Skip to main content
Erschienen in: Experimental Brain Research 2/2006

01.11.2006 | Research Article

Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig

verfasst von: Ian S. Curthoys, Juno Kim, Samara K. McPhedran, Aaron J. Camp

Erschienen in: Experimental Brain Research | Ausgabe 2/2006

Einloggen, um Zugang zu erhalten

Abstract

The main objective of this study was to determine whether bone-conducted vibration (BCV) is equally effective in activating both semicircular canal and otolith afferents in the guinea pig or whether there is preferential activation of one of these classes of vestibular afferents. To answer this question a large number (346) of single primary vestibular neurons were recorded extracellularly in anesthetized guinea pigs and were identified by their location in the vestibular nerve and classed as regular or irregular on the basis of the variability of their spontaneous discharge. If a neuron responded to angular acceleration it was classed as a semicircular canal neuron, if it responded to maintained roll or pitch tilts it was classified as an otolith neuron. Each neuron was then tested by BCV stimuli—either clicks, continuous pure tones (200–1,500 Hz) or short tone bursts (500 Hz lasting 7 ms)—delivered by a B-71 clinical bone-conduction oscillator cemented to the guinea pig's skull. All stimulus intensities were referred to that animal's own auditory brainstem response (ABR) threshold to BCV clicks, and the maximum intensity used was within the animal's physiological range and was usually around 70 dB above BCV threshold. In addition two sensitive single axis linear accelerometers cemented to the skull gave absolute values of the stimulus acceleration in the rostro-caudal direction. The criterion for a neuron being classed as activated was an audible, stimulus-locked increase in firing rate (a 10% change was easily detectable) in response to the BCV stimulus. At the stimulus levels used in this study, semicircular canal neurons, both regular and irregular, were insensitive to BCV stimuli and very few responded: only nine of 189 semicircular canal neurons tested (4.7%) showed a detectable increase in firing in response to BCV stimuli up to the maximum 2 V peak-to-peak level we delivered to the B-71 oscillator (which produced a peak-to-peak skull acceleration of around 6–8 g and was usually around 60–70 dB above the animal's own ABR threshold for BCV clicks). Regular otolithic afferents likewise had a poor response; only 14 of 99 tested (14.1%) showed any increase in firing rate up to the maximum BCV stimulus level. However, most irregular otolithic afferents (82.8%) showed a clear increase in firing rate in response to BCV stimuli: of the 58 irregular otolith neurons tested, 48 were activated, with some being activated at very low intensities (only about 10 dB above the animal's ABR threshold to BCV clicks). Most of the activated otolith afferents were in the superior division of the vestibular nerve and were probably utricular afferents. That was confirmed by evidence using juxtacellular injection of neurobiotin near BCV activated neurons to trace their site of origin to the utricular macula. We conclude there is a very clear preference for irregular otolith afferents to be activated selectively by BCV stimuli at low stimulus levels and that BCV stimuli activate some utricular irregular afferent neurons. The BCV generates compressional and shear waves, which travel through the skull and constitute head accelerations, which are sufficient to stimulate the most sensitive otolithic receptor cells.
Literatur
Zurück zum Zitat Baird RA, Desmadryl G, Fernandez C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60:182–203PubMed Baird RA, Desmadryl G, Fernandez C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60:182–203PubMed
Zurück zum Zitat Blanks RHI, Precht W (1976) Functional characterization of primary vestibular afferents in the frog. Exp Brain Res 25:369–370PubMedCrossRef Blanks RHI, Precht W (1976) Functional characterization of primary vestibular afferents in the frog. Exp Brain Res 25:369–370PubMedCrossRef
Zurück zum Zitat de Burlet HM (1929) Zur vergleichenden Anatomie der Labyrinthinnervation. J Comp Neurol 47:155–169CrossRef de Burlet HM (1929) Zur vergleichenden Anatomie der Labyrinthinnervation. J Comp Neurol 47:155–169CrossRef
Zurück zum Zitat Carey JP, Hirvonen TP, Hullar TE, Minor LB (2004) Acoustic responses of vestibular afferents in a model of superior canal dehiscence. Otol Neurotol 25:345–352PubMedCrossRef Carey JP, Hirvonen TP, Hullar TE, Minor LB (2004) Acoustic responses of vestibular afferents in a model of superior canal dehiscence. Otol Neurotol 25:345–352PubMedCrossRef
Zurück zum Zitat Cazals Y, Aran J-M, Erre J-P (1982) Frequency sensitivity and selectivity of acoustically evoked potentials after complete cochlear hair cell destruction. Brain Res 231:197–203PubMedCrossRef Cazals Y, Aran J-M, Erre J-P (1982) Frequency sensitivity and selectivity of acoustically evoked potentials after complete cochlear hair cell destruction. Brain Res 231:197–203PubMedCrossRef
Zurück zum Zitat Colebatch JG, Halmagyi GM (1992) Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation. Neurology 42:1635–1636PubMed Colebatch JG, Halmagyi GM (1992) Vestibular evoked potentials in human neck muscles before and after unilateral vestibular deafferentation. Neurology 42:1635–1636PubMed
Zurück zum Zitat Curthoys IS (1981a) Scarpa's ganglion in the rat and guinea pig. Acta Otolaryngol 92:107–113CrossRef Curthoys IS (1981a) Scarpa's ganglion in the rat and guinea pig. Acta Otolaryngol 92:107–113CrossRef
Zurück zum Zitat Curthoys IS (1981b) The organization of the horizontal semicircular duct, ampulla and utricle in the rat and guinea pig. Acta Otolaryngol 92:323–330CrossRef Curthoys IS (1981b) The organization of the horizontal semicircular duct, ampulla and utricle in the rat and guinea pig. Acta Otolaryngol 92:323–330CrossRef
Zurück zum Zitat Curthoys IS (1982) The response of primary horizontal semicircular canal neurons in the rat and guinea pig to angular acceleration. Exp Brain Res 47:286–294PubMed Curthoys IS (1982) The response of primary horizontal semicircular canal neurons in the rat and guinea pig to angular acceleration. Exp Brain Res 47:286–294PubMed
Zurück zum Zitat Curthoys IS, Markham CH (1971) Convergence of labyrinthine influences on units in the vestibular nuclei of the cat. I. Natural stimulation. Brain Res 35:469–490PubMedCrossRef Curthoys IS, Markham CH (1971) Convergence of labyrinthine influences on units in the vestibular nuclei of the cat. I. Natural stimulation. Brain Res 35:469–490PubMedCrossRef
Zurück zum Zitat Curthoys IS, Curthoys EJ, Blanks RHI, Markham CH (1975) The orientation of the semicircular canals in the guinea pig. Acta Otolaryngol 80:197–205PubMedCrossRef Curthoys IS, Curthoys EJ, Blanks RHI, Markham CH (1975) The orientation of the semicircular canals in the guinea pig. Acta Otolaryngol 80:197–205PubMedCrossRef
Zurück zum Zitat Curthoys IS, Markham CH, Blanks RHI (1977) Semicircular canal functional anatomy in cat, guinea pig and man. Acta Otolaryngol 83:258–265PubMedCrossRef Curthoys IS, Markham CH, Blanks RHI (1977) Semicircular canal functional anatomy in cat, guinea pig and man. Acta Otolaryngol 83:258–265PubMedCrossRef
Zurück zum Zitat Curthoys IS, Betts GA, Burgess AM, MacDougall HG, Cartwright AD, Halmagyi GM (1999) The planes of the utricular and saccular maculae of the guinea pig. Ann NY Acad Sci 871:27–34PubMedCrossRef Curthoys IS, Betts GA, Burgess AM, MacDougall HG, Cartwright AD, Halmagyi GM (1999) The planes of the utricular and saccular maculae of the guinea pig. Ann NY Acad Sci 871:27–34PubMedCrossRef
Zurück zum Zitat Doyle H (1995) Seismology. Wiley, Chichester Doyle H (1995) Seismology. Wiley, Chichester
Zurück zum Zitat Fernandez C, Goldberg JM (1976a) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984 Fernandez C, Goldberg JM (1976a) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984
Zurück zum Zitat Fernandez C, Goldberg JM (1976b) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39:985–995 Fernandez C, Goldberg JM (1976b) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39:985–995
Zurück zum Zitat Fernandez C, Goldberg JM (1976c) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol 39:996–1008 Fernandez C, Goldberg JM (1976c) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol 39:996–1008
Zurück zum Zitat Fernandez C, Goldberg JM, Baird RA (1990) The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol 63:767–804PubMed Fernandez C, Goldberg JM, Baird RA (1990) The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol 63:767–804PubMed
Zurück zum Zitat Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297PubMedCrossRef Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297PubMedCrossRef
Zurück zum Zitat Goldberg JM, Smith CE, Fernandez C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256PubMed Goldberg JM, Smith CE, Fernandez C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256PubMed
Zurück zum Zitat Goldberg JM, Desmadryl G, Baird RA, Fernandez C (1990) The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63:791–804PubMed Goldberg JM, Desmadryl G, Baird RA, Fernandez C (1990) The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63:791–804PubMed
Zurück zum Zitat Hardy M (1934) Observations on the innervation of the macula sacculi in man. Anat Rec 59:403–418CrossRef Hardy M (1934) Observations on the innervation of the macula sacculi in man. Anat Rec 59:403–418CrossRef
Zurück zum Zitat Hullar TE, Della Santina CC, Hirvonen T, Lasker DM, Carey JP, Minor LB (2005) Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve afferents during high-frequency head rotations. J Neurophysiol 93:2777–2786PubMedCrossRef Hullar TE, Della Santina CC, Hirvonen T, Lasker DM, Carey JP, Minor LB (2005) Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve afferents during high-frequency head rotations. J Neurophysiol 93:2777–2786PubMedCrossRef
Zurück zum Zitat Jombik P, Bahyl V (2005) Short latency responses in the averaged electro-oculogram elicited by vibrational impulse stimuli applied to the skull: could they reflect vestibulo-ocular reflex function. J Neurol Neurosurg Psychiatry 76:222–228PubMedCrossRef Jombik P, Bahyl V (2005) Short latency responses in the averaged electro-oculogram elicited by vibrational impulse stimuli applied to the skull: could they reflect vestibulo-ocular reflex function. J Neurol Neurosurg Psychiatry 76:222–228PubMedCrossRef
Zurück zum Zitat Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity in the bullfrog ear. Brain Res 250:168–172PubMedCrossRef Koyama H, Lewis ER, Leverenz EL, Baird RA (1982) Acute seismic sensitivity in the bullfrog ear. Brain Res 250:168–172PubMedCrossRef
Zurück zum Zitat Lee H-Y, Camp AJ, Callister RJ, Brichta AM (2005) Vestibular primary afferent activity in an in vitro preparation of the mouse inner ear. J Neurosci Methods 145:73–87PubMedCrossRef Lee H-Y, Camp AJ, Callister RJ, Brichta AM (2005) Vestibular primary afferent activity in an in vitro preparation of the mouse inner ear. J Neurosci Methods 145:73–87PubMedCrossRef
Zurück zum Zitat McCue MP, Guinan JJ (1994a) Acoustically responsive fibers in the vestibular nerve of the cat. J Neurosci 14:6058–6070 McCue MP, Guinan JJ (1994a) Acoustically responsive fibers in the vestibular nerve of the cat. J Neurosci 14:6058–6070
Zurück zum Zitat McCue MP, Guinan JJ (1994b) Influence of efferent stimulation on acoustically responsive vestibular afferents in the cat. J Neurosci 14:6071–6083 McCue MP, Guinan JJ (1994b) Influence of efferent stimulation on acoustically responsive vestibular afferents in the cat. J Neurosci 14:6071–6083
Zurück zum Zitat McCue MP, Guinan JJ (1995) Spontaneous activity and frequency selectivity of acoustically responsive vestibular afferents in the cat. J Neurophysiol 74:1563–1572PubMed McCue MP, Guinan JJ (1995) Spontaneous activity and frequency selectivity of acoustically responsive vestibular afferents in the cat. J Neurophysiol 74:1563–1572PubMed
Zurück zum Zitat McCue MP, Guinan JJ (1997) Sound-evoked activity in primary afferent neurons of a mammalian vestibular system. Am J Otol 18:355–360PubMed McCue MP, Guinan JJ (1997) Sound-evoked activity in primary afferent neurons of a mammalian vestibular system. Am J Otol 18:355–360PubMed
Zurück zum Zitat Mikaelian D (1964) Vestibular response to sound: single unit recording from the vestibular nerve in fenestrated deaf mice (Df/Df). Acta Otolaryngol 58:409–422PubMedCrossRef Mikaelian D (1964) Vestibular response to sound: single unit recording from the vestibular nerve in fenestrated deaf mice (Df/Df). Acta Otolaryngol 58:409–422PubMedCrossRef
Zurück zum Zitat Murofushi T, Curthoys IS (1997) Physiological and anatomical study of click-sensitive primary vestibular afferents in the guinea pig. Acta Otolaryngol 117:66–72PubMedCrossRef Murofushi T, Curthoys IS (1997) Physiological and anatomical study of click-sensitive primary vestibular afferents in the guinea pig. Acta Otolaryngol 117:66–72PubMedCrossRef
Zurück zum Zitat Murofushi T, Curthoys IS, Topple AN, Colebatch JG, Halmagyi GM (1995) Responses of guinea pig primary vestibular neurons to clicks. Exp Brain Res 103:174–178PubMedCrossRef Murofushi T, Curthoys IS, Topple AN, Colebatch JG, Halmagyi GM (1995) Responses of guinea pig primary vestibular neurons to clicks. Exp Brain Res 103:174–178PubMedCrossRef
Zurück zum Zitat Naito R, Murofushi T, Mizutani M, Kaga K (1999) Auditory brainstem responses, electrocochleograms and cochlear microphonics in the myelin deficient hamster ‘bt’. Hear Res 136:44–48PubMedCrossRef Naito R, Murofushi T, Mizutani M, Kaga K (1999) Auditory brainstem responses, electrocochleograms and cochlear microphonics in the myelin deficient hamster ‘bt’. Hear Res 136:44–48PubMedCrossRef
Zurück zum Zitat Pinault D (1994) Golgi-like labeling of a single neuron recorded extracellularly. Neurosci Lett 170:255–260PubMedCrossRef Pinault D (1994) Golgi-like labeling of a single neuron recorded extracellularly. Neurosci Lett 170:255–260PubMedCrossRef
Zurück zum Zitat Rosengren SM, Todd NPM, Colebatch JG (2005) Vestibular-evoked extra-ocular potentials produced by stimulation with bone-conducted sound. Clin Neurophysiol 116:1938–1948PubMedCrossRef Rosengren SM, Todd NPM, Colebatch JG (2005) Vestibular-evoked extra-ocular potentials produced by stimulation with bone-conducted sound. Clin Neurophysiol 116:1938–1948PubMedCrossRef
Zurück zum Zitat Stein S, Wysession M (2003) An introduction to seismology, earthquakes and earth structure. Blackwell Publishing, Oxford Stein S, Wysession M (2003) An introduction to seismology, earthquakes and earth structure. Blackwell Publishing, Oxford
Zurück zum Zitat Wada S-I, Starr A (1983) Generation of the auditory brainstem responses (ABRs). I. Effects of injection of a local anesthetic (Procaine HCl) into the trapezoid body of guinea pigs and cat. Electroencephalogr Clin Neurophysiol 56:326–339PubMedCrossRef Wada S-I, Starr A (1983) Generation of the auditory brainstem responses (ABRs). I. Effects of injection of a local anesthetic (Procaine HCl) into the trapezoid body of guinea pigs and cat. Electroencephalogr Clin Neurophysiol 56:326–339PubMedCrossRef
Zurück zum Zitat Welgampola MS, Colebatch JG (2005) Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurology 64:1682–1688PubMedCrossRef Welgampola MS, Colebatch JG (2005) Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurology 64:1682–1688PubMedCrossRef
Zurück zum Zitat Welgampola MS, Rosengren SM, Halmagyi GM, Colebatch JG (2003) Vestibular activation by bone conducted sound. J Neurol Neurosurg Psychiatry 74:771–778PubMedCrossRef Welgampola MS, Rosengren SM, Halmagyi GM, Colebatch JG (2003) Vestibular activation by bone conducted sound. J Neurol Neurosurg Psychiatry 74:771–778PubMedCrossRef
Zurück zum Zitat Wit HP, Bleeker JD, Mulder HH (1984) Responses of pigeon vestibular nerve fibers to sound and vibration with audiofrequencies. J Acoust Soc Am 75:202–208PubMedCrossRef Wit HP, Bleeker JD, Mulder HH (1984) Responses of pigeon vestibular nerve fibers to sound and vibration with audiofrequencies. J Acoust Soc Am 75:202–208PubMedCrossRef
Zurück zum Zitat Young ED, Fernandez C, Goldberg JM (1977) Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Acta Otolaryngol 84:352–360PubMedCrossRef Young ED, Fernandez C, Goldberg JM (1977) Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Acta Otolaryngol 84:352–360PubMedCrossRef
Metadaten
Titel
Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig
verfasst von
Ian S. Curthoys
Juno Kim
Samara K. McPhedran
Aaron J. Camp
Publikationsdatum
01.11.2006
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 2/2006
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-006-0544-1

Weitere Artikel der Ausgabe 2/2006

Experimental Brain Research 2/2006 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.