Skip to main content
Log in

Role of extracellular matrix metalloproteinases in cardiac remodelling

  • Basic Science Reviews
  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

The latent collagenolytic system is an intrinsic part of normal myocardium. Controlled activation of this system becomes necessary in ventricular chamber remodeling following inflammation and injury, such as dilated cardiomyopathy and myocardial infarction. Evidence exists to indicate activation of collagenolytic enzymes in patients with congestive heart failure and dilated, dysfunctional ventricles due to cardiomyopathy and ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 1991;64:327–336.

    Google Scholar 

  2. Grillo HC, Gross J. Collagenolytic activity during mammalian wound repair. Dev Biol 1967;15:300–317.

    Google Scholar 

  3. Eisen AZ. Human skin collagenase: Localization and distribution in normal human skin. J Invest Dermatol 1969;52:442–448.

    Google Scholar 

  4. Blair HC, Teitelbaum SL, Ehlich LS, Jeffrey JJ. Collagenase production by smooth muscle: Correlation of immunoreactive with functional enzyme in the myometrium. J Cell Physiol 1986;129:111–123.

    Google Scholar 

  5. Reddi AH. Extracellular Matrix Biochemistry. New York: Elsevier, 1984:375–412.

    Google Scholar 

  6. Krane SM, Conca W, Stephenson ML, Amento EP, Goldring MB. Mechanism of matrix dehydration in rheumatiod arthritis. Ann N Y Acad Sci 1990;580:340–354.

    Google Scholar 

  7. Henriet P, Rousseau GG, Eeckhout Y. Cloning and sequencing of mouse collagenase CDNA. FEBS Lett 1992;310:175–178.

    Google Scholar 

  8. Quinn CO, Scott DK, Brinckoff CF, Matrisian LM, Jeffrey JJ, Partridge NC. Rat collagenases: cloning, amino acid sequence comparison, and parathyroid hormone regulation in osteoblastic cells. J Biol Chem 1990;265:22342–22347.

    Google Scholar 

  9. Woessner JF Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991;5:2145–2154.

    Google Scholar 

  10. McKerrow JH. Human fibroblast collagenase contains an amino acid sequence homologous to the zinc-binding site of Serratia proteinase. J Biol Chem 1987;262:5943.

    Google Scholar 

  11. Roe JL, Farach HA Jr, Strittmatter WJ, Lennarz WJ. Evidence for involvement of metalloproteinases in a step in sea urchin gamate fusion. J Cell Biol 107: 539–544.

  12. Gross J, Nagai Y. Specific degradation of the collagen molecule by tadpole collagenolytic enzyme. Proc Natl Acad Sci (USA) 1965;54:1197–1204.

    Google Scholar 

  13. Welgus HG, Jeffrey JJ, Stricklin GP, Eisen AZ. The gelatinolytic activity of human skin fibroblast collagenase. J Biol Chem 1982;257:11534–11539.

    Google Scholar 

  14. Cleutjens J, Mundhenke M, Tyagi SC, Weber KT. Characterization of myocardial collagenase. J Mol Cell Cardiol 1993;25:S25.

    Google Scholar 

  15. Cleutjens J, Mundhenke M, Tyagi SC, Weber KT. Structural characterization of myocardial collagenase. Am J Hypertens 1993;6:68A.

    Google Scholar 

  16. McKerrow JH. Human fibroblast collagenase contains an amino acid sequence homologous to the zinc-binding site of Serratia protease. J Biol Chem 1987;262:5943.

    Google Scholar 

  17. Montfort I, Perez-Tamayo R. The distribution of collagenase in normal rat tissues. J Histochem Cytochem 1975;23:910–920.

    Google Scholar 

  18. Chakraborty A, Eghbali M. Collagenase activity in the normal rat myocardium: An immunohistochemical method. Histochemistry 1989;92:391–396.

    Google Scholar 

  19. Tyagi SC, Matsubara L, Weber KT. Direct extraction and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus. Clin Biochem 1993;26:191–198.

    Google Scholar 

  20. Woolley DE, Tetlow LC, Evanson JM. Collagenases in Normal and Pathological Connective Tissues. New York: John Wiley, 1980:103–125.

    Google Scholar 

  21. Tyagi SC, Ratajska A, Weber KT. Myocardial matrix metalloproteinases: Localization and activation. Mol Cell Biochem 1993;126:49–59.

    Google Scholar 

  22. Bonnin CM, Sparrow MP, Taylor RR. Collagen synthesis and content in right ventricular hypertrophy in the dog. Am J Physiol 1981;10:H703-H713.

    Google Scholar 

  23. Carver W, Nagpal ML, Nachtigal M, Borg TK, Terracio L. Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 1991;69:116–122.

    Google Scholar 

  24. Olivetti G, Capasso JM, Sonnenblick EH, Anversa P. Sideto-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 1990;67:23–34.

    Google Scholar 

  25. Cannon RO, Butany JW, McManus BM, et al. Early degradation of collagen after acute myocardial infarction in the rat. Am J Cardiol 1983;52:390–395.

    Google Scholar 

  26. Sato S, Ashraf M, Millard RW, Fujiwara H, Schwartz A. Connective tissue changes in early ischemia of porcine myocardium: An ultrastructural study. J Mol Cell Cardiol 1983; 15:261–275.

    Google Scholar 

  27. Weber KT, Pick R, Janicki JS, Gadodia G, Lakier JB. Inadequate collagen tethers in dilated cardiopathy. Am Heart J 1988;116:1641–1646.

    Google Scholar 

  28. Weber KT, Pick R, Silver MA, et al. Fibrillar collagen and the remodeling of the dilated canine left ventricle. Circulation 1990;82:1387–1401.

    Google Scholar 

  29. Spinale FG, Tomita M, Zellner JL, Cook JC, Crawford FA, Zile MR. Collagen remodeling and changes in LV function during development and recovery from supraventricular tachycardia. Am J Physiol 1991;261:H308-H318.

    Google Scholar 

  30. Charney RH, Takahaski S, Zhao M, Sonnenblick EH, Eng C. Collagen loss in the stunned myocardium. Circulation 1992;85:1483–1490.

    Google Scholar 

  31. Weber KT. Cardiac interstitium in health and disease: The fibrillar collagen network. J Am Coll Cardiol 1989;13:1637–52.

    Google Scholar 

  32. Beltrami CA, Finato N, Rocco M, et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 1994;89:151–163.

    Google Scholar 

  33. Ishii M, Kobayashi H, Chanoki M, et al. Possible formation of cutaneous amyloid from degenerative collagen fibres. Acta Derm Venereol (Stockh) 1990;70:378–384.

    Google Scholar 

  34. Boluyt MO, O'Neill L, Meedith AL, et al. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure: Marked upregulation of genes encoding extracellular matrix components. Circ Res 1994; 75:23–32.

    Google Scholar 

  35. Ostrowski LE, Finch J, Krieg P, et al. Expression pattern of a gene for a secreted metalloproteinase during late stages of tumor progression. Mol Carcinog 1988;1:13–19.

    Google Scholar 

  36. Graber HL, Unvererth DV, Baker PB, Ryan JM, Baba N, Wooley CF. Evolution of a hereditary cardiac conduction and muscle disorder: A study involving a family with six generations affected. Circulation 1986;74:21–35.

    Google Scholar 

  37. Nethala V, Brown EJ Jr, Timson CR, Patcha R. Reversal of alcoholic cardiomyopathy in a patient with severe coronary artery disease. Chest 1993;104:626.

    Google Scholar 

  38. Nagano M, Kato M, Nagai M, Yang J. Protective effect of ACE-and kininase-inhibitor on the onset of cardiomyopathy. Basic Res Cardiol 1991;86:187–195.

    Google Scholar 

  39. Janicki JS, Tyagi SC, Henegar JR, Campbell SE. Myocardial collagenase activity and ventricular dilatation in cardiomyopathic hamsters. Circulation 1993;88:I-381.

    Google Scholar 

  40. Tyagi SC, Janicki JS, Henegar JR, Campbell SE. Posttranscriptional and translational modification of myocardial collagenase leads to ventricular dilatation in cardiomyopathic hamsters. Clin Res 1993;41:630A.

    Google Scholar 

  41. Cleutjens JP, Guardo E, Weber KT. Transcriptional and post-transcriptional regulation of interstitial collagenase after myocardial infarction in the rat heart. Circulation 1993;88:I380.

    Google Scholar 

  42. Freeman GL, Little WC, Haywood JR. Reduction of LV mass in normal rats by captopril. Cardiovasc Res 1987;21:323–327.

    Google Scholar 

  43. Tyagi SC, Zhou G, Ratajska A, Weber KT. Quinaprilunduced myocardial collagenase in spontaneously hypertensive rats (SHR). Am J Hypertens 1993;6:67A.

    Google Scholar 

  44. Gerdes AM, Kellerman SE, Moore JA, et al. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 1992;86:426–430.

    Google Scholar 

  45. Tyagi SC, Reddy HK, Voelker DJ, Tiahja E, Shaw B, Weber KT. Myocardial collagenase and tissue inhibitor in dilated, failing human myocardium. Circulation 1993;88:I407.

    Google Scholar 

  46. Tyagi SC, Matsubara L, Ratajska A, Weber KT. Identification and localization of myocardial collagenase(s). Clin Res 1992;40:757A.

    Google Scholar 

  47. Laurent GJ. Dynamic state of collagen: Pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 1987;252:C1-C9.

    Google Scholar 

  48. Okada Y, Watanabe S, Nakanishi I, et al. Inactivation of tissue inhibitor of metalloproteinases by neutrophil elastase and other serine proteinases. FEBS Lett 1988;229:157–160.

    Google Scholar 

  49. Cawston TE, Galloway WA, Mercer E, Murphy G, Reynolds JJ. Purification of rabbit bone inhibitor of collagenase. Biochem J 1981;195:159–165.

    Google Scholar 

  50. Dean DD, Woessner JF Jr. Extracts of human articular cartilage contain an inhibitor of tissue metalloproteinases. Biochem J 1984;218:277–280.

    Google Scholar 

  51. Gillum RF. Progress in Cardiology, Philadelphia: Lea and Febiger, 1989:11.

    Google Scholar 

  52. Popma JJ, Cigarroa RG, Buja LM, Hillis LD. Diagnostic and prognostic utility of right-sided catheterization and endomyocardial biopsy in idiopathic dilated cardiomyopathy. Am J Cardiol 1989;63:955–958.

    Google Scholar 

  53. Reddy HK, Tyagi SC, Tjahja IE, Voelker DJ, Campbell SE, Weber KT. Activated myocardial collagenase in idiopathic dilated cardiomyopathy: A marker of dilatation and remodeling. Clin Res 1993;41:660A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, S.C., Bheemanathini, V.S., Mandi, D. et al. Role of extracellular matrix metalloproteinases in cardiac remodelling. Heart Failure Rev 1, 73–80 (1996). https://doi.org/10.1007/BF00128558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00128558

Key words

Navigation