Skip to main content

Physical Background

  • Chapter
  • First Online:
Dual Energy CT in Clinical Practice

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

There had been attempts to utilize spectral information for tissue characterization soon after the invention of Computed Tomography, but only recently Dual Energy CT has achieved a significant role in clinical radiology.

To perform Dual Energy CT, it is necessary to generate x-rays with different energies, mostly as polychromatic spectra. On the other hand, the detector has to be capable to differentiate x-ray quanta of different energies. There are four technical approaches to meet these requirements, of which the Dual Source CT, the rapid voltage switching and the layer detector technology are available or being implemented.

To obtain relevant diagnostic information, there have to be substances with spectral properties which reflect the pathology by their presence or distribution. Most important is the photoelectric effect of elements like uric acid, iron, calcium, iodine or xenon gas, which are present in pathological structures or can be administered as contrast material. The identification and quantification of these elements can be used to diagnose several diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez RE, Macovski A (1976) Energy-selective reconstructions in X-ray computerized tomography. Phys Med Biol 21:733–744

    Article  PubMed  CAS  Google Scholar 

  • Avrin DE, Macovski A, Zatz LE (1978) Clinical application of Compton and photo-electric reconstruction in computed tomography: preliminary results. Invest Radiol 13:217–222

    Article  PubMed  CAS  Google Scholar 

  • Cann CE, Gamsu G, Birnberg FA, Webb WR (1982) Quantification of calcium in solitary pulmonary nodules using single- and dual-energy CT. Radiology 145:493–496

    PubMed  CAS  Google Scholar 

  • Chae EJ, Seo JB, Goo HW et al (2008) Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 248:615–624

    Article  PubMed  Google Scholar 

  • Chiro GD, Brooks RA, Kessler RM et al (1979) Tissue signatures with dual-energy computed tomography. Radiology 131:521–523

    PubMed  CAS  Google Scholar 

  • Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  • Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551

    Article  PubMed  CAS  Google Scholar 

  • Graser A, Johnson TR, Bader M et al (2008) Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol 43:112–119

    Article  PubMed  Google Scholar 

  • Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    Article  PubMed  Google Scholar 

  • Grasruck M, Kappler S, Reinwand M, Stierstorfer K (2009) Dual energy with dual source CT and kVp switching with single source CT: a comparison of dual energy performance. Proc SPIE 7258:72583R

    Article  Google Scholar 

  • Ho LM, Yoshizumi TT, Hurwitz LM et al (2009) Dual energy versus single energy MDCT: measurement of radiation dose using adult abdominal imaging protocols. Acad Radiol 16:1400–1407

    Article  PubMed  Google Scholar 

  • Holmes DR III, Fletcher JG, Apel A et al (2008) Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol 68:409–413

    Article  PubMed  Google Scholar 

  • Johnson TR, Krauss B, Sedlmair M et al (2007a) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  • Johnson TR, Weckbach S, Kellner H, Reiser MF, Becker CR (2007b) Clinical image: dual-energy computed tomographic molecular imaging of gout. Arthritis Rheum 56:2809

    Article  PubMed  Google Scholar 

  • Kappler S, Grasruck M, Niederloehner D, Strassburg M, Wirth S (2009) Dual-energy performance of dual kVp in comparison to dual-layer and quantum-counting CT system concepts. Proc SPIE 7258:725842

    Article  Google Scholar 

  • Kelcz F, Joseph PM, Hilal SK (1979) Noise considerations in dual energy CT scanning. Med Phys 6:418–425

    Article  PubMed  CAS  Google Scholar 

  • Kruger RA, Riederer SJ, Mistretta CA (1977) Relative properties of tomography, K-edge imaging, and K-edge tomography. Med Phys 4:244–249

    Article  PubMed  CAS  Google Scholar 

  • Li B, Yadava G, Hsieh J (2010) Head and body CTDIw of dual energy x-ray CT with fast-kVp switching. In: SPIE Medical Imaging, San Diego, CA, paper 7622–7669

    Google Scholar 

  • McCullough EC (1975) Photon attenuation in computed tomography. Med Phys 2:307–320

    Article  PubMed  CAS  Google Scholar 

  • Michael GJ (1992) Tissue analysis using dual energy CT. Australas Phys Eng Sci Med 15:75–87

    PubMed  CAS  Google Scholar 

  • Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ (1979) Extraction of information from CT scans at different energies. Med Phys 6:70–71

    Article  PubMed  CAS  Google Scholar 

  • Morhard D, Fink C, Graser A, Reiser MF, Becker C, Johnson TR (2009) Cervical and cranial computed tomographic angiography with automated bone removal: dual energy computed tomography versus standard computed tomography. Invest Radiol 44:293–297

    Article  PubMed  Google Scholar 

  • Nakayama Y, Awai K, Funama Y et al (2005) Abdominal CT with low tube voltage: preliminary observations about radiation dose, contrast enhancement, image quality, and noise. Radiology 237:945–951

    Article  PubMed  Google Scholar 

  • Riederer SJ, Mistretta CA (1977) Selective iodine imaging using K-edge energies in computerized x-ray tomography. Med Phys 4:474–481

    Article  PubMed  CAS  Google Scholar 

  • Schenzle JC, Sommer WH, Neumaier K et al (2010) Dual energy CT of the chest: how about the dose? Invest Radiol 45:347–353

    Google Scholar 

  • Sommer WH, Johnson TR, Becker CR et al (2009) The value of dual-energy bone removal in maximum intensity projections of lower extremity computed tomography angiography. Invest Radiol 44:285–292

    Article  PubMed  Google Scholar 

  • Svendsen OL, Hassager C, Bergmann I, Christiansen C (1993) Measurement of abdominal and intra-abdominal fat in postmenopausal women by dual energy X-ray absorptiometry and anthropometry: comparison with computerized tomography. Int J Obes Relat Metab Disord 17:45–51

    PubMed  CAS  Google Scholar 

  • Thieme SF, Becker CR, Hacker M, Nikolaou K, Reiser MF, Johnson TR (2008) Dual energy CT for the assessment of lung perfusion–correlation to scintigraphy. Eur J Radiol 68:369–374

    Article  PubMed  Google Scholar 

  • Thieme SF, Johnson TR, Lee C et al (2009) Dual-energy CT for the assessment of contrast material distribution in the pulmonary parenchyma. AJR Am J Roentgenol 193:144–149

    Article  PubMed  Google Scholar 

  • Voit H, Krauss B, Heinrich MC et al (2009) Dual-source CT: in vitro characterization of gallstones using dual energy analysis. Rofo 181:367–373

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten R. C. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, T.R.C., Kalender, W.A. (2011). Physical Background. In: Johnson, T., Fink, C., Schönberg, S., Reiser, M. (eds) Dual Energy CT in Clinical Practice. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2010_43

Download citation

  • DOI: https://doi.org/10.1007/174_2010_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01739-1

  • Online ISBN: 978-3-642-01740-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics