Skip to main content
Log in

Time course of myocardial necrosis

  • Part Two: Basic Concept
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

The time course of myocardial ischemia was studied in canine myocardium by electron microscopy. Ischemia of the myocardium produces ultrastructural alterations of mitochondria, nuclei, contractile apparatus, and the SR- and T-tubular system that are accompanied by loss of glycogen and intracellular edema. These changes are more pronounced with increasing severity of ischemia, and they allow the differentiation between different stages of reversible and of irreversible injury. Reperfusion of reversibly injured tissue leads to structural recovery; reperfusion of irreversibly injured tissue produces further deterioration. On the basis of ultrastructural data, it was found that in a dog, after 45 minutes of coronary artery occlusion, subendocardial infarction was present in 20% of all animals. Transmural infarction was present in 24% of all dogs after 90 minutes of coronary artery occlusion and in 53% after 24 hours. The individual variability in the speed of development of infarction is caused by the rate of oxygen consumption at the time of occlusion and by the amount of collateral flow. Intermittent ischemia is much better tolerated than permanent ischemia of the same duration. Species differences are evident. The course of development of myocardial necrosis, therefore, depends on time, rate of oxygen consumption, collateral flow, mode of ischemia, and on the species investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 1974;36:413–459.

    Google Scholar 

  2. Jennings RB, Sommer HM. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 1960;70:68.

    Google Scholar 

  3. Jennings RB, Baum JH, Herdson PB. Fine structural changes in myocardial ischemic injury. Arch Pathol 1965;79: 135.

    Google Scholar 

  4. Jennings RB. Early phase of myocardial ischemic injury and infarction. Am J Cardiol 1969;24:753–765.

    Google Scholar 

  5. Jennings RB, Sommers HM, Herdson PB, Kaltenbach JP. Ischemic injury of myocardium. Ann NY Acad Sci 1969; 156:61.

    Google Scholar 

  6. Jennings RB, Ganote CE. Structural changes in myocardium during acute ischemia. Circ Res 1974;34/35(Suppl III):III-156-III-172.

    Google Scholar 

  7. Schaper J, Mulch J, Winkler B, Schaper W. Ultrastructural, functional, and biochemical criteria for estimation of reversibility of ischemic injury: A study on the effects of global ischemia on the isolated dog heart. J Mol Cell Cardiol 1979;11:521–541.

    Google Scholar 

  8. Schaper J, Pasyk S, Hofmann M, Schaper W. Early ultrastructural changes in myocardial ischemia and infarction. In: Winbury M, Abiko Y, eds. Ischemic Myocardium and Antianginal Drugs. New York: Raven Press, 1979:3–16.

    Google Scholar 

  9. Schaper J. Ultrastructure of the myocardium in acute ischemia. In: Schaper W, ed. The Pathophysiology of Myocardial Perfusion. Amsterdam, New York, Oxford: Elsevier/North-Holland Biomedical Press, 1979;581–673.

    Google Scholar 

  10. Nachlas MM, Shnitka TK. Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity. Am J Pathol 1963;42:379–397.

    Google Scholar 

  11. Schaper W, Frenzel H, Hort W. Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res Cardiol 1979;74:46–53.

    Google Scholar 

  12. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 1979;40:633–644.

    Google Scholar 

  13. Klein HH, Puschmann S, Schaper J, Schaper W. The mechanism of the tetrazolium reaction in identifying experimental myocardial infarction. Virchows Arch (Pathol Anat) 1981;393:287–297.

    Google Scholar 

  14. Schaper J, Alpers P, Gottwik M, Schaper W. Ultrastructural characteristics of regional ischaemia and infarction in the canine heart. Eur Heart J 1985;6(Suppl E):21–31.

    Google Scholar 

  15. Schaper J, Kuenkel U, Schaper W. Influences of triglycerides on myocardial ischemia and infarction in the dog. J Mol Cell Cardiol 1983;15(Suppl 4):39.

    Google Scholar 

  16. Schaper J, Schaper W. Interactions between vascular wall and blood cells in the canine heart. J Appl Cardiol 1986; 1:91–107.

    Google Scholar 

  17. Opie L. Effects of regional ischemia on metabolism of glucose and fatty acids. Relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia. Circ Res 1976;38(Suppl 1): 152–174.

    Google Scholar 

  18. Opie LH. Metabolism of free fatty acids, glycose and catecholamines in acute myocardial infarction. Am J Cardiol 1975;36:938–953.

    Google Scholar 

  19. Schaper W. The Collateral Circulation of the Heart. Amsterdam: North Holland Publishing Company, 1971.

    Google Scholar 

  20. Schaper W. Experimental infarcts and the microcirculation. In: Hearse DJ, Yellon DM, eds. Therapeutic Approaches to Myocardial Infarct Size Limitation. New York: Raven Press 1984:79–90.

    Google Scholar 

  21. Schaper J. Unpublished observation.

  22. Majno G, Shea SM, Leventhal M. Endothelial contraction induced by histamine-type mediators. An electron microscopic study. J Cell Biol 1969;42:647–672.

    Google Scholar 

  23. Willoughby DA. Mediation of increased vascular permeability in inflammation. In: Zweifach BW, Grant L, McCluskey RT, eds. The Inflammatory Process, Vol 2. New York, London: Academic Press, 1973:303.

    Google Scholar 

  24. Grant L. The sticking and emigration of white blood cells in inflammation. In: Zweifach BM, Grant L, McCluskey RT, eds. The Inflammatory Process. New York, London: Academic Press, 1973:205.

    Google Scholar 

  25. Tomanek RJ, Grimes JC, Diana JN. Relationship between the magnitude of myocardial ischemia and ultrastructural alterations. Exp Mol Pathol 1981;35:65–83.

    Google Scholar 

  26. Schaper W. Heterogeneity in the coronary circulation. J Cardiovasc Pharmacol 1985;7(Suppl 3):31–35.

    Google Scholar 

  27. Kloner RA, Rude RE, Carlson N, Maroko PR, de Boer LW, Braunwald E. Ultrastructural evidence of microvascular damage and myocardial cell injury after coronary artery occlusion: Which comes first? Circulation 1980;62:945–952.

    Google Scholar 

  28. Kloner RA, Braunwald E. Observations on experimental myocardial ischemia. Cardiovasc Res 1980;14:371–395.

    Google Scholar 

  29. Kloner RA, Ellis SG, Lange R, Braunwald E. Studies of experimental coronary artery reperfusion: Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation 1983;68:I-8-I-15.

    Google Scholar 

  30. Schaper J, Schaper W. Reperfusion of ischemic myocardium: Ultrastructural and histochemical aspects. J Am Coll Cardiol 1983;1:1037–1046.

    Google Scholar 

  31. Jennings RB, Reimer KA, Steenbergen C. Myocardial ischemia revisited. The osmolar load, membrane damage, and reperfusion. J Mol Cell Cardiol 1986;18:769–780.

    Google Scholar 

  32. Miyazaki S, Fujiwara H, Onodera T, Kihara Y, Matsuda M, Wu D, Nakamura Y, Kumada T, Sasayama S, Kawai C, Hamashima Y. Quantitative analysis of contraction band and coagulation necrosis after ischemia and reperfusion in the porcine heart. Circulation 1987;75:1074–1082.

    Google Scholar 

  33. Cooley Da, Reul GJ, Wukasch DC. Ischemic contracture of the heart: ‘Stone heart.” Am J Cardiol 1972;29:575–577.

    Google Scholar 

  34. Engler RL, Schmid-Schoenbein GW, Pavelec RS. Leucocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 1983;111:98–111.

    Google Scholar 

  35. Engler RL, Dahlgren MD, Morris D, Peterson M, Schmid-Schönbein GW. Role of leucocytes in response to acute myocardial ischemia and reflow in dogs. Am J Physiol 1986;252:H314-H322.

    Google Scholar 

  36. Engler R, Covell JW. Granulocytes cause reperfusion ventricular dysfunction after 15 minute ischemia in the dog. Circ Res 1987;61:20–28.

    Google Scholar 

  37. Lucchesi BR, Mullane KM. Leukocytes and ischemia-induced myocardial injury. Ann Rev Pharmacol Toxicol 1986; 26:201–224.

    Google Scholar 

  38. Simpson PJ, Mickelson J, Fantone JC, Gallagher KP, Lucchesi BR. Iloprost inhibits neutrophil function in vitro and in vivo and limits experimental infarct size in canine heart. Circ Res 1987;60:666–673.

    Google Scholar 

  39. Hess ML, Manson NH. Molecular oxygen: Friend or foe. The role of the oxygen free radical system in the calcium paradox and ischemia/reperfusion injury. J Mol Cell Cardiol 1984;16:969–985.

    Google Scholar 

  40. Ambrosio G, Weisfeldt ML, Jacobus WE, Flaherty JT. Evidence for a reversible oxygen radical-mediated component of reperfusion injury: Reduction by recombinant superoxide dismutase administered at the time of reflow. Circulation 1987;75:282–291.

    Google Scholar 

  41. Burton KP, McCord JM, Ghai G. Myocardial alterations due to free radical generation. Am J Physiol 1984;246:H776-H783.

    Google Scholar 

  42. Chatelain P, Latour JG, Tran D, de Lorgeril M, Dupras G, Bourassa M. Neutrophil accumulation in experimental myocardial infarcts: Relation with extent of injury and effect of reperfusion. Circulation 1987;75:1083–1090.

    Google Scholar 

  43. Uraizee A, Reimer KA, Murry CE, Jennings RB. Failure of superoxide dismutase to limit size of myocardial infarction after 40 minutes of ischemia during 4 days of reperfusion in dogs. Circulation 1987;75:1237–1248.

    Google Scholar 

  44. Bulkley BH, Hutchins GM. Myocardial consequences of coronary artery bypass graft surgery. The paradox of necrosis in areas of neovascularization. Circulation 1977;56: 906–913.

    Google Scholar 

  45. Bresnahan GF, Roberts R, Shell WE, Ross J, Sobel BE. Deleterious effects due to hemorrhage after myocardial reperfusion. Am J Cardiol 1974;33:82–87.

    Google Scholar 

  46. Roberts CS, Schoen FJ, Kloner RA. Effect of coronary reperfusion on myocardial hemorrhage and infarct healing. Am J Cardiol 1983;52:610–614.

    Google Scholar 

  47. Capone RJ, Most AS. Myocardial hemorrhage after coronary reperfusion in pigs. Am J Cardiol 1978;41:259–266.

    Google Scholar 

  48. Corday E, Kaplan L, Meerbaum S, Brasch J, Costantini C, Lang T, Gold H, Rubins S, Osher J. Consequences of coronary arterial occlusion on remote myocardium: Effects of occlusion and reperfusion. Am J Cardiol 1975;36:385–394.

    Google Scholar 

  49. Anderson JL, Marshall HW, Bray BE, Lutz J, Frederick P, Yanowitz F, Datz F, Klausner S, Hagan A. A randomized trial at intracoronary streptokinase in the treatment of acute myocardial infarction. N Engl J Med 1983;308:1312–1318.

    Google Scholar 

  50. Kennedy JW, Ritchie JL, Davis RB, Fritz JK. Western Washington randomized trial of intracoronary streptokinase in acute myocardial intravention. N Engl J Med 1983; 309:1477–1482.

    Google Scholar 

  51. Ellis SG, Henschke CI, Sandor T, Wynne J, Braunwald E, Kloner RA. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol 1983 1(4):1047–1055.

    Google Scholar 

  52. TIMI Study Group. The thrombolysis in myocardial infarction (TIMI) trial, Phase I findings. N Engl J Med 1985; 312:932–936.

    Google Scholar 

  53. Verstraete M, Bernard R, Bory M, Brower RW, Collen D, deBono DP, Erbel R, Huhmann W, Lennance RJ, Lubsen J, Mathey D, Meyer J, Michels HR, Rutsch W, Schartl M, Schmidt W, Uebis R, von Essen R. Randomised trial of intravenous recombinant tissue-type plasminogen activator versus intravenous streptokinase in acute myocardial infarction. Lancet 1985;1:842.

    Google Scholar 

  54. Italian Group for the Study of Streptokinase in Myocardial Infarction. Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1986;1:397.

    Google Scholar 

  55. Simoons ML, Serruys PW, Brand M, B-Cr F, de Zwaan C, Res J, Verheust F, Krauss H, Remme W, Vermeer F, Lubsen J. Early thrombolysis in acute myocardial infarction (MI): Reduction of infarct size, preservation of left ventricular function and improved survival. J Am Coll Cardiol 1986; 7:18A (abstract).

    Google Scholar 

  56. Schaper W. The Pathophysiology of Myocardial Perfusion. Amsterdam, New York, Oxford: Elsevier/North-Holland Biomedical Press, 1979.

    Google Scholar 

  57. Mueller KD, Sass S, Gottwik MG, Schaper W. Effect of myocardial oxygen consumption on infarct size in experimental coronary artery occlusion. Basic Res Cardiol 1982; 77:170–181.

    Google Scholar 

  58. Bogen DK, Rabinowitz SA, Needleman A, McMahon TA, Abelmann WH. An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ Res 1980;47:728–741.

    Google Scholar 

  59. Gallagher KP, Gerren RA, Stirling MC, Choy M, Dysko RC, McMani-mon SP, Dunham WR. The distribution of functional impairment across the lateral border of acutely ischemic myocardium. Circ Res 1986;58:570–583.

    Google Scholar 

  60. Hoffmeister HM, Mauser M, Schaper W. Repeated short periods of regional myocardial ischemia: Effect on local function and high energy phosphate levels. Basic Res Cardiol 1986;81:361–372.

    Google Scholar 

  61. Ito BR, Tate H, Schaper W. Calcium induced increases in regional contractile function before and after transient coronary occlusion in the dog. Circulation 1985;72(Suppl III):III-68.

    Google Scholar 

  62. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial, functional, and electrophysiological alterations after brief coronary occlusion in conscious dogs. J Clin Invest 1975;56:978–985.

    Google Scholar 

  63. Braunwald E, Kloner RA. The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146–1149.

    Google Scholar 

  64. Lange R, Ingwall J, Hale SL, Alker KJ, Kloner RA. Effects of recurrent ischemia on myocardial high energy phosphate content in canine hearts. Basic Res Cardiol 1984;79:469–478.

    Google Scholar 

  65. Henrichs KJ, Matsuoka H, Schaper J, Schaper W. Influence of repetitive coronary occlusions on myocardial adenine nucleosides, high energy phosphates and ultrastructure. Basic Res Cardiol 1987;82:557–565.

    Google Scholar 

  66. Przyklenk K, Kloner RA. Superoxide dismutase plus catalase improve contractile function in the canine model of the “stunned myocardium.”. Circ Res 1986;58:148–156.

    Google Scholar 

  67. Geft IL, Fishbein MC, Ninomiya K, Hashida J, Chaux E, Yano J, Y-Rit J, Genov T, Shell W, Ganz W. Intermittent brief periods of ischemia have a cumulative effect and may cause myocardial necrosis. Circulation 1982;66:1150–1159.

    Google Scholar 

  68. Reimer KA, Murry CE, Yamasawa I, Hill ML, Jennings RB. Four brief periods of myocardial ischemia cause no cumulative ATP loss or necrosis. Am J Physiol 1986;251:H1306-H1315.

    Google Scholar 

  69. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–1136.

    Google Scholar 

  70. Brazzamano S, Fedor JM, Rembert JC, GreenfieldJr JC. Increase in myocardial blood flow during repeated brief episodes of ischemia in the awake dog. Basic Res Cardiol 1984;79:448–453.

    Google Scholar 

  71. Schaper J, Schaper W. Morphological changes in myocardium from patients with coronary heart disease and cardiac hypertrophy. Adv Cardiol 1986;34:16–24.

    Google Scholar 

  72. Gross GJ, Farber NE, Hardman HF, Warltier DC. Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 1986;250:H372-H377.

    Google Scholar 

  73. Bolli R, Zhu W, Hartley CJ, Michael LH, Repine JE, Hess ML, Kukreja RC, Roberts R. Attenuation of dysfunction in the post-ischemic “stunned” myocardium by dimethylthiourea. Circulation 1987;76:458–468.

    Google Scholar 

  74. Winkler B, Sass S, Binz K, Schaper W. Myokardiale Durchblutung und Myokardinfarkt in Ratten, Meerschweinchen, Kaninchen und Katzen. In: Burger OK, Grosdanoff P, Henschler D, Kraupp O, Schnieders B, eds. Aktuelle Probleme der Biomedizin. Berlin, New York: Walter de Gruyter, 1986:27–34.

    Google Scholar 

  75. Winkler B, Schmidt T, Schaper W. Coronary collateral circulation in acute and chronic myocardial ischemia. In: Manabe H, Zweifach BW, Messmer K, eds. Microcirculation in Circulatory Disorders. Tokyo: Springer Verlag, 1987: in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaper, J., Schaper, W. Time course of myocardial necrosis. Cardiovasc Drug Ther 2, 17–25 (1988). https://doi.org/10.1007/BF00054248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00054248

Key words

Navigation