactofucans
NA
glucose, fucose, xylose, mannose, galactose
[117]
Grifola frondosa (fruit body)
Extract
(D fraction)
β-1,6-glucan with β-1,3 branches, 30% protein
NA
glucose
[132]
 
Extract
(X fraction)
β-1,6-D-glucan with α-1,4 branches, 35% protein
550,000-558,000
glucose
 
Hordeum spp. (seed)
Extract
β-1,3;1,4-and β-1,3;1,6-D-glucans
45,000-404,000
glucose
[75]
  
Primarily linear β-1,3;1,4- glucans
NA
glucose
[124]
Laminaria spp.
(frond)
Extract (laminarin)
β-1,3;1-6 glucan
7,700
glucose
[29]
  
β-1,3 glucan with some β-1,6 branches and a small amount of protein
4,500-5,500
glucose
[44]
 
Extract
Fucoidan
NA
NA
[133]
Larix occidentalis (bark)
Extract
β-1,3;1,6-D-galactans with arabinofuranosyl and arabinopyranosyl side chains
19,000-40,000
galactose:arabinose (6:1), uronic acid
[128, 134]
Lentinula edodes
Extract (SME)
β-1,3-glucans (4-5%), α-1,4-glucan (8-10%), protein (11-14%)
NA
glucose
[80]
 
Extract
β-glucan
1,000
glucose
[27]
 
Whole tissue
Linear β-1,3-glucans, β-1,4;1,6-glucans, heterogalactan
NA
glucose, galactose, mannose, fucose, xylose
[135]
 
Extract (lentinan)
β-1,3-glucan with 2 β-1,6 glucopyranoside branchings for every 5 β-1,3-glucopyranoside linear linkages
500,000
glucose
[136]
Lentinula edodes (fruit body)
Lentinula edodes
Extract (lentinan)
Neutral β-1,3-D glucan with two β-1,6 glucoside branches for every five β-1,3 units
400,000-800,000
glucose
[137]
 
Extract
(KS-2)
Peptide units and mannan connected by α-glycosidic bonds
60,000-90,000
mannose, glucose
 
Lentinula edodes (mycelia or fruit body)
Extract
Triple helical β-1,3-D glucan with β-1,6 glucoside branches
1,000,000
glucose
[3]
Lentinula edodes (mycelia)
Extract
(LEM)
44% sugars, 24.6% protein
~1,000,000
xylose, arabinose, glucose, galactose, mannose, fructose
[3]
 
Extract (PG101)
72.4% polysaccharides, 26.2% protein, 1.4% hexosamine
NA
55.6% glucose, 25.9% galactose, 18.5% mannose
[138]
Lycium barbarum
Whole tissue
α-1,4;1,6-D-glucans, lentinan, β-1,3;1,6 heteroglucans, heterogalactans, heteromannans, xyloglucans
NA
glucose, galactose, mannose, xylose
[139]
Lycium barbarum (fruit body)
Extract
(LBP3p)
88.36% sugars, 7.63% protein
157,000
galactose, glucose, rhamnose, arabinose, mannose, xylose (molar ratio of 1:2.12:1.25:1.10:1.95:1.76)
[91]
Panax quinquefolium (root)
Extract
Poly-furanosyl-pyranosyl saccharides
NA
arabinose, galactose, rhamnose, galacturonic acid, glucuronic acid
[33]
  
NA
NA
glucose, mannose, xylose
[140]
 
Extract
(Cold-fX®)
90% poly-furanosyl-pyranosyl-saccharides
NA
furanose
[20]
Phellinus linteus (fruit body)
Extract
α- and β-linked 1,3 acidic proteoglycan with 1,6 branches
150,000
glucose, mannose, arabinose, xylose
[141]
Phellinus linteus (mycelia)
Extract
83.2% polysaccharide (4.4% β-glucan), 6.4% protein, 0.1% fat
NA
glucose
[142]
Pholiota nameko (fruit body)
Extract (PNPS-1)
NA
114,000
mannose, glucose, galactose, arabinose, xylose (molar ratio of 1:8.4:13.6:29.6:6.2)
[55]
Pleurotus ostreatus (mycelia)
Extract
β-1,3;1,6-D-glucans
316,260
glucose
[143]
Saccharomyces cerevisiae
Extract (WGP)
Particulate β-1,3;1,6-D-glucan
NA
glucose
[144]
 
Extract
β-glucans with β-1,6 branches with a β-1,3 regions
NA
glucose
[124]
 
Extract
(SBG)
soluble β-1,3-D-glucan with β-1,3 side chains attached with β-1,6 linkages
20,000
glucose
[145]
Sclerotinia sclerotiorum (mycelia)
Extract
(SSG)
β-1,3-D-glucan, <1% protein (>98% polysaccharide)
NA
glucose
[83]
Sclerotium rofsii
Extract (scleroglucan)
β-1,3;1,6 glucan
1,000,000
glucose
[29]
Trametes versicolor (fruit body)
Extract
(PSP)
α-1,4, β-1,3 glucans, 10% peptides
100,000
glucose, arabinose, mannose, rhamnose
[146]
Trametes versicolor (mycelia)
Extract
(PSK)
β-1,4;1,3;1,6-D-glucans, protein
94,000
glucose (74.6%), mannose (15.5%), xylose (4.8%), galactose (2.7%), fucose (2.4%)
[137, 147]
Undaria pinnatifida (sporophyll)
Extract
Galactofucan sulfate
9,000
fucose:galactose 1.0:1.1
[148]
  
Galactofucan sulfate
63,000
fucose:galactose:gluc-uronic acid (1.0:1.0:0.04)
[149]
  
β-1,3-galactofucan sulphate
38,000
fucose, galactose
[150]
Unidentified source
Extract (modified citrus pectin)
NA
10,000
galactose, rhamnose, uronic acid
[125]
 
Extract (highly methoxylated pectin)
NA
200,000
NA
[36]
Table 6
Safety of Immunomodulatory Polysaccharide Products Following Oral Intake
Category
Source
Test group
Test
Design
Results
Equivalent human dose*
Reference
Arabino-galactans
Argemone mexicana (arabinogalactan protein)
Pregnant rats
Develop-mental toxicity
250, 500, or 1,00 mg/kg, gestational days 5-19
No developmental toxicity: NOAEL = 1 g/kg
68 g
[151]
  
♀ and ♂ rats
Fertility
250, 500, or 1,00 mg/kg, 1 month
No effects on reproduction: NOAEL = 1 g/kg
  
Fucoidans
Undaria pinnatifida
Rats
Subchronic toxicity
1.35 g/kg, 1 month
No evidence of toxicity
91.8 g
[152]
Galacto-mannans
Cyamopsis tetragonolobus
Adolescent and adult ♂ rats
Subchronic and chronic toxicity
8% of diet, 6-67 weeks
No evidence of toxicity
8% of diet
[153]
  
Rats
Acute toxicity
One 7.06 g/kg dose: observed 2 weeks
LD50 = 7.06 g/kg
480 g
[96]
   
Subchronic and chronic toxicity
1, 2, 4, 7.5 or 15% of diet, 3 months
All doses ↓ ♀ BW; 7.5-15% ↓ ♂ BW; 15% ↓ bone marrow cellularity; ↓ kidney and liver weights
1-15% of diet
 
  
19 adults with hypercholesterol-emia
 
18 g/day, 1 year
Short-term gastric bloating/loose stools, in 8 subjects, resolved in 7-10 days; 2 withdrew because of diarrhea. No toxicity for 13 subjects completing study
18 g
[154]
  
16 Type II diabetics
 
26.4-39.6 g/day, 6 months
No effects on hematologic, hepatic, or renal function
39.9 g
[155]
  
18 Type II diabetics
 
30 g/day, 4 months
 
30 g
 
 
Cyamopsis tetragonolobus (partially hydrolyzed guar gum)
Mice & rats
Acute toxicity
One 6 g/kg dose; observed
2 weeks
LD50 > 6 g/kg
>408 g
[156]
  
Rats
Subchronic toxicity
0.2, 1.0 or 5% of diet, 13 weeks
No evidence of toxicity
5% of diet
 
    
0.5 or 2.5 g/kg, 1 month
NOAEL > 2.5 g/kg
>170 g
[157]
  
S. typhimurium
Mutagenicity
Ames test
Not mutagenic
NA
 
Glucans
Agaricus subrufescens (aqueous extract)
Rats
Subchronic toxicity
0.63, 1.25, 2.5 or 5% of diet, 3 months
NOAEL = 5% of diet
5% of diet
[158]
  
3 women with advanced cancers
Case reports
Specific identity of products, doses, and durations of intake unknown
Severe hepatotoxicity; two patients died
NA
[97]
 
Agaricus subrufescens (freeze dried powder)
24 normal adults and 24 adults with liver problems
Subchronic toxicity
3 g, 4 months
No evidence of toxicity
3 g
[159]
 
Ganoderma lucidum
(supplement)
Elderly woman
Case report
1 year G. lucidum (and another unidentified product, initiated one month previous)
Elevated liver enzymes and liver tissue damage
NA
[98]
 
Grifola frondosa (powder)
Rats
Acute toxicity
One 2 g/kg dose
No evidence of toxicity
136 g
[160]
 
Lentinula edodes (powder)
10 adults
Safety
4 g/day for 10 weeks; repeated
3-6 months later
50% of subjects experienced blood eosinophilia, ↑ eosinophil granule proteins in serum and stool, ↑GI symptoms
4 g
[99]
 
Lentinula edodes
(SME)
Nude mice
Safety
10% of diet days 1-18, 33-50
No adverse events
10% of diet
[80]
  
61 men with prostate cancer
 
0.1 g/kg, 6 months
No adverse events
6.8 g
 
 
Lentinus lepideus (PG101)
Female mice
Subchronic toxicity
0.5 g/kg, 24 days
No evidence of toxicity
34 g
[92]
 
Phellinus linteus
(crude extract)
Rats
Acute toxicity
One 5 g/kg dose; observed
2 weeks
LD50 > 5 g/kg
349 g
[161]
 
Pleurotus ostreatus (aqueous extract)
Mice
Acute toxicity
One 3 g/kg dose; observed
1 day
LD50 > 3 g/kg
>204.g
[100]
   
Subacute toxicity
319 mg/kg, 1 month
Hemorrhages in intestine, liver, lung, kidney; inflammation and microabscesses in liver
21.7 g
 
 
Saccharomyces cerevisiae (particulate glucan [WGP])
Rats
Acute toxicity
One 2 g/kg, observed 2 weeks
LD50 > 2 g/kg
>136 g
[144]
   
Subchronic toxicity
2, 33.3 or 100 mg/kg, 3 months
NOAEL = 100 mg/kg
6.80 g
 
Heteroglycans
Trametes versicolor
(PSP)
Rats
Subchronic toxicity
1.5, 3.0 or 6.0 mg/kg, 2 months
No evidence of toxicity
408 mg
[162]
  
Rats & monkeys
Subchronic and chronic toxicity
100-200X equivalent human dose, 6 months
No evidence of toxicity
NA
 
 
Trametes versicolor
(PSK)
Humans with colon cancer
Safety
3 g/day, up to 7 years
No significant adverse events
3 g
[57]
  
Humans with colorectal cancer
 
3 g/day, 2 years
 
3 g
[58]
Mannans
Aloe vera gel
Dogs
Acute toxicity
Fed one 32 g/kg; observed 2 weeks
LD50 > 32 g/kg
>2,176 g
Bill Pine, personal communi-cation
  
Rats
 
One 21.5 g/kg; observed 2 weeks
LD50 > 10 g/kg
>680 g
 
*150 lb adult
A number of studies in healthy human adults demonstrated immune stimulating effects of oral polysaccharides. Arabinogalactans from Larix occidentalis (Western larch) were shown in RCTs to increase lymphocyte proliferation and the number of CD8+ lymphocytes [18] and to increase the IgG subtype response to pneumococcal vaccination [19]. A furanose extract from Panax quiquefolium (North American ginseng) was shown in an RCT of healthy older adults to decrease the incidence of acute respiratory illness and symptom duration [20]. Finally, an RCT of healthy adults consuming Undaria pinnatifida (wakame) fucoidans found both immune stimulating and suppressing effects, including increased stromal-derived factor-1, IFN-g, CD34+ cells and CXCR4-expressing CD34+ cells and decreased blood leukocytes and lymphocytes [21].
Studies in healthy animals showed a number of immune stimulating effects of various glucan products from Agaricus subrufescens (A. blazei) (aqueous extracts [22], aqueous extracts with standardized β-glucans [23], α-1,6 and α-1,4 glucans [24], and whole plant powders [25]); Lentinula edodes (shiitake) (lentinan [26] and β-glucans [27]); Saccharomyces cerevisiae (β-1,3-glucans [27, 28]); Laminaria digitata (laminarin [29]); Sclerotium rofsii (glucan phosphate [29]); Sclerotinia sclerotiorum (SSG [30]); and Phellinus linteus (powder [31] and aqueous, alcohol-precipitated extract [32]). A furanose extract from P. quiquefolium and pectins from Buplerum falcatum and Malus (apple) spp. have also been shown to enhance immune function in healthy young animals [3335]. Cyamopsis tetragonolobus galactomannan (guar gum) or highly methoxylated pectin feeding exerted numerous stimulating effects on antibody production in older animals [36].
Evidence for the effectiveness of oral polysaccharides against infection and immune challenges has been mainly demonstrated in animals. Immune stimulating effects have been shown in resting and exercise-stressed animals with thioglycollate, clodronate, or HSV-1 injections fed Avena (oat) spp. soluble glucans [3741]; animals injected with or fed E. vermiformis and fed Avena spp. particulate glucans [42, 43]; animals with E. coli injections fed L. digitata glucans (laminarin) [44]; animals with HSV injections fed U. pinnatifida fucoidans [45]; animals with Staphylococcus aureus or Candida albicans injections fed S. cerevisiae glucans (scleroglucan) [29]; and animals with fecal solution injections fed an aqueous extract of A. subrufescens (A. blazei Murrill) [46].
Additional controlled human and animal studies have shown anti-inflammatory and anti-allergy effects of some polysaccharide products. In an RCT of adults with seasonal allergic rhinitis, S. cerevisiae β-1,3;1-6 glucans decreased IL-4, IL-5 and percent eosinophils, and increased IL-12 in nasal fluid [47], while a placebo-controlled study of patients with recurrent aphthous stomatitis (canker sores) consuming β-1,3;1-6 glucans found increased lymphocyte proliferation and decreased Ulcer Severity Scores [48].
Animal models of inflammatory bowel disease have shown anti-inflammatory effects of Cladosiphon okamuranus Tokida fucoidans [49], Cyamopsis tetragonolobus galactomannans [50], Malus spp. pectins [51], and mixed polysaccharide supplements [52]. Animals challenged with ovalbumin have demonstrated anti-inflammatory/allergy effects of A. subrufescens aqueous extracts [22], an aqueous extract of Ganoderma tsugae [53], and Pyrus pyrifolia pectins [54]. Anti-inflammatory effects have also been seen in animals with cotton pellet implantations fed a Pholiota nameko heteroglycan (PNPS-1) [55].
Trametes versicolor glucans have demonstrated anti-cancer effects in humans. In two RCTs and five controlled trials, PSK from T. versicolor mycelia increased survival of advanced stage gastric, colon and colorectal cancer patients [5662] with one study showing increased immune parameters (including blood NK cell activity, leukocyte cytotoxicity, proportion of helper cells and lymphocyte suppressor cells) [62]. An RCT of advanced stage lung cancer patients consuming PSP from T. versicolor fruit bodies found increased IgG and IgM antibodies and total leukocyte and neutrophil counts, along with a decrease in the number of patients withdrawing from the study due to disease progression [63]. An RCT of ovarian or endometrial cancer patients consuming A. subrufescens glucans showed increased NK cell activity and fewer chemotherapy side effects [64].
In numerous animal models of cancer, a wide range of polysaccharides have shown anti-tumorogenic effects. Glucan products sourced from A. subrufescens demonstrating anti-cancer activities in animal models include an aqueous extract [65], an aqueous, acid-treated extract [66], and an aqueous extract with standardized levels of β-glucans [23]. Anti-cancer effects have been reported following intake of aqueous extracts of G. lucidum [6769]; the powder and D fraction of G. frondosa [7072]; Hordeum vulgare β-glucans [7376]; Laminaria angustata powder [77]; Lentinula edodes products (powders [70, 78, 79], SME [80], β-glucans [27], and lentinan [81, 82]); Pleurotus ostreatus powder [70], Saccharomyces cerevisiae particulate β-1,3;1,6 and β-1,3glucans[27, 73]; and a glucan from Sclerotinia sclerotiorum (SSG) [30, 83]. A glucomannan from L. edodes (KS-2) improved survival of animals with cancer cell injections [84]; apple and citrus pectins have exerted anti-cancer effects, including decreased tumor incidence [8590]. Finally, heteroglycans from Lycium barbarum (LBP3p), Lentinus lepidus (PG101) and A. subrufescens (ATOM) demonstrated a number of immune stimulating effects in animal cancer models [9193]. Interestingly, only one animal study has been performed using glucans from T. versicolor (PSP): animals with cancer cell implantations showed decreased tumor growth and vascular density [94].
Most polysaccharide products appear to be safe, based on NOAEL, acute and/or chronic toxicity testing in rodents (Table 6). As would be expected, powders, extracts and products that have not been fully characterized pose the most concerns. Other than for aloe vera gel, which was shown in a small human trial to increase the plasma bioavailability of vitamins C and E [95], the impact of polysaccharide intake on the absorption of nutrients and medications is not known. While one rat toxicity study raised concerns when guar gum comprised 15% of the daily diet [96], the product was safe in humans studies when 18-39.6 g/day was consumed for up to a year (Table 4). Product contamination may explain three case reports of hepatotoxicity and/or death following intake of an A. subrufescens aqueous extract [97]. Seven animal studies reporting positive immunologic effects of A. subrufescens extracts in healthy animals or animals with cancers found no evidence of toxicity (Tables 1 and 2). In humans, six weeks of A. subrufescens glucans intake was safe for cancer patients, and four months of 3 g/day intake by 24 healthy adults and 24 adults with liver disease reported no evidence of toxicity (Table 4). Another case report associated liver toxicity with G. lucidum intake, but the elderly subject also took an unidentified product a month previous to her admission for testing [98]. Three animal studies reported immunologic benefits and no adverse effects following intake of G. lucidum aqueous extracts; in one study intake was 5% of the diet for 5 months (Table 1). While adverse effects were also reported in a study in which 10 adults consumed 4 g/day L. edodes powder for 10 weeks [99], immunologic animal studies reported no ill effects of either L. edodes powder (5 studies, up to 5% of the diet up to nine months) or extract (7 studies, up to 40 days intake) (Tables 1 and 3). Finally, while intake of 319 mg/kg of an aqueous extract of P. ostreatus by mice for 1 month caused hemorrhages in multiple tissues [100], there was no reported toxicity when mice consumed the mushroom powder as 5% of their diet for nine months (Table 3). While ≥1 gram/day of T. versicolor glucan products were safely consumed by cancer patients for up to 10 years, the long-term effects of ingestion of the other polysaccharide products discussed in this review is also not known.

Discussion

The majority of studies that qualified for inclusion in this review employed models investigating immune stimulation; fewer explored anti-inflammatory effects. Animal studies reported immune system effects in the gut, spleen, bone marrow, liver, blood, thymus, lungs, and saliva; controlled human studies reported evidence of immune stimulation in the blood, anti-inflammatory effects in nasal lavage fluid and improved survival in cancer patients. The literature is highly heterogenous and is not sufficient to support broad structure/function generalizations. For the limited number of studies that investigated well-characterized, isolated products (primarily glucan products), effects can be unequivocally attributed to polysaccharides. Such associations are certainly more tenuous when considering product powders or products obtained by extraction methods designed to isolate polysaccharides, but without complete compositional analyses.
Dietary polysaccharides are known to impact gut microbial ecology [101, 102], and advances in microbial ecology, immunology and metabolomics indicate that gut microbiota can impact host nutrition, immune modulation, resistance to pathogens, intestinal epithelial development and activity, and energy metabolism [103107]. Other than fucoidans, the polysaccharides discussed in this review appear to be at least partially degraded by bacterial enzymes in the human digestive tract (Table 7). Arabinogalactans, galactomannans, a glucan (laminarin), glucomannans, and mixed polysaccharide products (Ambrotose® products) have been shown to be metabolized by human colonic bacteria. Orally ingested fucoidans, glucans and mannans (or their fragments) have been detected in numerous tissues and organs throughout the body [73, 108, 109], (Carrington Laboratories, personal communication). We know of no study that has determined the specific identity of orally-ingested polysaccharide end products in animal or human tissues.
Table 7
Fate of Immunomodulatory Polysaccharide Products Following Oral Intake
Category
Product
Metabol-ized by human gut bacteria?
Study type
Fate
(method: tissues detected)
References
Arabinogalactans
Larix spp.
yes
in vitro
NA
[163169]
Fucoidans
Undaria pinnatifida
no
in vitro
Ab: human plasma
[108, 170]
Galactomannans
Cyamopsis tetragonolobus (partially hydrolyzed guar gum)
yes
in vivo
NA
[171]
 
Cyamopsis tetragonolobus (guar gum)
yes
in vitro
NA
[167]
Glucans
Hordeum vulgare
NA
in vivo
Fluorescein-labeled: mouse Mø in the spleen, bone marrow, lymph nodes
[73]
 
Laminaria digitata (laminarin)
yes
in vitro
NA
[29, 170, 172]
 
Sclerotium rofsii (scleroglucan) glucan phosphate, Laminaria spp. (laminarin)
NA
in vivo
Alexa Fluor 488-labeled: mouse intestinal epithelial cells, plasma, GALT
[29]
 
Saccharomyces cervisiae (particulate)
NA
in vivo
Fluorescein-labeled: mouse macrophage in the spleen, bone marrow, lymph nodes
[73]
 
Trametes versicolor
(PSK)
NA
in vivo
14C-labeled: rat and rabbit serum; mouse GI tract, bone marrow, salivary glands, liver, brain, spleen, pancreas
[173]
Mannans
Aloe barbadensis (aloemannan)
yes
in vitro
FITC-labeled: mouse, GI tract
[121, 174]
 
Aloe barbadensis
(gel powder)
yes
in vitro
NA
[163]
 
Aloe barbadensis (acemannan)
NA
in vivo
14C-labeled: dog systemic, particularly liver, bone marrow, gut, kidney, thymus, spleen
(Carrington Laboratories, personal communication)
Mixed polysaccharide products
Ambrotose complex®, Advanced Ambrotose® powder
yes
in vitro
NA
[163, 175]
Pectins
NA
yes
in vitro
NA
[165167, 176]
 
Buplerum falcatum (bupleuran 2IIc)
NA
in vivo
Ab bound: mouse Peyer's patch, liver
[109]
One can only speculate upon the mechanisms by which the polysaccharides discussed in this review influence immunologic function, particularly when one considers the exceedingly complex environment of the GI tract. It is possible that fragments of polysaccharides partially hydrolyzed by gut bacteria may either bind to gut epithelia and exert localized and/or systemic immune system effects, or be absorbed into the bloodstream, with the potential to exert systemic effects. Current studies investigating the link between the bioconversion of dietary polysaccharides, their bioavailability and their downstream effects on the host metabolism and physiology are utilizing metabolomic and metagenomic approaches that can detect and track diverse microbial metabolites from immunomodulatory polysaccharides [103]. These and other innovative approaches in the field of colonic fermentation are providing novel insights into gut microbial-human mutualism [110, 111], its impact on regulating human health and disease, and the importance of dietary modulation [112115].
Additional RCTs of well-characterized products are needed to more completely understand the immunomodulatory effects and specific applications of oral polysaccharides. Such studies will need to better investigate the optimal timing and duration for polysaccharide ingestion. That is, should they be consumed continuously, before, at the time of, or after exposure to a pathogen or environmental insult? Only a few studies have actually investigated the impact of timing of polysaccharide intake to achieve optimal benefits. Daily feeding with some polysaccharides appears to result in tolerance (and diminished benefits); this has been demonstrated for some mushroom β-glucans [3, 26]. For those polysaccharides whose immunologic effects are dependent on their prebiotic activities, regular feeding would be presumed necessary.

Conclusions

The dietary polysaccharides included in this review have been shown to elicit diverse immunomodulatory effects in animal tissues, including the blood, GI tract, and spleen. In controlled human trials, polysaccharide intake stimulated the immune system in the blood of healthy adults, dampened the allergic response to a respiratory inflammatory agent, and improved survival in cancer patients. Additional RCTs of well-characterized products are needed to more completely understand the immunomodulatory effects and specific applications of oral polysaccharides

Acknowledgements

The authors would like to thank Barbara K. Kinsey, Ward Moore and Mrs. Jennifer Aponte for their assistance with the preparation of this manuscript, and Dr. Azita Alavi and Mrs. Christy Duncan for their editorial assistance.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors are employees of the Research & Development Department at Mannatech, Incorporated, which sells two of the polysaccharide products (Ambrotose® powder and Advanced Ambrotose® powder) discussed in this review.

Authors' contributions

JER and EDN conducted literature searches and wrote the manuscript. RAS provided technical guidance. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Paulsen BS: Plant polysaccharides with immunostimulatory activities. Curr Org Chem. 2001, 5: 939-950. 10.2174/1385272013374987. Paulsen BS: Plant polysaccharides with immunostimulatory activities. Curr Org Chem. 2001, 5: 939-950. 10.2174/1385272013374987.
2.
Zurück zum Zitat Yamada H, Kiyohara H: Complement-activating polysaccharides from medicinal herbs. Immunomodulatory Agents from Plants. Edited by: Wagner H Basel. 1999, Switzerland: Birkhauser Verlag Yamada H, Kiyohara H: Complement-activating polysaccharides from medicinal herbs. Immunomodulatory Agents from Plants. Edited by: Wagner H Basel. 1999, Switzerland: Birkhauser Verlag
3.
Zurück zum Zitat Hobbs C: Medicinal Mushrooms: An Exploration of Tradition, Healing and Culture. 2003, Summertown, Tenn: Botanica Press Hobbs C: Medicinal Mushrooms: An Exploration of Tradition, Healing and Culture. 2003, Summertown, Tenn: Botanica Press
4.
Zurück zum Zitat Kusaykin M, Bakunina I, Sova V, Ermakova S, Kuznetsova T, Besednova N, et al: Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnol J. 2008, 3: 904-915. 10.1002/biot.200700054.PubMed Kusaykin M, Bakunina I, Sova V, Ermakova S, Kuznetsova T, Besednova N, et al: Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnol J. 2008, 3: 904-915. 10.1002/biot.200700054.PubMed
5.
Zurück zum Zitat Aloes. The genus aloe. 2003, Boca Raton, Fla.: CRC Press Aloes. The genus aloe. 2003, Boca Raton, Fla.: CRC Press
6.
Zurück zum Zitat Anderson JW, Smith BM, Gustafson NJ: Health benefits and practical aspects of high-fiber diets. Am J Clin Nutr. 1994, 59: 1242S-1247S.PubMed Anderson JW, Smith BM, Gustafson NJ: Health benefits and practical aspects of high-fiber diets. Am J Clin Nutr. 1994, 59: 1242S-1247S.PubMed
7.
Zurück zum Zitat Weickert MO, Pfeiffer AF: Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr. 2008, 138: 439-442.PubMed Weickert MO, Pfeiffer AF: Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr. 2008, 138: 439-442.PubMed
8.
Zurück zum Zitat Estruch R, Martinez-Gonzalez MA, Corella D, Basora-Gallisa J, Ruiz-Gutierrez V, Covas MI, et al: Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J Epidemiol Community Health. 2009, 63: 582-588. 10.1136/jech.2008.082214.PubMed Estruch R, Martinez-Gonzalez MA, Corella D, Basora-Gallisa J, Ruiz-Gutierrez V, Covas MI, et al: Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J Epidemiol Community Health. 2009, 63: 582-588. 10.1136/jech.2008.082214.PubMed
9.
Zurück zum Zitat Pelley RP, Strickland FM: Plants, polysaccharides, and the treatment and prevention of neoplasia. Crit Rev Oncog. 2000, 11: 189-225.PubMed Pelley RP, Strickland FM: Plants, polysaccharides, and the treatment and prevention of neoplasia. Crit Rev Oncog. 2000, 11: 189-225.PubMed
10.
Zurück zum Zitat Lull C, Wichers HJ, Savelkoul HF: Antiinflammatory and immunomodulating properties of fungal metabolites. Mediators Inflamm. 2005, 2005: 63-80. 10.1155/MI.2005.63.PubMedPubMedCentral Lull C, Wichers HJ, Savelkoul HF: Antiinflammatory and immunomodulating properties of fungal metabolites. Mediators Inflamm. 2005, 2005: 63-80. 10.1155/MI.2005.63.PubMedPubMedCentral
11.
Zurück zum Zitat Chan GC, Chan WK, Sze DM: The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009, 2: 25-10.1186/1756-8722-2-25.PubMedPubMedCentral Chan GC, Chan WK, Sze DM: The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009, 2: 25-10.1186/1756-8722-2-25.PubMedPubMedCentral
12.
Zurück zum Zitat Schepetkin IA, Quinn MT: Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol. 2006, 6: 317-333. 10.1016/j.intimp.2005.10.005.PubMed Schepetkin IA, Quinn MT: Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol. 2006, 6: 317-333. 10.1016/j.intimp.2005.10.005.PubMed
13.
Zurück zum Zitat Ma Y, Hebert JR, Li W, Bertone-Johnson ER, Olendzki B, Pagoto SL, et al: Association between dietary fiber and markers of systemic inflammation in the Women's Health Initiative Observational Study. Nutrition. 2008, 24: 941-949. 10.1016/j.nut.2008.04.005.PubMedPubMedCentral Ma Y, Hebert JR, Li W, Bertone-Johnson ER, Olendzki B, Pagoto SL, et al: Association between dietary fiber and markers of systemic inflammation in the Women's Health Initiative Observational Study. Nutrition. 2008, 24: 941-949. 10.1016/j.nut.2008.04.005.PubMedPubMedCentral
14.
Zurück zum Zitat Hua KF, Hsu HY, Chao LK, Chen ST, Yang WB, Hsu J, et al: Ganoderma lucidum polysaccharides enhance CD14 endocytosis of LPS and promote TLR4 signal transduction of cytokine expression. J Cell Physiol. 2007, 212: 537-550. 10.1002/jcp.21050.PubMed Hua KF, Hsu HY, Chao LK, Chen ST, Yang WB, Hsu J, et al: Ganoderma lucidum polysaccharides enhance CD14 endocytosis of LPS and promote TLR4 signal transduction of cytokine expression. J Cell Physiol. 2007, 212: 537-550. 10.1002/jcp.21050.PubMed
15.
Zurück zum Zitat Ho YW, Yeung JSL, Chiu PKY, Tang WM, Lin ZB, Man RYK, et al: Ganoderma lucidum polysaccharide peptide reduced the production of proinflammatory cytokines in activated rheumatoid synovial fibroblast. Mol Cell Biochem. 2007, 301: 173-179. 10.1007/s11010-006-9409-y.PubMed Ho YW, Yeung JSL, Chiu PKY, Tang WM, Lin ZB, Man RYK, et al: Ganoderma lucidum polysaccharide peptide reduced the production of proinflammatory cytokines in activated rheumatoid synovial fibroblast. Mol Cell Biochem. 2007, 301: 173-179. 10.1007/s11010-006-9409-y.PubMed
16.
Zurück zum Zitat Kim MH, Joo HG: Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. Immunol Lett. 2008, 115: 138-143. 10.1016/j.imlet.2007.10.016.PubMed Kim MH, Joo HG: Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. Immunol Lett. 2008, 115: 138-143. 10.1016/j.imlet.2007.10.016.PubMed
17.
Zurück zum Zitat Boh B, Berovic M, Zhang J, Zhi-Bin L: Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev. 2007, 13: 265-301. full_text.PubMed Boh B, Berovic M, Zhang J, Zhi-Bin L: Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol Annu Rev. 2007, 13: 265-301. full_text.PubMed
18.
Zurück zum Zitat Nantz MP, Parker AR, McGill C, Percival SS: Evaluation of arabinogalactan's effect on human immunity. FASEB Journal. 2001, 15 (4): A633- Nantz MP, Parker AR, McGill C, Percival SS: Evaluation of arabinogalactan's effect on human immunity. FASEB Journal. 2001, 15 (4): A633-
19.
Zurück zum Zitat Udani JK, Singh BB, Barrett ML, Singh VJ: Immunomodulatory effects of a proprietary arabinogalactan extract: a randomized, double-blind, placebo-controlled, parallel group study. Presented at the 50th Annual American College of Nutrition Meeting, Resort Lake Buena Vista, Florida, October 1-4, 2009. 2009 Udani JK, Singh BB, Barrett ML, Singh VJ: Immunomodulatory effects of a proprietary arabinogalactan extract: a randomized, double-blind, placebo-controlled, parallel group study. Presented at the 50th Annual American College of Nutrition Meeting, Resort Lake Buena Vista, Florida, October 1-4, 2009. 2009
20.
Zurück zum Zitat McElhaney JE, Goel V, Toane B, Hooten J, Shan JJ: Efficacy of COLD-fX in the prevention of respiratory symptoms in community-dwelling adults: a randomized, double-blinded, placebo controlled trial. J Altern Complement Med. 2006, 12: 153-157. 10.1089/acm.2006.12.153.PubMed McElhaney JE, Goel V, Toane B, Hooten J, Shan JJ: Efficacy of COLD-fX in the prevention of respiratory symptoms in community-dwelling adults: a randomized, double-blinded, placebo controlled trial. J Altern Complement Med. 2006, 12: 153-157. 10.1089/acm.2006.12.153.PubMed
21.
Zurück zum Zitat Irhimeh MR, Fitton JH, Lowenthal RM: Fucoidan ingestion increases the expression of CXCR4 on human CD34+ cells. Exp Hematol. 2007, 35: 989-994. 10.1016/j.exphem.2007.02.009.PubMed Irhimeh MR, Fitton JH, Lowenthal RM: Fucoidan ingestion increases the expression of CXCR4 on human CD34+ cells. Exp Hematol. 2007, 35: 989-994. 10.1016/j.exphem.2007.02.009.PubMed
22.
Zurück zum Zitat Chan Y, Chang T, Chan CH, Yeh YC, Chen CW, Shieh B, et al: Immunomodulatory effects of Agaricus blazei Murill in Balb/cByJ mice. J Microbiol Immunol Infect. 2007, 40: 201-208.PubMed Chan Y, Chang T, Chan CH, Yeh YC, Chen CW, Shieh B, et al: Immunomodulatory effects of Agaricus blazei Murill in Balb/cByJ mice. J Microbiol Immunol Infect. 2007, 40: 201-208.PubMed
23.
Zurück zum Zitat Takimoto H, Wakita D, Kawaguchi K, Kumazawa Y: Potentiation of cytotoxic activity in naive and tumor-bearing mice by oral administration of hot-water extracts from Agaricus blazei fruiting bodies. Biol Pharm Bull. 2004, 27: 404-406. 10.1248/bpb.27.404.PubMed Takimoto H, Wakita D, Kawaguchi K, Kumazawa Y: Potentiation of cytotoxic activity in naive and tumor-bearing mice by oral administration of hot-water extracts from Agaricus blazei fruiting bodies. Biol Pharm Bull. 2004, 27: 404-406. 10.1248/bpb.27.404.PubMed
24.
Zurück zum Zitat Mizuno M, Morimoto M, Minato K, Tsuchida H: Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem. 1998, 62: 434-437. 10.1271/bbb.62.434.PubMed Mizuno M, Morimoto M, Minato K, Tsuchida H: Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem. 1998, 62: 434-437. 10.1271/bbb.62.434.PubMed
25.
Zurück zum Zitat Yuminamochi E, Koike T, Takeda K, Horiuchi I, Okumura K: Interleukin-12- and interferon-gamma-mediated natural killer cell activation by Agaricus blazei Murill. Immunology. 2007, 121: 197-206. 10.1111/j.1365-2567.2006.02558.x.PubMedPubMedCentral Yuminamochi E, Koike T, Takeda K, Horiuchi I, Okumura K: Interleukin-12- and interferon-gamma-mediated natural killer cell activation by Agaricus blazei Murill. Immunology. 2007, 121: 197-206. 10.1111/j.1365-2567.2006.02558.x.PubMedPubMedCentral
26.
Zurück zum Zitat Hanaue H, Tokuda Y, Machimura T, Kamijoh A, Kondo Y, Ogoshi K, et al: Effects of oral lentinan on T-cell subsets in peripheral venous blood. Clin Ther. 1989, 11: 614-622.PubMed Hanaue H, Tokuda Y, Machimura T, Kamijoh A, Kondo Y, Ogoshi K, et al: Effects of oral lentinan on T-cell subsets in peripheral venous blood. Clin Ther. 1989, 11: 614-622.PubMed
27.
Zurück zum Zitat Vetvicka V, Vashishta A, Saraswat-Ohri S, Vetvickova J: Immunological effects of yeast- and mushroom-derived beta-glucans. J Med Food. 2008, 11: 615-622. 10.1089/jmf.2007.0588.PubMed Vetvicka V, Vashishta A, Saraswat-Ohri S, Vetvickova J: Immunological effects of yeast- and mushroom-derived beta-glucans. J Med Food. 2008, 11: 615-622. 10.1089/jmf.2007.0588.PubMed
28.
Zurück zum Zitat Tsukada C, Yokoyama H, Miyaji C, Ishimoto Y, Kawamura H, Abo T: Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of beta-glucan. Cell Immunol. 2003, 221: 1-5. 10.1016/S0008-8749(03)00061-3.PubMed Tsukada C, Yokoyama H, Miyaji C, Ishimoto Y, Kawamura H, Abo T: Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of beta-glucan. Cell Immunol. 2003, 221: 1-5. 10.1016/S0008-8749(03)00061-3.PubMed
29.
Zurück zum Zitat Rice PJ, Adams EL, Ozment-Skelton T, Gonzalez AJ, Goldman MP, Lockhard BE, et al: Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J Pharmacol Exp Ther. 2005, 314: 1079-1086. 10.1124/jpet.105.085415.PubMed Rice PJ, Adams EL, Ozment-Skelton T, Gonzalez AJ, Goldman MP, Lockhard BE, et al: Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J Pharmacol Exp Ther. 2005, 314: 1079-1086. 10.1124/jpet.105.085415.PubMed
30.
Zurück zum Zitat Suzuki I, Hashimoto K, Ohno N, Tanaka H, Yadomae T: Immunomodulation by orally administered beta-glucan in mice. Int J Immunopharmacol. 1989, 11: 761-769. 10.1016/0192-0561(89)90130-6.PubMed Suzuki I, Hashimoto K, Ohno N, Tanaka H, Yadomae T: Immunomodulation by orally administered beta-glucan in mice. Int J Immunopharmacol. 1989, 11: 761-769. 10.1016/0192-0561(89)90130-6.PubMed
31.
Zurück zum Zitat Lim BO, Yamada K, Cho BG, Jeon T, Hwang SG, Park T, et al: Comparative study on the modulation of IgE and cytokine production by Phellinus linteus grown on germinated brown rice, Phellinus linteus and germinated brown rice in murine splenocytes. Biosci Biotechnol Biochem. 2004, 68: 2391-2394. 10.1271/bbb.68.2391.PubMed Lim BO, Yamada K, Cho BG, Jeon T, Hwang SG, Park T, et al: Comparative study on the modulation of IgE and cytokine production by Phellinus linteus grown on germinated brown rice, Phellinus linteus and germinated brown rice in murine splenocytes. Biosci Biotechnol Biochem. 2004, 68: 2391-2394. 10.1271/bbb.68.2391.PubMed
32.
Zurück zum Zitat Oh GS, Lee MS, Pae HO, Kwon J, Lee SS, Jeong JG, et al: Effects of oral administration of Phellinus linteus on the production of Th1- and Th2-type cytokines in mice. Immunopharmacol Immunotoxicol. 2006, 28: 281-293. 10.1080/08923970600809363.PubMed Oh GS, Lee MS, Pae HO, Kwon J, Lee SS, Jeong JG, et al: Effects of oral administration of Phellinus linteus on the production of Th1- and Th2-type cytokines in mice. Immunopharmacol Immunotoxicol. 2006, 28: 281-293. 10.1080/08923970600809363.PubMed
33.
Zurück zum Zitat Biondo PD, Goruk S, Ruth MR, O'Connell E, Field CJ: Effect of CVT-E002 (COLD-fX) versus a ginsenoside extract on systemic and gut-associated immune function. Int Immunopharmacol. 2008, 8: 1134-1142. 10.1016/j.intimp.2008.04.003.PubMed Biondo PD, Goruk S, Ruth MR, O'Connell E, Field CJ: Effect of CVT-E002 (COLD-fX) versus a ginsenoside extract on systemic and gut-associated immune function. Int Immunopharmacol. 2008, 8: 1134-1142. 10.1016/j.intimp.2008.04.003.PubMed
34.
Zurück zum Zitat Lim BO, Lee SH, Park DK, Choue RW: Effect of dietary pectin on the production of immunoglobulins and cytokines by mesenteric lymph node lymphocytes in mouse colitis induced with dextran sulfate sodium. Biosci Biotechnol Biochem. 2003, 67: 1706-1712. 10.1271/bbb.67.1706.PubMed Lim BO, Lee SH, Park DK, Choue RW: Effect of dietary pectin on the production of immunoglobulins and cytokines by mesenteric lymph node lymphocytes in mouse colitis induced with dextran sulfate sodium. Biosci Biotechnol Biochem. 2003, 67: 1706-1712. 10.1271/bbb.67.1706.PubMed
35.
Zurück zum Zitat Sakurai MH, Matsumoto T, Kiyohara H, Yamada H: B-cell proliferation activity of pectic polysaccharide from a medicinal herb, the roots of Bupleurum falcatum L. and its structural requirement. Immunology. 1999, 97: 540-547. 10.1046/j.1365-2567.1999.00774.x.PubMedPubMedCentral Sakurai MH, Matsumoto T, Kiyohara H, Yamada H: B-cell proliferation activity of pectic polysaccharide from a medicinal herb, the roots of Bupleurum falcatum L. and its structural requirement. Immunology. 1999, 97: 540-547. 10.1046/j.1365-2567.1999.00774.x.PubMedPubMedCentral
36.
Zurück zum Zitat Yamada K, Tokunaga Y, Ikeda A, Ohkura K, Kaku-Ohkura S, Mamiya S, et al: Effect of dietary fiber on the lipid metabolism and immune function of aged Sprague-Dawley rats. Biosci Biotechnol Biochem. 2003, 67: 429-433. 10.1271/bbb.67.429.PubMed Yamada K, Tokunaga Y, Ikeda A, Ohkura K, Kaku-Ohkura S, Mamiya S, et al: Effect of dietary fiber on the lipid metabolism and immune function of aged Sprague-Dawley rats. Biosci Biotechnol Biochem. 2003, 67: 429-433. 10.1271/bbb.67.429.PubMed
37.
Zurück zum Zitat Murphy EA, Davis JM, Brown AS, Carmichael MD, Ghaffar A, Mayer EP: Oat beta-glucan effects on neutrophil respiratory burst activity following exercise. Med Sci Sports Exerc. 2007, 39: 639-644. 10.1249/mss.0b013e3180306309.PubMed Murphy EA, Davis JM, Brown AS, Carmichael MD, Ghaffar A, Mayer EP: Oat beta-glucan effects on neutrophil respiratory burst activity following exercise. Med Sci Sports Exerc. 2007, 39: 639-644. 10.1249/mss.0b013e3180306309.PubMed
38.
Zurück zum Zitat Davis JM, Murphy EA, Brown AS, Carmichael MD, Ghaffar A, Mayer EP: Effects of oat beta-glucan on innate immunity and infection after exercise stress. Med Sci Sports Exerc. 2004, 36: 1321-1327. 10.1249/01.MSS.0000135790.68893.6D.PubMed Davis JM, Murphy EA, Brown AS, Carmichael MD, Ghaffar A, Mayer EP: Effects of oat beta-glucan on innate immunity and infection after exercise stress. Med Sci Sports Exerc. 2004, 36: 1321-1327. 10.1249/01.MSS.0000135790.68893.6D.PubMed
39.
Zurück zum Zitat Murphy EA, Davis JM, Carmichael MD, Mayer EP, Ghaffar A: Benefits of oat beta-glucan and sucrose feedings on infection and macrophage antiviral resistance following exercise stress. Am J Physiol Regul Integr Comp Physiol. 2009, 297: R1188-R1194.PubMed Murphy EA, Davis JM, Carmichael MD, Mayer EP, Ghaffar A: Benefits of oat beta-glucan and sucrose feedings on infection and macrophage antiviral resistance following exercise stress. Am J Physiol Regul Integr Comp Physiol. 2009, 297: R1188-R1194.PubMed
40.
Zurück zum Zitat Murphy EA, Davis JM, Brown AS, Carmichael MD, Carson JA, Van RN, et al: Benefits of oat beta-glucan on respiratory infection following exercise stress: role of lung macrophages. Am J Physiol Regul Integr Comp Physiol. 2008, 294: R1593-R1599.PubMed Murphy EA, Davis JM, Brown AS, Carmichael MD, Carson JA, Van RN, et al: Benefits of oat beta-glucan on respiratory infection following exercise stress: role of lung macrophages. Am J Physiol Regul Integr Comp Physiol. 2008, 294: R1593-R1599.PubMed
41.
Zurück zum Zitat Davis JM, Murphy EA, Brown AS, Carmichael MD, Ghaffar A, Mayer EP: Effects of moderate exercise and oat beta-glucan on innate immune function and susceptibility to respiratory infection. Am J Physiol Regul Integr Comp Physiol. 2004, 286: R366-R372.PubMed Davis JM, Murphy EA, Brown AS, Carmichael MD, Ghaffar A, Mayer EP: Effects of moderate exercise and oat beta-glucan on innate immune function and susceptibility to respiratory infection. Am J Physiol Regul Integr Comp Physiol. 2004, 286: R366-R372.PubMed
42.
Zurück zum Zitat Yun CH, Estrada A, Van Kessel A: Immunomodulatory effects of oat beta-glucan administered intragastrically or parenterally on mice infected with Eimeria vermiformis. Microbiol Immunol. 1998, 42: 457-465.PubMed Yun CH, Estrada A, Van Kessel A: Immunomodulatory effects of oat beta-glucan administered intragastrically or parenterally on mice infected with Eimeria vermiformis. Microbiol Immunol. 1998, 42: 457-465.PubMed
43.
Zurück zum Zitat Yun CH, Estrada A, Van KA, Park BC, Laarveld B: Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol Med Microbiol. 2003, 35: 67-75. 10.1016/S0928-8244(02)00460-1.PubMed Yun CH, Estrada A, Van KA, Park BC, Laarveld B: Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol Med Microbiol. 2003, 35: 67-75. 10.1016/S0928-8244(02)00460-1.PubMed
44.
Zurück zum Zitat Neyrinck AM, Mouson A, Delzenne NM: Dietary supplementation with laminarin, a fermentable marine beta (1-3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue. Int Immunopharmacol. 2007, 7: 1497-1506. 10.1016/j.intimp.2007.06.011.PubMed Neyrinck AM, Mouson A, Delzenne NM: Dietary supplementation with laminarin, a fermentable marine beta (1-3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue. Int Immunopharmacol. 2007, 7: 1497-1506. 10.1016/j.intimp.2007.06.011.PubMed
45.
Zurück zum Zitat Hayashi K, Nakano T, Hashimoto M, Kanekiyo K, Hayashi T: Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol. 2008, 8: 109-116. 10.1016/j.intimp.2007.10.017.PubMed Hayashi K, Nakano T, Hashimoto M, Kanekiyo K, Hayashi T: Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol. 2008, 8: 109-116. 10.1016/j.intimp.2007.10.017.PubMed
46.
Zurück zum Zitat Bernardshaw S, Hetland G, Grinde B, Johnson E: An extract of the mushroom Agaricus blazei Murill protects against lethal septicemia in a mouse model of fecal peritonitis. Shock. 2006, 25: 420-425. 10.1097/01.shk.0000209526.58614.92.PubMed Bernardshaw S, Hetland G, Grinde B, Johnson E: An extract of the mushroom Agaricus blazei Murill protects against lethal septicemia in a mouse model of fecal peritonitis. Shock. 2006, 25: 420-425. 10.1097/01.shk.0000209526.58614.92.PubMed
47.
Zurück zum Zitat Kirmaz C, Bayrak P, Yilmaz O, Yuksel H: Effects of glucan treatment on the Th1/Th2 balance in patients with allergic rhinitis: a double-blind placebo-controlled study. Eur Cytokine Netw. 2005, 16: 128-134.PubMed Kirmaz C, Bayrak P, Yilmaz O, Yuksel H: Effects of glucan treatment on the Th1/Th2 balance in patients with allergic rhinitis: a double-blind placebo-controlled study. Eur Cytokine Netw. 2005, 16: 128-134.PubMed
48.
Zurück zum Zitat Koray M, Ak G, Kurklu E, Tanyeri H, Aydin F, Oguz FS, et al: The effect of beta-glucan on recurrent aphthous stomatitis. J Altern Complement Med. 2009, 15: 111-113. 10.1089/acm.2008.0118.PubMed Koray M, Ak G, Kurklu E, Tanyeri H, Aydin F, Oguz FS, et al: The effect of beta-glucan on recurrent aphthous stomatitis. J Altern Complement Med. 2009, 15: 111-113. 10.1089/acm.2008.0118.PubMed
49.
Zurück zum Zitat Matsumoto S, Nagaoka M, Hara T, Kimura-Takagi I, Mistuyama K, Ueyama S: Fucoidan derived from Cladosiphon okamuranus Tokida ameliorates murine chronic colitis through the down-regulation of interleukin-6 production on colonic epithelial cells. Clin Exp Immunol. 2004, 136: 432-439. 10.1111/j.1365-2249.2004.02462.x.PubMedPubMedCentral Matsumoto S, Nagaoka M, Hara T, Kimura-Takagi I, Mistuyama K, Ueyama S: Fucoidan derived from Cladosiphon okamuranus Tokida ameliorates murine chronic colitis through the down-regulation of interleukin-6 production on colonic epithelial cells. Clin Exp Immunol. 2004, 136: 432-439. 10.1111/j.1365-2249.2004.02462.x.PubMedPubMedCentral
50.
Zurück zum Zitat Naito Y, Takagi T, Katada K, Uchiyama K, Kuroda M, Kokura S, et al: Partially hydrolyzed guar gum down-regulates colonic inflammatory response in dextran sulfate sodium-induced colitis in mice. J Nutr Biochem. 2006, 17: 402-409. 10.1016/j.jnutbio.2005.08.010.PubMed Naito Y, Takagi T, Katada K, Uchiyama K, Kuroda M, Kokura S, et al: Partially hydrolyzed guar gum down-regulates colonic inflammatory response in dextran sulfate sodium-induced colitis in mice. J Nutr Biochem. 2006, 17: 402-409. 10.1016/j.jnutbio.2005.08.010.PubMed
51.
Zurück zum Zitat Lim BO, Lee SH, Park DK, Choue RW: Effect of dietary pectin on the production of immunoglobulins and cytokines by mesenteric lymph node lymphocytes in mouse colitis induced with dextran sulfate sodium. Biosci Biotechnol Biochem. 2003, 67: 1706-1712. 10.1271/bbb.67.1706.PubMed Lim BO, Lee SH, Park DK, Choue RW: Effect of dietary pectin on the production of immunoglobulins and cytokines by mesenteric lymph node lymphocytes in mouse colitis induced with dextran sulfate sodium. Biosci Biotechnol Biochem. 2003, 67: 1706-1712. 10.1271/bbb.67.1706.PubMed
52.
Zurück zum Zitat Koetzner L, Grover G, Boulet J, Jacoby H: Plant-derived polysaccharide dietary supplements inhibits dextran sulfate sodium-induced colitis in the rat. Dig Dis Sci. 2010, 55: 1278-1285. 10.1007/s10620-009-0848-7.PubMed Koetzner L, Grover G, Boulet J, Jacoby H: Plant-derived polysaccharide dietary supplements inhibits dextran sulfate sodium-induced colitis in the rat. Dig Dis Sci. 2010, 55: 1278-1285. 10.1007/s10620-009-0848-7.PubMed
53.
Zurück zum Zitat Lin JY, Chen ML, Lin BF: Ganoderma tsugae in vivo modulates Th1/Th2 and macrophage responses in an allergic murine model. Food Chem Toxicol. 2006, 44: 2025-2032. 10.1016/j.fct.2006.07.002.PubMed Lin JY, Chen ML, Lin BF: Ganoderma tsugae in vivo modulates Th1/Th2 and macrophage responses in an allergic murine model. Food Chem Toxicol. 2006, 44: 2025-2032. 10.1016/j.fct.2006.07.002.PubMed
54.
Zurück zum Zitat Lee JC, Pak SC, Lee SH, Na CS, Lim SC, Song CH, et al: Asian pear pectin administration during presensitization inhibits allergic response to ovalbumin in BALB/c mice. J Altern Complement Med. 2004, 10: 527-534. 10.1089/1075553041323867.PubMed Lee JC, Pak SC, Lee SH, Na CS, Lim SC, Song CH, et al: Asian pear pectin administration during presensitization inhibits allergic response to ovalbumin in BALB/c mice. J Altern Complement Med. 2004, 10: 527-534. 10.1089/1075553041323867.PubMed
55.
Zurück zum Zitat Li H, Lu X, Zhang S, Lu M, Liu H: Anti-inflammatory activity of polysaccharide from Pholiota nameko. Biochemistry (Mosc). 2008, 73: 669-675. 10.1134/S0006297908060060. Li H, Lu X, Zhang S, Lu M, Liu H: Anti-inflammatory activity of polysaccharide from Pholiota nameko. Biochemistry (Mosc). 2008, 73: 669-675. 10.1134/S0006297908060060.
56.
Zurück zum Zitat Mitomi T, Tsuchiya S, Iijima N, Aso K, Suzuki K, Nishiyama K, et al: Randomized, controlled study on adjuvant immunochemotherapy with PSK in curatively resected colorectal cancer. The Cooperative Study Group of Surgical Adjuvant Immunochemotherapy for Cancer of Colon and Rectum (Kanagawa). Dis Colon Rectum. 1992, 35: 123-130. 10.1007/BF02050666.PubMed Mitomi T, Tsuchiya S, Iijima N, Aso K, Suzuki K, Nishiyama K, et al: Randomized, controlled study on adjuvant immunochemotherapy with PSK in curatively resected colorectal cancer. The Cooperative Study Group of Surgical Adjuvant Immunochemotherapy for Cancer of Colon and Rectum (Kanagawa). Dis Colon Rectum. 1992, 35: 123-130. 10.1007/BF02050666.PubMed
57.
Zurück zum Zitat Ito K, Nakazato H, Koike A, Takagi H, Saji S, Baba S, et al: Long-term effect of 5-fluorouracil enhanced by intermittent administration of polysaccharide K after curative resection of colon cancer. A randomized controlled trial for 7-year follow-up. Int J Colorectal Dis. 2004, 19: 157-164. 10.1007/s00384-003-0532-x.PubMed Ito K, Nakazato H, Koike A, Takagi H, Saji S, Baba S, et al: Long-term effect of 5-fluorouracil enhanced by intermittent administration of polysaccharide K after curative resection of colon cancer. A randomized controlled trial for 7-year follow-up. Int J Colorectal Dis. 2004, 19: 157-164. 10.1007/s00384-003-0532-x.PubMed
58.
Zurück zum Zitat Ohwada S, Ikeya T, Yokomori T, Kusaba T, Roppongi T, Takahashi T, et al: Adjuvant immunochemotherapy with oral Tegafur/Uracil plus PSK in patients with stage II or III colorectal cancer: a randomised controlled study. Br J Cancer. 2004, 90: 1003-1010. 10.1038/sj.bjc.6601619.PubMedPubMedCentral Ohwada S, Ikeya T, Yokomori T, Kusaba T, Roppongi T, Takahashi T, et al: Adjuvant immunochemotherapy with oral Tegafur/Uracil plus PSK in patients with stage II or III colorectal cancer: a randomised controlled study. Br J Cancer. 2004, 90: 1003-1010. 10.1038/sj.bjc.6601619.PubMedPubMedCentral
59.
Zurück zum Zitat Nakazato H, Koike A, Saji S, Ogawa N, Sakamoto J: Efficacy of immunochemotherapy as adjuvant treatment after curative resection of gastric cancer. Study Group of Immunochemotherapy with PSK for Gastric Cancer. Lancet. 1994, 343: 1122-1126. 10.1016/S0140-6736(94)90233-X.PubMed Nakazato H, Koike A, Saji S, Ogawa N, Sakamoto J: Efficacy of immunochemotherapy as adjuvant treatment after curative resection of gastric cancer. Study Group of Immunochemotherapy with PSK for Gastric Cancer. Lancet. 1994, 343: 1122-1126. 10.1016/S0140-6736(94)90233-X.PubMed
60.
Zurück zum Zitat Tsujitani S, Kakeji Y, Orita H, Watanabe A, Kohnoe S, Baba H, et al: Postoperative adjuvant immunochemotherapy and infiltration of dendritic cells for patients with advanced gastric cancer. Anticancer Res. 1992, 12: 645-648.PubMed Tsujitani S, Kakeji Y, Orita H, Watanabe A, Kohnoe S, Baba H, et al: Postoperative adjuvant immunochemotherapy and infiltration of dendritic cells for patients with advanced gastric cancer. Anticancer Res. 1992, 12: 645-648.PubMed
61.
Zurück zum Zitat Torisu M, Hayashi Y, Ishimitsu T, Fujimura T, Iwasaki K, Katano M, et al: Significant prolongation of disease-free period gained by oral polysaccharide K (PSK) administration after curative surgical operation of colorectal cancer. Cancer Immunol Immunother. 1990, 31: 261-268. 10.1007/BF01740932.PubMed Torisu M, Hayashi Y, Ishimitsu T, Fujimura T, Iwasaki K, Katano M, et al: Significant prolongation of disease-free period gained by oral polysaccharide K (PSK) administration after curative surgical operation of colorectal cancer. Cancer Immunol Immunother. 1990, 31: 261-268. 10.1007/BF01740932.PubMed
62.
Zurück zum Zitat Nio Y, Tsubono M, Tseng CC, Morimoto H, Kawabata K, Masai Y, et al: Immunomodulation by orally administered protein-bound polysaccharide PSK in patients with gastrointestinal cancer. Biotherapy. 1992, 4: 117-128. 10.1007/BF02171756.PubMed Nio Y, Tsubono M, Tseng CC, Morimoto H, Kawabata K, Masai Y, et al: Immunomodulation by orally administered protein-bound polysaccharide PSK in patients with gastrointestinal cancer. Biotherapy. 1992, 4: 117-128. 10.1007/BF02171756.PubMed
63.
Zurück zum Zitat Tsang KW, Lam CL, Yan C, Mak JC, Ooi GC, Ho JC, et al: Coriolus versicolor polysaccharide peptide slows progression of advanced non-small cell lung cancer. Respir Med. 2003, 97: 618-624. 10.1053/rmed.2003.1490.PubMed Tsang KW, Lam CL, Yan C, Mak JC, Ooi GC, Ho JC, et al: Coriolus versicolor polysaccharide peptide slows progression of advanced non-small cell lung cancer. Respir Med. 2003, 97: 618-624. 10.1053/rmed.2003.1490.PubMed
64.
Zurück zum Zitat Ahn WS, Kim DJ, Chae GT, Lee JM, Bae SM, Sin JI, et al: Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy. Int J Gynecol Cancer. 2004, 14: 589-594. 10.1111/j.1048-891X.2004.14403.x.PubMed Ahn WS, Kim DJ, Chae GT, Lee JM, Bae SM, Sin JI, et al: Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy. Int J Gynecol Cancer. 2004, 14: 589-594. 10.1111/j.1048-891X.2004.14403.x.PubMed
65.
Zurück zum Zitat Murakawa K, Fukunaga K, Tanouchi M, Hosokawa M, Hossain Z, Takahashi K: Therapy of myeloma in vivo using marine phospholipid in combination with Agaricus blazei Murill as an immune respond activator. J Oleo Sci. 2007, 56: 179-188.PubMed Murakawa K, Fukunaga K, Tanouchi M, Hosokawa M, Hossain Z, Takahashi K: Therapy of myeloma in vivo using marine phospholipid in combination with Agaricus blazei Murill as an immune respond activator. J Oleo Sci. 2007, 56: 179-188.PubMed
66.
Zurück zum Zitat Kobayashi H, Yoshida R, Kanada Y, Fukuda Y, Yagyu T, Inagaki K, et al: Suppressing effects of daily oral supplementation of beta-glucan extracted from Agaricus blazei Murill on spontaneous and peritoneal disseminated metastasis in mouse model. J Cancer Res Clin Oncol. 2005, 131: 527-538. 10.1007/s00432-005-0672-1.PubMed Kobayashi H, Yoshida R, Kanada Y, Fukuda Y, Yagyu T, Inagaki K, et al: Suppressing effects of daily oral supplementation of beta-glucan extracted from Agaricus blazei Murill on spontaneous and peritoneal disseminated metastasis in mouse model. J Cancer Res Clin Oncol. 2005, 131: 527-538. 10.1007/s00432-005-0672-1.PubMed
67.
Zurück zum Zitat Zhang Q-H, Lin Z-B: The antitumor activity of Ganoderma lucidum (Curt.:Fr.) P. Karst. (LingZhi) (Aphyllophoromycetidease) polysaccharides is related to tumor necrosis factor-alpha and interferon-gamma. Int J Medicinal Mushrooms. 1999, 207-215. Zhang Q-H, Lin Z-B: The antitumor activity of Ganoderma lucidum (Curt.:Fr.) P. Karst. (LingZhi) (Aphyllophoromycetidease) polysaccharides is related to tumor necrosis factor-alpha and interferon-gamma. Int J Medicinal Mushrooms. 1999, 207-215.
68.
Zurück zum Zitat Lu H, Kyo E, Uesaka T, Katoh O, Watanabe H: A water-soluble extract from cultured medium of Ganoderma lucidum (Rei-shi) mycelia suppresses azoxymethane-induction of colon cancers in male F344 rats. Oncol Rep. 2003, 10: 375-379.PubMed Lu H, Kyo E, Uesaka T, Katoh O, Watanabe H: A water-soluble extract from cultured medium of Ganoderma lucidum (Rei-shi) mycelia suppresses azoxymethane-induction of colon cancers in male F344 rats. Oncol Rep. 2003, 10: 375-379.PubMed
69.
Zurück zum Zitat Lu H, Kyo E, Uesaka T, Katoh O, Watanabe H: Prevention of development of N,N'-dimethylhydrazine-induced colon tumors by a water-soluble extract from cultured medium of Ganoderma lucidum (Rei-shi) mycelia in male ICR mice. Int J Mol Med. 2002, 9: 113-117.PubMed Lu H, Kyo E, Uesaka T, Katoh O, Watanabe H: Prevention of development of N,N'-dimethylhydrazine-induced colon tumors by a water-soluble extract from cultured medium of Ganoderma lucidum (Rei-shi) mycelia in male ICR mice. Int J Mol Med. 2002, 9: 113-117.PubMed
70.
Zurück zum Zitat Kurashige S, Akuzawa Y, Endo F: Effects of Lentinus edodes, Grifola frondosa and Pleurotus ostreatus administration on cancer outbreak, and activities of macrophages and lymphocytes in mice treated with a carcinogen, N-butyl-N-butanolnitrosoamine. Immunopharmacol Immunotoxicol. 1997, 19: 175-183. 10.3109/08923979709007657.PubMed Kurashige S, Akuzawa Y, Endo F: Effects of Lentinus edodes, Grifola frondosa and Pleurotus ostreatus administration on cancer outbreak, and activities of macrophages and lymphocytes in mice treated with a carcinogen, N-butyl-N-butanolnitrosoamine. Immunopharmacol Immunotoxicol. 1997, 19: 175-183. 10.3109/08923979709007657.PubMed
71.
Zurück zum Zitat Hishida I, Nanba H, Kuroda H: Antitumor activity exhibited by orally administered extract from fruit body of Grifola frondosa (maitake). Chem Pharm Bull (Tokyo). 1988, 36: 1819-1827. Hishida I, Nanba H, Kuroda H: Antitumor activity exhibited by orally administered extract from fruit body of Grifola frondosa (maitake). Chem Pharm Bull (Tokyo). 1988, 36: 1819-1827.
72.
Zurück zum Zitat Nanba H, Kubo K: Effect of Maitake D-fraction on cancer prevention. Ann N Y Acad Sci. 1997, 833: 204-207. 10.1111/j.1749-6632.1997.tb48611.x.PubMed Nanba H, Kubo K: Effect of Maitake D-fraction on cancer prevention. Ann N Y Acad Sci. 1997, 833: 204-207. 10.1111/j.1749-6632.1997.tb48611.x.PubMed
73.
Zurück zum Zitat Hong F, Yan J, Baran JT, Allendorf DJ, Hansen RD, Ostroff GR, et al: Mechanism by which orally administered (beta)-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol. 2004, 173: 797-806.PubMed Hong F, Yan J, Baran JT, Allendorf DJ, Hansen RD, Ostroff GR, et al: Mechanism by which orally administered (beta)-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol. 2004, 173: 797-806.PubMed
74.
Zurück zum Zitat Modak S, Koehne G, Vickers A, O'Reilly RJ, Cheung NK: Rituximab therapy of lymphoma is enhanced by orally administered (1-->3),(1-->4)-D-beta-glucan. Leuk Res. 2005, 29: 679-683. 10.1016/j.leukres.2004.10.008.PubMed Modak S, Koehne G, Vickers A, O'Reilly RJ, Cheung NK: Rituximab therapy of lymphoma is enhanced by orally administered (1-->3),(1-->4)-D-beta-glucan. Leuk Res. 2005, 29: 679-683. 10.1016/j.leukres.2004.10.008.PubMed
75.
Zurück zum Zitat Cheung NK, Modak S, Vickers A, Knuckles B: Orally administered beta-glucans enhance anti-tumor effects of monoclonal antibodies. Cancer Immunol Immunother. 2002, 51: 557-564.PubMed Cheung NK, Modak S, Vickers A, Knuckles B: Orally administered beta-glucans enhance anti-tumor effects of monoclonal antibodies. Cancer Immunol Immunother. 2002, 51: 557-564.PubMed
76.
Zurück zum Zitat Cheung NK, Modak S: Oral (1-->3),(1-->4)-beta-D-glucan synergizes with antiganglioside GD2 monoclonal antibody 3F8 in the therapy of neuroblastoma. Clin Cancer Res. 2002, 8: 1217-1223.PubMed Cheung NK, Modak S: Oral (1-->3),(1-->4)-beta-D-glucan synergizes with antiganglioside GD2 monoclonal antibody 3F8 in the therapy of neuroblastoma. Clin Cancer Res. 2002, 8: 1217-1223.PubMed
77.
Zurück zum Zitat Teas J, Harbison ML, Gelman RS: Dietary seaweed (Laminaria) and mammary carcinogenesis in rats. Cancer Res. 1984, 44: 2758-2761.PubMed Teas J, Harbison ML, Gelman RS: Dietary seaweed (Laminaria) and mammary carcinogenesis in rats. Cancer Res. 1984, 44: 2758-2761.PubMed
78.
Zurück zum Zitat Nanba H, Mori K, Toyomasu T, Kuroda H: Antitumor action of shiitake (Lentinus edodes) fruit bodies orally administered to mice. Chem Pharm Bull (Tokyo). 1987, 35: 2453-2458. Nanba H, Mori K, Toyomasu T, Kuroda H: Antitumor action of shiitake (Lentinus edodes) fruit bodies orally administered to mice. Chem Pharm Bull (Tokyo). 1987, 35: 2453-2458.
79.
Zurück zum Zitat Sugui MM, ves de Lima PL, Delmanto RD, da Eira AF, Salvadori DM, Ribeiro LR: Antimutagenic effect of Lentinula edodes (BERK.) Pegler mushroom and possible variation among lineages. Food Chem Toxicol. 2003, 41: 555-560. 10.1016/S0278-6915(02)00306-X.PubMed Sugui MM, ves de Lima PL, Delmanto RD, da Eira AF, Salvadori DM, Ribeiro LR: Antimutagenic effect of Lentinula edodes (BERK.) Pegler mushroom and possible variation among lineages. Food Chem Toxicol. 2003, 41: 555-560. 10.1016/S0278-6915(02)00306-X.PubMed
80.
Zurück zum Zitat deVere White RW, Hackman RM, Soares SE, Beckett LA, Sun B: Effects of a mushroom mycelium extract on the treatment of prostate cancer. Urology. 2002, 60: 640-644. 10.1016/S0090-4295(02)01856-3.PubMed deVere White RW, Hackman RM, Soares SE, Beckett LA, Sun B: Effects of a mushroom mycelium extract on the treatment of prostate cancer. Urology. 2002, 60: 640-644. 10.1016/S0090-4295(02)01856-3.PubMed
81.
Zurück zum Zitat Yap AT, Ng M-L: Immunopotentiating properties of lentinan (1-3)-b-D-glucan extracted from culinary-medicinal Shiitake mushroom. Int J Medicinal Mushrooms. 2003, 5: 19-39. Yap AT, Ng M-L: Immunopotentiating properties of lentinan (1-3)-b-D-glucan extracted from culinary-medicinal Shiitake mushroom. Int J Medicinal Mushrooms. 2003, 5: 19-39.
82.
Zurück zum Zitat Ng ML, Yap AT: Inhibition of human colon carcinoma development by lentinan from shiitake mushrooms (Lentinus edodes). J Altern Complement Med. 2002, 8: 581-589. 10.1089/107555302320825093.PubMed Ng ML, Yap AT: Inhibition of human colon carcinoma development by lentinan from shiitake mushrooms (Lentinus edodes). J Altern Complement Med. 2002, 8: 581-589. 10.1089/107555302320825093.PubMed
83.
Zurück zum Zitat Suzuki I, Sakurai T, Hashimoto K: Inhibition of experimental pulmonary metastasis of Lewis lung carcinoma by orally administered beta-glucan in mice. Chem Pharm Bull (Tokyo). 1991, 39: 1606-1608. Suzuki I, Sakurai T, Hashimoto K: Inhibition of experimental pulmonary metastasis of Lewis lung carcinoma by orally administered beta-glucan in mice. Chem Pharm Bull (Tokyo). 1991, 39: 1606-1608.
84.
Zurück zum Zitat Fujii T, Maeda H, Suzuki F, Ishida N: Isolation and characterization of a new antitumor polysaccharide, KS-2, extracted from culture mycelia of Lentinus edodes. J Antibiot (Tokyo). 1978, 31: 1079-1090. Fujii T, Maeda H, Suzuki F, Ishida N: Isolation and characterization of a new antitumor polysaccharide, KS-2, extracted from culture mycelia of Lentinus edodes. J Antibiot (Tokyo). 1978, 31: 1079-1090.
85.
Zurück zum Zitat Ohkami H, Tazawa K, Yamashita I: Effects of apple pectin on fecal bacterial enzymes in azoxymethane- induced rat colon carcinogenesis. Jpn J Cancer Res. 1995, 86: 523-529.PubMed Ohkami H, Tazawa K, Yamashita I: Effects of apple pectin on fecal bacterial enzymes in azoxymethane- induced rat colon carcinogenesis. Jpn J Cancer Res. 1995, 86: 523-529.PubMed
86.
Zurück zum Zitat Watanabe K, Reddy BS, Weisburger JH, Kritchevsky D: Effect of dietary alfalfa, pectin, and wheat bran on azoxymethane- or methylnitrosourea-induced colon carcinogenesis in F344 rats. J Natl Cancer Inst. 1979, 63: 141-145.PubMed Watanabe K, Reddy BS, Weisburger JH, Kritchevsky D: Effect of dietary alfalfa, pectin, and wheat bran on azoxymethane- or methylnitrosourea-induced colon carcinogenesis in F344 rats. J Natl Cancer Inst. 1979, 63: 141-145.PubMed
87.
Zurück zum Zitat Hayashi A, Gillen AC, Lott JR: Effects of daily oral administration of quercetin chalcone and modified citrus pectin on implanted colon-25 tumor growth in Balb-c mice. Altern Med Rev. 2000, 5: 546-552.PubMed Hayashi A, Gillen AC, Lott JR: Effects of daily oral administration of quercetin chalcone and modified citrus pectin on implanted colon-25 tumor growth in Balb-c mice. Altern Med Rev. 2000, 5: 546-552.PubMed
88.
Zurück zum Zitat Pienta KJ, Naik H, Akhtar A: Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J Natl Cancer Inst. 1995, 87: 348-353. 10.1093/jnci/87.5.348.PubMed Pienta KJ, Naik H, Akhtar A: Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin. J Natl Cancer Inst. 1995, 87: 348-353. 10.1093/jnci/87.5.348.PubMed
89.
Zurück zum Zitat Nangia-Makker P, Hogan V, Honjo Y, Baccarini S, Tait L, Bresalier R, et al: Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst. 2002, 94: 1854-1862.PubMed Nangia-Makker P, Hogan V, Honjo Y, Baccarini S, Tait L, Bresalier R, et al: Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst. 2002, 94: 1854-1862.PubMed
90.
Zurück zum Zitat Tazawa K, Okami H, Yamashita I: Anticarcinogenic action of apple pectin on fecal enzyme activities and mucosal or portal prostaglandin E2 levels in experimental rat colon carcinogenesis. J Exp Clin Cancer Res. 1997, 16: 33-38.PubMed Tazawa K, Okami H, Yamashita I: Anticarcinogenic action of apple pectin on fecal enzyme activities and mucosal or portal prostaglandin E2 levels in experimental rat colon carcinogenesis. J Exp Clin Cancer Res. 1997, 16: 33-38.PubMed
91.
Zurück zum Zitat Gan L, Hua ZS, Liang Y, Bi XH: Immunomodulation and antitumor activity by a polysaccharide-protein complex from Lycium barbarum. Int Immunopharmacol. 2004, 4: 563-569. 10.1016/j.intimp.2004.01.023.PubMed Gan L, Hua ZS, Liang Y, Bi XH: Immunomodulation and antitumor activity by a polysaccharide-protein complex from Lycium barbarum. Int Immunopharmacol. 2004, 4: 563-569. 10.1016/j.intimp.2004.01.023.PubMed
92.
Zurück zum Zitat Jin M, Jeon H, Jung HJ, Kim B, Shin SS, Choi JJ, et al: Enhancement of repopulation and hematopoiesis of bone marrow cells in irradiated mice by oral administration of PG101, a water-soluble extract from Lentinus lepideus. Exp Biol Med (Maywood). 2003, 228: 759-766. Jin M, Jeon H, Jung HJ, Kim B, Shin SS, Choi JJ, et al: Enhancement of repopulation and hematopoiesis of bone marrow cells in irradiated mice by oral administration of PG101, a water-soluble extract from Lentinus lepideus. Exp Biol Med (Maywood). 2003, 228: 759-766.
93.
Zurück zum Zitat Ito H, Shimura K, Itoh H, Kawade M: Antitumor effects of a new polysaccharide-protein complex (ATOM) prepared from Agaricus blazei (Iwade strain 101) Himematsutake and its mechanisms in tumor-bearing mice. Anticancer Res. 1997, 17: 277-284.PubMed Ito H, Shimura K, Itoh H, Kawade M: Antitumor effects of a new polysaccharide-protein complex (ATOM) prepared from Agaricus blazei (Iwade strain 101) Himematsutake and its mechanisms in tumor-bearing mice. Anticancer Res. 1997, 17: 277-284.PubMed
94.
Zurück zum Zitat Ho JC, Konerding MA, Gaumann A, Groth M, Liu WK: Fungal polysaccharopeptide inhibits tumor angiogenesis and tumor growth in mice. Life Sci. 2004, 75: 1343-1356. 10.1016/j.lfs.2004.02.021.PubMed Ho JC, Konerding MA, Gaumann A, Groth M, Liu WK: Fungal polysaccharopeptide inhibits tumor angiogenesis and tumor growth in mice. Life Sci. 2004, 75: 1343-1356. 10.1016/j.lfs.2004.02.021.PubMed
95.
Zurück zum Zitat Vinson JA, Al Kharrat H, Andreoli L: Effect of Aloe vera preparations on the human bioavailability of vitamins C and E. Phytomedicine. 2005, 12: 760-765. 10.1016/j.phymed.2003.12.013.PubMed Vinson JA, Al Kharrat H, Andreoli L: Effect of Aloe vera preparations on the human bioavailability of vitamins C and E. Phytomedicine. 2005, 12: 760-765. 10.1016/j.phymed.2003.12.013.PubMed
96.
Zurück zum Zitat Graham SL, Arnold A, Kasza L, Ruffin GE, Jackson RC, Watkins TL, et al: Subchronic effects of guar gum in rats. Food Cosmet Toxicol. 1981, 19: 287-290. 10.1016/0015-6264(81)90386-2.PubMed Graham SL, Arnold A, Kasza L, Ruffin GE, Jackson RC, Watkins TL, et al: Subchronic effects of guar gum in rats. Food Cosmet Toxicol. 1981, 19: 287-290. 10.1016/0015-6264(81)90386-2.PubMed
97.
Zurück zum Zitat Mukai H, Watanabe T, Ando M, Katsumata N: An alternative medicine, Agaricus blazei, may have induced severe hepatic dysfunction in cancer patients. Jpn J Clin Oncol. 2006, 36: 808-810. 10.1093/jjco/hyl108.PubMed Mukai H, Watanabe T, Ando M, Katsumata N: An alternative medicine, Agaricus blazei, may have induced severe hepatic dysfunction in cancer patients. Jpn J Clin Oncol. 2006, 36: 808-810. 10.1093/jjco/hyl108.PubMed
98.
Zurück zum Zitat Yuen MF, Ip P, Ng WK, Lai CL: Hepatotoxicity due to a formulation of Ganoderma lucidum (lingzhi). J Hepatol. 2004, 41: 686-687. 10.1016/j.jhep.2004.06.016.PubMed Yuen MF, Ip P, Ng WK, Lai CL: Hepatotoxicity due to a formulation of Ganoderma lucidum (lingzhi). J Hepatol. 2004, 41: 686-687. 10.1016/j.jhep.2004.06.016.PubMed
99.
Zurück zum Zitat Levy AM, Kita H, Phillips SF, Schkade PA, Dyer PD, Gleich GJ, et al: Eosinophilia and gastrointestinal symptoms after ingestion of shiitake mushrooms. J Allergy Clin Immunol. 1998, 101: 613-620. 10.1016/S0091-6749(98)70168-X.PubMed Levy AM, Kita H, Phillips SF, Schkade PA, Dyer PD, Gleich GJ, et al: Eosinophilia and gastrointestinal symptoms after ingestion of shiitake mushrooms. J Allergy Clin Immunol. 1998, 101: 613-620. 10.1016/S0091-6749(98)70168-X.PubMed
100.
Zurück zum Zitat Al Deen IH, Twaij HA, Al Badr AA, Istarabadi TA: Toxicologic and histopathologic studies of Pleurotus ostreatus mushroom in mice. J Ethnopharmacol. 1987, 21: 297-305. 10.1016/0378-8741(87)90105-X.PubMed Al Deen IH, Twaij HA, Al Badr AA, Istarabadi TA: Toxicologic and histopathologic studies of Pleurotus ostreatus mushroom in mice. J Ethnopharmacol. 1987, 21: 297-305. 10.1016/0378-8741(87)90105-X.PubMed
101.
Zurück zum Zitat Flint HJ, Duncan SH, Scott KP, Louis P: Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol. 2007, 9: 1101-1111. 10.1111/j.1462-2920.2007.01281.x.PubMed Flint HJ, Duncan SH, Scott KP, Louis P: Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol. 2007, 9: 1101-1111. 10.1111/j.1462-2920.2007.01281.x.PubMed
102.
Zurück zum Zitat Macfarlane GT, Steed H, Macfarlane S: Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 2008, 104: 305-344.PubMed Macfarlane GT, Steed H, Macfarlane S: Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol. 2008, 104: 305-344.PubMed
103.
Zurück zum Zitat Jacobs DM, Gaudier E, van DJ, Vaughan EE: Non-digestible food ingredients, colonic microbiota and the impact on gut health and immunity: a role for metabolomics. Curr Drug Metab. 2009, 10: 41-54. 10.2174/138920009787048383.PubMed Jacobs DM, Gaudier E, van DJ, Vaughan EE: Non-digestible food ingredients, colonic microbiota and the impact on gut health and immunity: a role for metabolomics. Curr Drug Metab. 2009, 10: 41-54. 10.2174/138920009787048383.PubMed
104.
Zurück zum Zitat Ishizuka S, Tanaka S, Xu H, Hara H: Fermentable dietary fiber potentiates the localization of immune cells in the rat large intestinal crypts. Exp Biol Med (Maywood). 2004, 229: 876-884. Ishizuka S, Tanaka S, Xu H, Hara H: Fermentable dietary fiber potentiates the localization of immune cells in the rat large intestinal crypts. Exp Biol Med (Maywood). 2004, 229: 876-884.
105.
Zurück zum Zitat Garrett WS, Gordon JI, Glimcher LH: Homeostasis and inflammation in the intestine. Cell. 2010, 140: 859-870. 10.1016/j.cell.2010.01.023.PubMedPubMedCentral Garrett WS, Gordon JI, Glimcher LH: Homeostasis and inflammation in the intestine. Cell. 2010, 140: 859-870. 10.1016/j.cell.2010.01.023.PubMedPubMedCentral
106.
Zurück zum Zitat Segain JP, Raingeard de la BD, Bourreille A, Leray V, Gervois N, Rosales C, et al: Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut. 2000, 47: 397-403. 10.1136/gut.47.3.397.PubMedPubMedCentral Segain JP, Raingeard de la BD, Bourreille A, Leray V, Gervois N, Rosales C, et al: Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut. 2000, 47: 397-403. 10.1136/gut.47.3.397.PubMedPubMedCentral
107.
Zurück zum Zitat Mazmanian SK, Kasper DL: The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol. 2006, 6: 849-858. 10.1038/nri1956.PubMed Mazmanian SK, Kasper DL: The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol. 2006, 6: 849-858. 10.1038/nri1956.PubMed
108.
Zurück zum Zitat Irhimeh MR, Fitton JH, Lowenthal RM, Kongtawelert P: A quantitative method to detect fucoidan in human plasma using a novel antibody. Methods Find Exp Clin Pharmacol. 2005, 27: 705-710. 10.1358/mf.2005.27.10.948919.PubMed Irhimeh MR, Fitton JH, Lowenthal RM, Kongtawelert P: A quantitative method to detect fucoidan in human plasma using a novel antibody. Methods Find Exp Clin Pharmacol. 2005, 27: 705-710. 10.1358/mf.2005.27.10.948919.PubMed
109.
Zurück zum Zitat Sakurai MH, Matsumoto T, Kiyohara H, Yamada H: Detection and tissue distribution of anti-ulcer pectic polysaccharides from Bupleurum falcatum by polyclonal antibody. Planta Med. 1996, 62: 341-346. 10.1055/s-2006-957898.PubMed Sakurai MH, Matsumoto T, Kiyohara H, Yamada H: Detection and tissue distribution of anti-ulcer pectic polysaccharides from Bupleurum falcatum by polyclonal antibody. Planta Med. 1996, 62: 341-346. 10.1055/s-2006-957898.PubMed
110.
Zurück zum Zitat Arasaradnam RP, Pharaoh MW, Williams GJ, Nwokolo CU, Bardhan KD, Kumar S: Colonic fermentation--more than meets the nose. Med Hypotheses. 2009, 73: 753-756. 10.1016/j.mehy.2009.04.027.PubMed Arasaradnam RP, Pharaoh MW, Williams GJ, Nwokolo CU, Bardhan KD, Kumar S: Colonic fermentation--more than meets the nose. Med Hypotheses. 2009, 73: 753-756. 10.1016/j.mehy.2009.04.027.PubMed
111.
Zurück zum Zitat Possemiers S, Grootaert C, Vermeiren J, Gross G, Marzorati M, Verstraete W, et al: The intestinal environment in health and disease - recent insights on the potential of intestinal bacteria to influence human health. Curr Pharm Des. 2009, 15: 2051-2065. 10.2174/138161209788489159.PubMed Possemiers S, Grootaert C, Vermeiren J, Gross G, Marzorati M, Verstraete W, et al: The intestinal environment in health and disease - recent insights on the potential of intestinal bacteria to influence human health. Curr Pharm Des. 2009, 15: 2051-2065. 10.2174/138161209788489159.PubMed
112.
Zurück zum Zitat Liu J, Gunn L, Hansen R, Yan J: Yeast-derived beta-glucan in combination with anti-tumor monoclonal antibody therapy in cancer. Recent Pat Anticancer Drug Discov. 2009, 4: 101-109. 10.2174/157489209788452858.PubMed Liu J, Gunn L, Hansen R, Yan J: Yeast-derived beta-glucan in combination with anti-tumor monoclonal antibody therapy in cancer. Recent Pat Anticancer Drug Discov. 2009, 4: 101-109. 10.2174/157489209788452858.PubMed
113.
Zurück zum Zitat Tuohy KM, Gougoulias C, Shen Q, Walton G, Fava F, Ramnani P: Studying the human gut microbiota in the trans-omics era--focus on metagenomics and metabonomics. Curr Pharm Des. 2009, 15: 1415-1427. 10.2174/138161209788168182.PubMed Tuohy KM, Gougoulias C, Shen Q, Walton G, Fava F, Ramnani P: Studying the human gut microbiota in the trans-omics era--focus on metagenomics and metabonomics. Curr Pharm Des. 2009, 15: 1415-1427. 10.2174/138161209788168182.PubMed
114.
Zurück zum Zitat Schiffrin EJ, Morley JE, Donnet-Hughes A, Guigoz Y: The inflammatory status of the elderly: The intestinal contribution. Mutat Res. 2010, 690: 50-56.PubMed Schiffrin EJ, Morley JE, Donnet-Hughes A, Guigoz Y: The inflammatory status of the elderly: The intestinal contribution. Mutat Res. 2010, 690: 50-56.PubMed
115.
Zurück zum Zitat Leung MY, Liu C, Koon JC, Fung KP: Polysaccharide biological response modifiers. Immunol Lett. 2006, 105: 101-114. 10.1016/j.imlet.2006.01.009.PubMed Leung MY, Liu C, Koon JC, Fung KP: Polysaccharide biological response modifiers. Immunol Lett. 2006, 105: 101-114. 10.1016/j.imlet.2006.01.009.PubMed
116.
Zurück zum Zitat Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K: Antitumor activity of polysaccharides and lipids from marine algae. Nippon Suisan Gakkaishi. 1989, 5: 1265-1271. Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K: Antitumor activity of polysaccharides and lipids from marine algae. Nippon Suisan Gakkaishi. 1989, 5: 1265-1271.
117.
Zurück zum Zitat Wasser SP: Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. 2002, 60: 258-274. 10.1007/s00253-002-1076-7.PubMed Wasser SP: Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. 2002, 60: 258-274. 10.1007/s00253-002-1076-7.PubMed
118.
Zurück zum Zitat Firenzuoli F, Gori L, Lombardo G: The medicinal mushroom Agaricus blazei Murrill: Review of literature and pharmaco-toxicological problems. Evid Based Complement Alternat Med. 2008, 5: 3-15. 10.1093/ecam/nem007.PubMed Firenzuoli F, Gori L, Lombardo G: The medicinal mushroom Agaricus blazei Murrill: Review of literature and pharmaco-toxicological problems. Evid Based Complement Alternat Med. 2008, 5: 3-15. 10.1093/ecam/nem007.PubMed
119.
Zurück zum Zitat Luta G, McAnalley B: Aloe vera: chemical composition and methods used to determine its presence in commercial products. GlycoScience & Nutrition. 2005, 6: 1-12. Luta G, McAnalley B: Aloe vera: chemical composition and methods used to determine its presence in commercial products. GlycoScience & Nutrition. 2005, 6: 1-12.
120.
Zurück zum Zitat Qiu Z, Jones K, Wylie M, Jia Q, Orndorff S: Modified Aloe barbadensis polysaccharide with immunoregulatory activity. Planta Med. 2000, 66: 152-156. 10.1055/s-2000-11125.PubMed Qiu Z, Jones K, Wylie M, Jia Q, Orndorff S: Modified Aloe barbadensis polysaccharide with immunoregulatory activity. Planta Med. 2000, 66: 152-156. 10.1055/s-2000-11125.PubMed
121.
Zurück zum Zitat Yagi A, Nakamori J, Yamada T, Iwase H, Tanaka T, Kaneo Y, et al: In vivo metabolism of aloe mannan. Planta Med. 1999, 65: 417-420. 10.1055/s-1999-14018.PubMed Yagi A, Nakamori J, Yamada T, Iwase H, Tanaka T, Kaneo Y, et al: In vivo metabolism of aloe mannan. Planta Med. 1999, 65: 417-420. 10.1055/s-1999-14018.PubMed
122.
Zurück zum Zitat Pugh N, Ross SA, ElSohly MA, Pasco DS: Characterization of Aloeride, a new high-molecular-weight polysaccharide from Aloe vera with potent immunostimulatory activity. J Agric Food Chem. 2001, 49: 1030-1034. 10.1021/jf001036d.PubMed Pugh N, Ross SA, ElSohly MA, Pasco DS: Characterization of Aloeride, a new high-molecular-weight polysaccharide from Aloe vera with potent immunostimulatory activity. J Agric Food Chem. 2001, 49: 1030-1034. 10.1021/jf001036d.PubMed
123.
Zurück zum Zitat Final report on the safety assessment of Aloe andongensis extract, Aloe andongensis leaf juice, Aloe arborescens leaf extract, Aloe arborescens leaf juice, Aloe arborescens leaf protoplasts, Aloe barbadensis flower extract, Aloe barbadensis leaf, Aloe barbadensis leaf extract, Aloe barbadensis leaf juice, Aloe barbadensis leaf polysaccharides, Aloe barbadensis leaf water, Aloe ferox leaf extract, Aloe ferox leaf juice, and Aloe ferox leaf juice extract. Int J Toxicol. 2007, 26 (Suppl 2): 1-50. Final report on the safety assessment of Aloe andongensis extract, Aloe andongensis leaf juice, Aloe arborescens leaf extract, Aloe arborescens leaf juice, Aloe arborescens leaf protoplasts, Aloe barbadensis flower extract, Aloe barbadensis leaf, Aloe barbadensis leaf extract, Aloe barbadensis leaf juice, Aloe barbadensis leaf polysaccharides, Aloe barbadensis leaf water, Aloe ferox leaf extract, Aloe ferox leaf juice, and Aloe ferox leaf juice extract. Int J Toxicol. 2007, 26 (Suppl 2): 1-50.
124.
Zurück zum Zitat Akramiene D, Kondrotas A, Didziapetriene J, Kevelaitis E: Effects of beta-glucans on the immune system. Medicina (Kaunas). 2007, 43: 597-606. Akramiene D, Kondrotas A, Didziapetriene J, Kevelaitis E: Effects of beta-glucans on the immune system. Medicina (Kaunas). 2007, 43: 597-606.
125.
Zurück zum Zitat Kidd PM: A new approach to metastatic cancer prevention: modified citrus pectin (MCP), a unique pectin that blocks cell surface lectins. Alt Med Rev. 1996, 1: 4-10. Kidd PM: A new approach to metastatic cancer prevention: modified citrus pectin (MCP), a unique pectin that blocks cell surface lectins. Alt Med Rev. 1996, 1: 4-10.
126.
Zurück zum Zitat Nagaoka M, Shibata H, Kimura-Takagi I, Hashimoto S, Kimura K, Makino T, et al: Structural study of fucoidan from Cladosiphon okamuranus TOKIDA. Glycoconj J. 1999, 16: 19-26. 10.1023/A:1006945618657.PubMed Nagaoka M, Shibata H, Kimura-Takagi I, Hashimoto S, Kimura K, Makino T, et al: Structural study of fucoidan from Cladosiphon okamuranus TOKIDA. Glycoconj J. 1999, 16: 19-26. 10.1023/A:1006945618657.PubMed
127.
Zurück zum Zitat Akaki J, Matsui Y, Kojima H, Nakajima S, Kamei K, Tamesada M: Structural analysis of monocyte activation constituents in cultured mycelia of Cordyceps sinensis. Fitoterapia. 2009, 80: 182-187. 10.1016/j.fitote.2009.01.007.PubMed Akaki J, Matsui Y, Kojima H, Nakajima S, Kamei K, Tamesada M: Structural analysis of monocyte activation constituents in cultured mycelia of Cordyceps sinensis. Fitoterapia. 2009, 80: 182-187. 10.1016/j.fitote.2009.01.007.PubMed
128.
Zurück zum Zitat Whistler RL, BeMiller JN: Carbohydrate Chemistry for Food Scientists. 1999, St. Paul, Minn.: American Association of Cereal Chemists, Inc, 2 Whistler RL, BeMiller JN: Carbohydrate Chemistry for Food Scientists. 1999, St. Paul, Minn.: American Association of Cereal Chemists, Inc, 2
129.
Zurück zum Zitat Ohkuma T, Otagiri K, Ikekawa T, Tanaka S: Augmentation of antitumor activity by combined cryo-destruction of sarcoma 180 and protein-bound polysaccharide, EA6, isolated from Flammulina velutipes (Curt. ex Fr.) Sing. in ICR mice. J Pharmacobiodyn. 1982, 5: 439-444.PubMed Ohkuma T, Otagiri K, Ikekawa T, Tanaka S: Augmentation of antitumor activity by combined cryo-destruction of sarcoma 180 and protein-bound polysaccharide, EA6, isolated from Flammulina velutipes (Curt. ex Fr.) Sing. in ICR mice. J Pharmacobiodyn. 1982, 5: 439-444.PubMed
130.
Zurück zum Zitat Wasser SP: Reishi or Ling Zhi (Ganoderma lucidum). Encyclopedia of Dietary Supplements. Edited by: Coates PM, Blackman MR, Cragg GM, Levine M, Moss J, White JD. 2005, New York, New York: Marcel Dekker, 603-622. Wasser SP: Reishi or Ling Zhi (Ganoderma lucidum). Encyclopedia of Dietary Supplements. Edited by: Coates PM, Blackman MR, Cragg GM, Levine M, Moss J, White JD. 2005, New York, New York: Marcel Dekker, 603-622.
131.
Zurück zum Zitat Song G, Xu A, Chen H, Wang X: Component analysis on polysaccharides in exocarp of Ginkgo biloba. Zhong Yao Cai. 1997, 20: 461-463.PubMed Song G, Xu A, Chen H, Wang X: Component analysis on polysaccharides in exocarp of Ginkgo biloba. Zhong Yao Cai. 1997, 20: 461-463.PubMed
132.
Zurück zum Zitat Kubo K, Nanba H, Kuroda H: Modification of cellullar immune responses in experimental autoimmune hepatitis in mice by maitake (Grifola frondosa). Mycoscience. 1998, 39: 351-360. 10.1007/BF02460895. Kubo K, Nanba H, Kuroda H: Modification of cellullar immune responses in experimental autoimmune hepatitis in mice by maitake (Grifola frondosa). Mycoscience. 1998, 39: 351-360. 10.1007/BF02460895.
133.
Zurück zum Zitat Berteau O, Mulloy B: Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology. 2003, 13: 29R-40R. 10.1093/glycob/cwg058.PubMed Berteau O, Mulloy B: Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology. 2003, 13: 29R-40R. 10.1093/glycob/cwg058.PubMed
134.
Zurück zum Zitat D'Adamo P: Larch arabinogalactan. J Neuropath Med. 1990, 6: 33-37. D'Adamo P: Larch arabinogalactan. J Neuropath Med. 1990, 6: 33-37.
135.
Zurück zum Zitat Chihara G, Maeda Y, Hamuro J, Sasaki T, Fukuoka F: Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) sing. Nature. 1969, 222: 687-688. 10.1038/222687a0.PubMed Chihara G, Maeda Y, Hamuro J, Sasaki T, Fukuoka F: Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) sing. Nature. 1969, 222: 687-688. 10.1038/222687a0.PubMed
136.
Zurück zum Zitat Chihara G: The antitumor polysaccharide Lentinan: an overview. Manipulation of Host Defence Mechanisms. Edited by: Aoki T, Ichiro U, Eiro T. 1981, Excerpta Medica, 1-16. Chihara G: The antitumor polysaccharide Lentinan: an overview. Manipulation of Host Defence Mechanisms. Edited by: Aoki T, Ichiro U, Eiro T. 1981, Excerpta Medica, 1-16.
137.
Zurück zum Zitat Trnovec T, Hrmova M: Immunomodulatory polysaccharides: chemistry, disposition and metabolism. Biopharm Drug Dispos. 1993, 14: 187-198. 10.1002/bdd.2510140302.PubMed Trnovec T, Hrmova M: Immunomodulatory polysaccharides: chemistry, disposition and metabolism. Biopharm Drug Dispos. 1993, 14: 187-198. 10.1002/bdd.2510140302.PubMed
138.
Zurück zum Zitat Jin M, Jung HJ, Choi JJ, Jeon H, Oh JH, Kim B, et al: Activation of selective transcription factors and cytokines by water-soluble extract from Lentinus lepideus. Experimental Biology and Medicine. 2003, 228: 749-758.PubMed Jin M, Jung HJ, Choi JJ, Jeon H, Oh JH, Kim B, et al: Activation of selective transcription factors and cytokines by water-soluble extract from Lentinus lepideus. Experimental Biology and Medicine. 2003, 228: 749-758.PubMed
139.
Zurück zum Zitat Wasser SP: Shiitake (Lentinus edodes). Encyclopedia of Dietary Supplements. Edited by: Coates PM, Blackman MR, Cragg GM, Levine M, Moss J, White JD. 2005, New York, New York: Marcell Dekker, 653-664. Wasser SP: Shiitake (Lentinus edodes). Encyclopedia of Dietary Supplements. Edited by: Coates PM, Blackman MR, Cragg GM, Levine M, Moss J, White JD. 2005, New York, New York: Marcell Dekker, 653-664.
140.
Zurück zum Zitat Oshima Y, Sato K, Hikino H: Isolation and hypoglycemic activity of quinquefolans A, B, and C, glycans of Panax quinquefolium roots. J Nat Prod. 1987, 50: 188-190. 10.1021/np50050a010.PubMed Oshima Y, Sato K, Hikino H: Isolation and hypoglycemic activity of quinquefolans A, B, and C, glycans of Panax quinquefolium roots. J Nat Prod. 1987, 50: 188-190. 10.1021/np50050a010.PubMed
141.
Zurück zum Zitat Zhu T, Kim SH, Chen CY: A medicinal mushroom: Phellinus linteus. Curr Med Chem. 2008, 15: 1330-1335. 10.2174/092986708784534929.PubMed Zhu T, Kim SH, Chen CY: A medicinal mushroom: Phellinus linteus. Curr Med Chem. 2008, 15: 1330-1335. 10.2174/092986708784534929.PubMed
142.
Zurück zum Zitat Matsuba S, Matsuno H, Sakuma M, Komatsu Y: Phellinus linteus extract augments the immune response in mitomycin C-induced immunodeficient mice. Evid Based Complement Alternat Med. 2008, 5: 85-90. 10.1093/ecam/nem001.PubMed Matsuba S, Matsuno H, Sakuma M, Komatsu Y: Phellinus linteus extract augments the immune response in mitomycin C-induced immunodeficient mice. Evid Based Complement Alternat Med. 2008, 5: 85-90. 10.1093/ecam/nem001.PubMed
143.
Zurück zum Zitat Refaie FM, Esmat AY, Daba AS, Taha SM: Characterization of polysaccharopeptides from Pleurotus ostreatus mycelium: assessment of toxicity and immunomodulation in vivo. Micologia Aplicada International. 2009, 21: 67-75. Refaie FM, Esmat AY, Daba AS, Taha SM: Characterization of polysaccharopeptides from Pleurotus ostreatus mycelium: assessment of toxicity and immunomodulation in vivo. Micologia Aplicada International. 2009, 21: 67-75.
144.
Zurück zum Zitat Babicek K, Cechova I, Simon RR, Harwood M, Cox DJ: Toxicological assessment of a particulate yeast (1,3/1,6)-beta-D-glucan in rats. Food Chem Toxicol. 2007, 45: 1719-1730. 10.1016/j.fct.2007.03.013.PubMed Babicek K, Cechova I, Simon RR, Harwood M, Cox DJ: Toxicological assessment of a particulate yeast (1,3/1,6)-beta-D-glucan in rats. Food Chem Toxicol. 2007, 45: 1719-1730. 10.1016/j.fct.2007.03.013.PubMed
145.
Zurück zum Zitat Lehne G, Haneberg B, Gaustad P, Johansen PW, Preus H, Abrahamsen TG: Oral administration of a new soluble branched beta-1,3-D-glucan is well tolerated and can lead to increased salivary concentrations of immunoglobulin A in healthy volunteers. Clin Exp Immunol. 2006, 143: 65-69. 10.1111/j.1365-2249.2005.02962.x.PubMedPubMedCentral Lehne G, Haneberg B, Gaustad P, Johansen PW, Preus H, Abrahamsen TG: Oral administration of a new soluble branched beta-1,3-D-glucan is well tolerated and can lead to increased salivary concentrations of immunoglobulin A in healthy volunteers. Clin Exp Immunol. 2006, 143: 65-69. 10.1111/j.1365-2249.2005.02962.x.PubMedPubMedCentral
146.
Zurück zum Zitat Ng TB: A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen Pharmacol. 1998, 30: 1-4.PubMed Ng TB: A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen Pharmacol. 1998, 30: 1-4.PubMed
147.
Zurück zum Zitat Tsukagoshi S, Hashimoto Y, Fujii G, Kobayashi H, Nomoto K, Orita K: Krestin (PSK). Cancer Treat Rev. 1984, 11: 131-155. 10.1016/0305-7372(84)90005-7.PubMed Tsukagoshi S, Hashimoto Y, Fujii G, Kobayashi H, Nomoto K, Orita K: Krestin (PSK). Cancer Treat Rev. 1984, 11: 131-155. 10.1016/0305-7372(84)90005-7.PubMed
148.
Zurück zum Zitat Lee JB, Hayashi K, Hashimoto M, Nakano T, Hayashi T: Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull (Tokyo). 2004, 52: 1091-1094. 10.1248/cpb.52.1091. Lee JB, Hayashi K, Hashimoto M, Nakano T, Hayashi T: Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu). Chem Pharm Bull (Tokyo). 2004, 52: 1091-1094. 10.1248/cpb.52.1091.
149.
Zurück zum Zitat Katsube T, Yamasaki Y, Iwamoto M, Oka S: Hyaluronidase-inhibiting polysaccharide isolated and purified from hot water extract of sporophyll of Undaria pinnatifida. Food Sci Technol. 2003, 9: 25-29. 10.3136/fstr.9.25. Katsube T, Yamasaki Y, Iwamoto M, Oka S: Hyaluronidase-inhibiting polysaccharide isolated and purified from hot water extract of sporophyll of Undaria pinnatifida. Food Sci Technol. 2003, 9: 25-29. 10.3136/fstr.9.25.
150.
Zurück zum Zitat Koo JG, Jo KS, Do JR, Woo SJ: Isolation and purification of fucoidans from Laminara religiosa and Undaria pinnatifida in korea. J Korean Fish Soc. 1995, 28: 227-236. Koo JG, Jo KS, Do JR, Woo SJ: Isolation and purification of fucoidans from Laminara religiosa and Undaria pinnatifida in korea. J Korean Fish Soc. 1995, 28: 227-236.
151.
Zurück zum Zitat Tamboli S, Arora S, Bhatnagar U, Vishwase G, Singh M: Reproductive and developmental toxicity evaluation of a purified Arabinogalactan-Protein (AGP) composition in Wistar rats. Fitoterapia. 2010, 81: 276-283. 10.1016/j.fitote.2009.10.001.PubMed Tamboli S, Arora S, Bhatnagar U, Vishwase G, Singh M: Reproductive and developmental toxicity evaluation of a purified Arabinogalactan-Protein (AGP) composition in Wistar rats. Fitoterapia. 2010, 81: 276-283. 10.1016/j.fitote.2009.10.001.PubMed
152.
Zurück zum Zitat Kim KJ, Lee OH, Lee HH, Lee BY: A 4-week repeated oral dose toxicity study of fucoidan from the Sporophyll of Undaria pinnatifida in Sprague-Dawley rats. Toxicology. 2010, 267: 154-158. 10.1016/j.tox.2009.11.007.PubMed Kim KJ, Lee OH, Lee HH, Lee BY: A 4-week repeated oral dose toxicity study of fucoidan from the Sporophyll of Undaria pinnatifida in Sprague-Dawley rats. Toxicology. 2010, 267: 154-158. 10.1016/j.tox.2009.11.007.PubMed
153.
Zurück zum Zitat Track NS, Cawkwell ME, Chin BC, Chiu SS, Haberer SA, Honey CR: Guar gum consumption in adolescent and adult rats: short- and long-term metabolic effects. Can J Physiol Pharmacol. 1985, 63: 1113-1121.PubMed Track NS, Cawkwell ME, Chin BC, Chiu SS, Haberer SA, Honey CR: Guar gum consumption in adolescent and adult rats: short- and long-term metabolic effects. Can J Physiol Pharmacol. 1985, 63: 1113-1121.PubMed
154.
Zurück zum Zitat Simons LA, Gayst S, Balasubramaniam S, Ruys J: Long-term treatment of hypercholesterolaemia with a new palatable formulation of guar gum. Atherosclerosis. 1982, 45: 101-108. 10.1016/0021-9150(82)90175-7.PubMed Simons LA, Gayst S, Balasubramaniam S, Ruys J: Long-term treatment of hypercholesterolaemia with a new palatable formulation of guar gum. Atherosclerosis. 1982, 45: 101-108. 10.1016/0021-9150(82)90175-7.PubMed
155.
Zurück zum Zitat McIvor ME, Cummings CC, Van Duyn MA, Leo TA, Margolis S, Behall KM, et al: Long-term effects of guar gum on blood lipids. Atherosclerosis. 1986, 60: 7-13. 10.1016/0021-9150(86)90081-X.PubMed McIvor ME, Cummings CC, Van Duyn MA, Leo TA, Margolis S, Behall KM, et al: Long-term effects of guar gum on blood lipids. Atherosclerosis. 1986, 60: 7-13. 10.1016/0021-9150(86)90081-X.PubMed
156.
Zurück zum Zitat Koujitani T, Oishi H, Kubo Y, Maeda T, Sekiya K, Yasuba M, et al: Absence of detectable toxicity in rats fed partially hydrolyzed guarm gum (K-13) for 13 weeks. Int J Toxicol. 1997, 16: 611-623. 10.1080/109158197226928. Koujitani T, Oishi H, Kubo Y, Maeda T, Sekiya K, Yasuba M, et al: Absence of detectable toxicity in rats fed partially hydrolyzed guarm gum (K-13) for 13 weeks. Int J Toxicol. 1997, 16: 611-623. 10.1080/109158197226928.
157.
Zurück zum Zitat Takahashi H, Yang S, Fujiki M, Kim M, Yamamoto T, Greenberg N: Toxocity studies of partially hydrolyzed guar gum. J Am Coll Toxicol. 1994, 13: 273-278. Takahashi H, Yang S, Fujiki M, Kim M, Yamamoto T, Greenberg N: Toxocity studies of partially hydrolyzed guar gum. J Am Coll Toxicol. 1994, 13: 273-278.
158.
Zurück zum Zitat Kuroiwa Y, Nishikawa A, Imazawa T, Kanki K, Kitamura Y, Umemura T, et al: Lack of subchronic toxicity of an aqueous extract of Agaricus blazei Murrill in F344 rats. Food Chem Toxicol. 2005, 43: 1047-1053. 10.1016/j.fct.2005.02.007.PubMed Kuroiwa Y, Nishikawa A, Imazawa T, Kanki K, Kitamura Y, Umemura T, et al: Lack of subchronic toxicity of an aqueous extract of Agaricus blazei Murrill in F344 rats. Food Chem Toxicol. 2005, 43: 1047-1053. 10.1016/j.fct.2005.02.007.PubMed
159.
Zurück zum Zitat The safety of extended consumption of freezing dryness Agaricus blazei (lwade strain 101) himematsutake. Yakuri to Chiryo. 2006, 34: 103-117. The safety of extended consumption of freezing dryness Agaricus blazei (lwade strain 101) himematsutake. Yakuri to Chiryo. 2006, 34: 103-117.
160.
Zurück zum Zitat Tsuneo K, Takahiko N, Takashi F, Masaaki O, Michitaka S, Ahikiro S, et al: Single dose toxicity study of powdered Grifola frondosa by oral administration in rats. Pharmacometrics. 2003, 65: 39-41. Tsuneo K, Takahiko N, Takashi F, Masaaki O, Michitaka S, Ahikiro S, et al: Single dose toxicity study of powdered Grifola frondosa by oral administration in rats. Pharmacometrics. 2003, 65: 39-41.
161.
Zurück zum Zitat Han YS, Park SY, Choi BK, Choung SY: Acute oral toxicity studies of extract of sanghwang mushroom (Phellinus linteus). J Appl Pharmacol. 2001, 9: 46-50. Han YS, Park SY, Choi BK, Choung SY: Acute oral toxicity studies of extract of sanghwang mushroom (Phellinus linteus). J Appl Pharmacol. 2001, 9: 46-50.
162.
Zurück zum Zitat Cheng K-F, Leung P-C: General review of polysaccharopeptides (PSP) from C. versicolor: pharmacological and clinical studies. Cancer Therapy. 2008, 6: 117-130. Cheng K-F, Leung P-C: General review of polysaccharopeptides (PSP) from C. versicolor: pharmacological and clinical studies. Cancer Therapy. 2008, 6: 117-130.
163.
Zurück zum Zitat Sinnott RA, Ramberg J, Kirchner JM, Oubre C, Duncan C, Boyd S, et al: Utilization of arabinogalactan, aloe vera gel polysaccharides, and a mixed saccharide dietary supplement by human colonic bacteria in vitro. Int J Probiotics Prebiotics. 2007, 2: 97-104. Sinnott RA, Ramberg J, Kirchner JM, Oubre C, Duncan C, Boyd S, et al: Utilization of arabinogalactan, aloe vera gel polysaccharides, and a mixed saccharide dietary supplement by human colonic bacteria in vitro. Int J Probiotics Prebiotics. 2007, 2: 97-104.
164.
Zurück zum Zitat Salyers AA, Arthur R, Kuritza A: Digestion of larch arabinogalactan by a strain of human colonic Bacteroides growing in continuous culture. J Agric Food Chem. 1981, 29: 475-480. 10.1021/jf00105a009.PubMed Salyers AA, Arthur R, Kuritza A: Digestion of larch arabinogalactan by a strain of human colonic Bacteroides growing in continuous culture. J Agric Food Chem. 1981, 29: 475-480. 10.1021/jf00105a009.PubMed
165.
Zurück zum Zitat Salyers AA, Vercellotti JR, West SE, Wilkins TD: Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol. 1977, 33: 319-322.PubMedPubMedCentral Salyers AA, Vercellotti JR, West SE, Wilkins TD: Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol. 1977, 33: 319-322.PubMedPubMedCentral
166.
Zurück zum Zitat Salyers AA: Breakdown of polysaccharides by human intestinal bacteria. J Environ Pathol Toxicol Oncol. 1985, 5: 211-231.PubMed Salyers AA: Breakdown of polysaccharides by human intestinal bacteria. J Environ Pathol Toxicol Oncol. 1985, 5: 211-231.PubMed
167.
Zurück zum Zitat Crociani F, Alessandrini A, Mucci MM, Biavati B: Degradation of complex carbohydrates by Bifidobacterium spp. Int J Food Microbiol. 1994, 24: 199-210. 10.1016/0168-1605(94)90119-8.PubMed Crociani F, Alessandrini A, Mucci MM, Biavati B: Degradation of complex carbohydrates by Bifidobacterium spp. Int J Food Microbiol. 1994, 24: 199-210. 10.1016/0168-1605(94)90119-8.PubMed
168.
Zurück zum Zitat Degnan BA, Macfarlane GT: Arabinogalactan utilization in continuous cultures of Bifidobacterium longum: Effect of co-culture with Bacteroides thetaiotaomicron. Anaerobe. 1995, 1: 103-112. 10.1006/anae.1995.1005.PubMed Degnan BA, Macfarlane GT: Arabinogalactan utilization in continuous cultures of Bifidobacterium longum: Effect of co-culture with Bacteroides thetaiotaomicron. Anaerobe. 1995, 1: 103-112. 10.1006/anae.1995.1005.PubMed
169.
Zurück zum Zitat Imamura L, Murai K, Zhao C-J, Takebe S, Kobashi K: Metabolism of arabinogalactan by rat and human intestinal microflora. BIFIDUS Flores, Fructus et Semina. 1992, 6: 19-29. Imamura L, Murai K, Zhao C-J, Takebe S, Kobashi K: Metabolism of arabinogalactan by rat and human intestinal microflora. BIFIDUS Flores, Fructus et Semina. 1992, 6: 19-29.
170.
Zurück zum Zitat Michel C, Lahaye M, Bonnet C, Mabeau S, Barry JL: In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Br J Nutr. 1996, 75: 263-280. 10.1079/BJN19960129.PubMed Michel C, Lahaye M, Bonnet C, Mabeau S, Barry JL: In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Br J Nutr. 1996, 75: 263-280. 10.1079/BJN19960129.PubMed
171.
Zurück zum Zitat Okubo T, Ishihara N, Takahashi H, Fujisawa T, Kim M, Yamamoto T, et al: Effects of partially hydrolyzed guar gum intake on human intestinal microflora and its metabolism. Biosci Biotech Biochem. 1994, 58: 1364-1369. 10.1271/bbb.58.1364. Okubo T, Ishihara N, Takahashi H, Fujisawa T, Kim M, Yamamoto T, et al: Effects of partially hydrolyzed guar gum intake on human intestinal microflora and its metabolism. Biosci Biotech Biochem. 1994, 58: 1364-1369. 10.1271/bbb.58.1364.
172.
Zurück zum Zitat Deville C, Gharbi M, Dandrifosse G, Peulen O: Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J Sci Food Agric. 2007, 87: 1717-1725. 10.1002/jsfa.2901. Deville C, Gharbi M, Dandrifosse G, Peulen O: Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J Sci Food Agric. 2007, 87: 1717-1725. 10.1002/jsfa.2901.
173.
Zurück zum Zitat Ikuzawa M, Matsunaga K, Nishiyama S, Nakajima S, Kobayashi Y, Andoh T, et al: Fate and distribution of an antitumor protein-bound polysaccharide PSK (Krestin). Int J Immunopharmacol. 1988, 10: 415-423. 10.1016/0192-0561(88)90128-2.PubMed Ikuzawa M, Matsunaga K, Nishiyama S, Nakajima S, Kobayashi Y, Andoh T, et al: Fate and distribution of an antitumor protein-bound polysaccharide PSK (Krestin). Int J Immunopharmacol. 1988, 10: 415-423. 10.1016/0192-0561(88)90128-2.PubMed
174.
Zurück zum Zitat Yagi A, Hamano S, Tanaka T, Kaneo Y, Fujioka T, Mihashi K: Biodisposition of FITC-labeled aloemannan in mice. Planta Med. 2001, 67: 297-300. 10.1055/s-2001-14314.PubMed Yagi A, Hamano S, Tanaka T, Kaneo Y, Fujioka T, Mihashi K: Biodisposition of FITC-labeled aloemannan in mice. Planta Med. 2001, 67: 297-300. 10.1055/s-2001-14314.PubMed
175.
Zurück zum Zitat Marzorati M, Verhelst A, Luta G, Sinnott R, Verstraete W, Van de Wiele T, et al: In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int J Food Microbiol. 2010, 139: 168-176. 10.1016/j.ijfoodmicro.2010.02.030.PubMed Marzorati M, Verhelst A, Luta G, Sinnott R, Verstraete W, Van de Wiele T, et al: In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int J Food Microbiol. 2010, 139: 168-176. 10.1016/j.ijfoodmicro.2010.02.030.PubMed
176.
Zurück zum Zitat Salyers AA, West SE, Vercellotti JR, Wilkins TD: Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol. 1977, 34: 529-533.PubMedPubMedCentral Salyers AA, West SE, Vercellotti JR, Wilkins TD: Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol. 1977, 34: 529-533.PubMedPubMedCentral
Metadaten
Titel
Immunomodulatory dietary polysaccharides: a systematic review of the literature
verfasst von
Jane E Ramberg
Erika D Nelson
Robert A Sinnott
Publikationsdatum
01.12.2010
Verlag
BioMed Central
Erschienen in
Nutrition Journal / Ausgabe 1/2010
Elektronische ISSN: 1475-2891
DOI
https://doi.org/10.1186/1475-2891-9-54

Weitere Artikel der Ausgabe 1/2010

Nutrition Journal 1/2010 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.