Skip to main content
Erschienen in: Clinical Oral Investigations 6/2016

22.09.2015 | Original Article

Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells

verfasst von: Manal Farea, Adam Husein, Ahmad Sukari Halim, Zurairah Berahim, Asma Abdullah Nurul, Khairani Idah Mokhtar, Kasmawati Mokhtar

Erschienen in: Clinical Oral Investigations | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

Objectives

The purpose of this study was to evaluate the synergistic effect of epithelial rests of Malassez cells (ERM) and transforming growth factor-β1 (TGF-β1) on proliferation, cementogenic and osteogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED).

Materials and methods

SHED were co-cultured with ERM with/without TGF-β1. Then, SHED proliferation, morphological appearance, alkaline phosphatase (ALP) activity, mineralization behaviour and gene/protein expression of cemento/osteoblastic phenotype were evaluated.

Results

TGF-β1 enhanced SHED proliferation when either cultured alone or co-cultured with ERM. ERM induced the cementoblastic differentiation of SHED which was significantly accelerated when treated with TGF-β1. This activity was demonstrated by high ALP activity, strong mineral deposition and upregulation of cementum/bone-related gene and protein expressions (i.e. ALP, collagen type I, bone sialoprotein, osteocalcin and cementum attachment protein).

Conclusions

ERM were able to induce SHED differentiation along the cemento/osteoblastic lineage that was triggered in the presence of TGF-β1.

Clinical relevance

The cemento/osteoblastic differentiation capability of SHED possesses a therapeutic potential in endodontic and periodontal tissue engineering.
Literatur
1.
Zurück zum Zitat Shahi S, Rahimi S, Hasan M et al (2009) Sealing ability of mineral trioxide aggregate and Portland cement for furcal perforation repair: a protein leakage study. J Oral Sci 51:01–6CrossRef Shahi S, Rahimi S, Hasan M et al (2009) Sealing ability of mineral trioxide aggregate and Portland cement for furcal perforation repair: a protein leakage study. J Oral Sci 51:01–6CrossRef
2.
Zurück zum Zitat Silveria CMM, Sanchez-Alyala A, Lagravere MO et al (2008) Repair of furcal perforation with mineral trioxide aggregate: long term follow up of 2 cases. J Can Dent Assoc 74:729–733 Silveria CMM, Sanchez-Alyala A, Lagravere MO et al (2008) Repair of furcal perforation with mineral trioxide aggregate: long term follow up of 2 cases. J Can Dent Assoc 74:729–733
3.
Zurück zum Zitat Hakki SS, Bozkurt SB, Hakki EE et al (2009) Effects of mineral trioxide aggregate on cell survival, gene expression associated with mineralized tissues, and biomineralization of cementoblasts. J Endod 35:513–9CrossRefPubMed Hakki SS, Bozkurt SB, Hakki EE et al (2009) Effects of mineral trioxide aggregate on cell survival, gene expression associated with mineralized tissues, and biomineralization of cementoblasts. J Endod 35:513–9CrossRefPubMed
4.
Zurück zum Zitat Goncalves PF, Sallum EA, Sallum AW et al (2005) Dental cementum reviewed: development, structure, composition, regeneration and potential functions. Braz J Oral Sci 12:651–58 Goncalves PF, Sallum EA, Sallum AW et al (2005) Dental cementum reviewed: development, structure, composition, regeneration and potential functions. Braz J Oral Sci 12:651–58
5.
Zurück zum Zitat Zhou Y, Wu C, Zhang X et al (2013) The ionic products from bredigite bioceramics induced cementogenic differentiation of periodontal ligament cells via activation of the Wnt/b-catenin signaling pathway. J Mater Chem B1(1):3380–3389CrossRef Zhou Y, Wu C, Zhang X et al (2013) The ionic products from bredigite bioceramics induced cementogenic differentiation of periodontal ligament cells via activation of the Wnt/b-catenin signaling pathway. J Mater Chem B1(1):3380–3389CrossRef
6.
Zurück zum Zitat Avila-Ortiz G, De Buitrago JG, Reddy MS (2015) Periodontal regeneration-furcation defects: a systematic review from the AAP Regeneration Workshop. J Periodontol 86:108–30CrossRef Avila-Ortiz G, De Buitrago JG, Reddy MS (2015) Periodontal regeneration-furcation defects: a systematic review from the AAP Regeneration Workshop. J Periodontol 86:108–30CrossRef
7.
Zurück zum Zitat Reddy MS, Aichelmann-Reidy ME, Avila-Ortiz G et al (2015) Periodontal regeneration-furcation defects: a consensus report from the AAP Regeneration Workshop. J Periodontol 86:131–3CrossRef Reddy MS, Aichelmann-Reidy ME, Avila-Ortiz G et al (2015) Periodontal regeneration-furcation defects: a consensus report from the AAP Regeneration Workshop. J Periodontol 86:131–3CrossRef
8.
Zurück zum Zitat Samiee M, Eghbal MJ, Parirokh M et al (2010) Repair of furcal perforation using a new endodontic cement. Clin Oral Investig 14:653–8CrossRefPubMed Samiee M, Eghbal MJ, Parirokh M et al (2010) Repair of furcal perforation using a new endodontic cement. Clin Oral Investig 14:653–8CrossRefPubMed
9.
Zurück zum Zitat Xiong J, Gronthos S, Bartold PM (2013) Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues. Periodontol 2000 63:217–33CrossRefPubMed Xiong J, Gronthos S, Bartold PM (2013) Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues. Periodontol 2000 63:217–33CrossRefPubMed
10.
Zurück zum Zitat Sonoyama W, Seo BM, Yamaza T et al (2007) Human Hertwig’s epithelial root sheath cells play crucial roles in cementum formation. J Dent Res 86:594–9CrossRefPubMed Sonoyama W, Seo BM, Yamaza T et al (2007) Human Hertwig’s epithelial root sheath cells play crucial roles in cementum formation. J Dent Res 86:594–9CrossRefPubMed
11.
Zurück zum Zitat Seo BM, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155CrossRefPubMed Seo BM, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155CrossRefPubMed
12.
13.
Zurück zum Zitat Zhu W, Liang M (2015) Periodontal Ligament Stem Cells: Current Status, Concerns, and Future Prospects. Stem Cells Int 2015:11 Zhu W, Liang M (2015) Periodontal Ligament Stem Cells: Current Status, Concerns, and Future Prospects. Stem Cells Int 2015:11
14.
Zurück zum Zitat About I, Mitsiadis TA (2001) Molecular aspects of tooth pathogenesis and repair: in vivo and in vitro models. Adv Dent Res 15:59–62CrossRefPubMed About I, Mitsiadis TA (2001) Molecular aspects of tooth pathogenesis and repair: in vivo and in vitro models. Adv Dent Res 15:59–62CrossRefPubMed
15.
Zurück zum Zitat Dobie K, Smith G, Sloan AJ et al (2002) Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res 43:387–90CrossRefPubMed Dobie K, Smith G, Sloan AJ et al (2002) Effects of alginate hydrogels and TGF-beta 1 on human dental pulp repair in vitro. Connect Tissue Res 43:387–90CrossRefPubMed
16.
Zurück zum Zitat Zhang YD, Chen Z, Song YQ et al (2005) Making a tooth: growth factors, transcription factors and stem cells. Cell Res 15:301–16CrossRefPubMed Zhang YD, Chen Z, Song YQ et al (2005) Making a tooth: growth factors, transcription factors and stem cells. Cell Res 15:301–16CrossRefPubMed
17.
Zurück zum Zitat Murray PE, Garcia-Godoy F, Hargreaves KM (2007) Regenerative endodontics: a review of current status and a call for action. J Endod 33:377–90CrossRefPubMed Murray PE, Garcia-Godoy F, Hargreaves KM (2007) Regenerative endodontics: a review of current status and a call for action. J Endod 33:377–90CrossRefPubMed
18.
Zurück zum Zitat He H, Yu J, Liu Y et al (2008) Effects of FGF2 and TGFb1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 32:827–834CrossRefPubMed He H, Yu J, Liu Y et al (2008) Effects of FGF2 and TGFb1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 32:827–834CrossRefPubMed
19.
Zurück zum Zitat Rodrigues M, Griffith LG, Wells A (2010) Growth factor regulation of proliferation and survival of multipotent stromal cells. Stem Cell Res Ther 1:23 Rodrigues M, Griffith LG, Wells A (2010) Growth factor regulation of proliferation and survival of multipotent stromal cells. Stem Cell Res Ther 1:23
20.
Zurück zum Zitat Pelton RW, Saxena B, Jones M et al (1991) Immunohistochemical localization of TGF-b1, TGF-b2, and TGF-b3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–105CrossRefPubMed Pelton RW, Saxena B, Jones M et al (1991) Immunohistochemical localization of TGF-b1, TGF-b2, and TGF-b3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–105CrossRefPubMed
21.
Zurück zum Zitat Bakin AV, Tomlinson AK, Bhowmick NA et al (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–10CrossRefPubMed Bakin AV, Tomlinson AK, Bhowmick NA et al (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–10CrossRefPubMed
22.
24.
Zurück zum Zitat Zheng Y, Liu Y, Zhang CM et al (2009) Stem cells from deciduous tooth repair mandibular defect in swine. J Dev Read 88:249–54 Zheng Y, Liu Y, Zhang CM et al (2009) Stem cells from deciduous tooth repair mandibular defect in swine. J Dev Read 88:249–54
25.
Zurück zum Zitat Cordeiro MM, Dong Z, Kaneko T et al (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34:962–9CrossRefPubMed Cordeiro MM, Dong Z, Kaneko T et al (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34:962–9CrossRefPubMed
26.
Zurück zum Zitat Suchanek J, Visek B, Soukup T et al (2010) Stem cells from human exfoliated deciduous teeth isolation, long term cultivation and phenotypical analysis. Acta Med (Hradec Kralove) 53:93–9 Suchanek J, Visek B, Soukup T et al (2010) Stem cells from human exfoliated deciduous teeth isolation, long term cultivation and phenotypical analysis. Acta Med (Hradec Kralove) 53:93–9
27.
Zurück zum Zitat Morsczeck C, Vollner F, Saugspier M et al (2010) Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig 14:433–40CrossRefPubMed Morsczeck C, Vollner F, Saugspier M et al (2010) Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig 14:433–40CrossRefPubMed
28.
Zurück zum Zitat Farea M, Halim AS, Abdullah NA et al (2013) Isolation and enhancement of a homogenous in vitro human Hertwig’s epithelial root sheath cell population. Int J Mol Sci 14:11157–11170CrossRefPubMedPubMedCentral Farea M, Halim AS, Abdullah NA et al (2013) Isolation and enhancement of a homogenous in vitro human Hertwig’s epithelial root sheath cell population. Int J Mol Sci 14:11157–11170CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMed Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMed
30.
Zurück zum Zitat Nakashima M, Akamine A (2005) The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 31:711–8CrossRefPubMed Nakashima M, Akamine A (2005) The application of tissue engineering to regeneration of pulp and dentin in endodontics. J Endod 31:711–8CrossRefPubMed
31.
Zurück zum Zitat Ogawa T, Akazawa T, Tabata Y (2010) In vitro proliferation and chondrogenic differentiation of rat bone marrow stem cells cultured with gelatin hydrogel microspheres for TGF-β1 release. J Biomater Sci Polym Ed 21:609–21CrossRefPubMed Ogawa T, Akazawa T, Tabata Y (2010) In vitro proliferation and chondrogenic differentiation of rat bone marrow stem cells cultured with gelatin hydrogel microspheres for TGF-β1 release. J Biomater Sci Polym Ed 21:609–21CrossRefPubMed
32.
Zurück zum Zitat Richmon JD, Sage AB, Shelton E et al (2005) Effect of growth factors on cell proliferation, matrix deposition, and morphology of human nasal septal chondrocytes cultured in monolayer. Laryngoscope 115:1553–1560CrossRefPubMed Richmon JD, Sage AB, Shelton E et al (2005) Effect of growth factors on cell proliferation, matrix deposition, and morphology of human nasal septal chondrocytes cultured in monolayer. Laryngoscope 115:1553–1560CrossRefPubMed
33.
Zurück zum Zitat van den Dolder J, Spauwen PHM, Jansen JA (2003) Evaluation of various seeding techniques for culturing osteogenic cells on titanium fiber mesh. Tissue Eng 9:315–25CrossRefPubMed van den Dolder J, Spauwen PHM, Jansen JA (2003) Evaluation of various seeding techniques for culturing osteogenic cells on titanium fiber mesh. Tissue Eng 9:315–25CrossRefPubMed
34.
35.
Zurück zum Zitat Thiery JP, Acloque H, Huang RY et al (2009) Epithelial–mesenchymal transitions in development and disease. Cell 139:871–890CrossRefPubMed Thiery JP, Acloque H, Huang RY et al (2009) Epithelial–mesenchymal transitions in development and disease. Cell 139:871–890CrossRefPubMed
36.
37.
Zurück zum Zitat Akimoto T, Fujiwara N, Kagiya T et al (2011) Establishment of Hertwig’s epithelial root sheath cell line from cells involved in epithelial-mesenchymal transition. Biochem Biophys Res Commun 404:308–12CrossRefPubMed Akimoto T, Fujiwara N, Kagiya T et al (2011) Establishment of Hertwig’s epithelial root sheath cell line from cells involved in epithelial-mesenchymal transition. Biochem Biophys Res Commun 404:308–12CrossRefPubMed
38.
Zurück zum Zitat Jung HS, Lee DS, Lee JH et al (2011) Directing the differentiation of human dental follicle cells into cementoblasts and/or osteoblasts by a combination of HERS and pulp cells. J Mol Histol 42:227–235CrossRefPubMed Jung HS, Lee DS, Lee JH et al (2011) Directing the differentiation of human dental follicle cells into cementoblasts and/or osteoblasts by a combination of HERS and pulp cells. J Mol Histol 42:227–235CrossRefPubMed
39.
Zurück zum Zitat Sila-Asna M, Bunyaratvej A, Maeda S et al (2007) Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci 53:25–35PubMed Sila-Asna M, Bunyaratvej A, Maeda S et al (2007) Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci 53:25–35PubMed
40.
Zurück zum Zitat Zeichner-David M (2006) Regeneration of periodontal tissues: cementogenesis revisited. Periodontol 2000(41):196–217CrossRef Zeichner-David M (2006) Regeneration of periodontal tissues: cementogenesis revisited. Periodontol 2000(41):196–217CrossRef
41.
Zurück zum Zitat Zhao L, Jiang S, Hantash BM (2010) Transforming growth factor-1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng Part A 16:725–733CrossRefPubMed Zhao L, Jiang S, Hantash BM (2010) Transforming growth factor-1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng Part A 16:725–733CrossRefPubMed
42.
Zurück zum Zitat Lu L, Yaszemski MJ, Mikos AG (2001) TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. J Bone Joint Surg Am 83:82–91 Lu L, Yaszemski MJ, Mikos AG (2001) TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. J Bone Joint Surg Am 83:82–91
43.
Zurück zum Zitat Lucchini M, Romeas A, Couble ML et al (2002) TGF beta 1 signaling and stimulation of osteoadherin in human odontoblasts in vitro. Connect Tissue Res 43:345–53CrossRefPubMed Lucchini M, Romeas A, Couble ML et al (2002) TGF beta 1 signaling and stimulation of osteoadherin in human odontoblasts in vitro. Connect Tissue Res 43:345–53CrossRefPubMed
44.
Zurück zum Zitat Inage T, Toda Y (1996) Gene expression of TGF-b1 and elaboration of extracellular matrix using in situ hybridization and EM radioautography during dentinogenesis. Anat Rec 245:250–66CrossRefPubMed Inage T, Toda Y (1996) Gene expression of TGF-b1 and elaboration of extracellular matrix using in situ hybridization and EM radioautography during dentinogenesis. Anat Rec 245:250–66CrossRefPubMed
45.
Zurück zum Zitat Farea M, Husein A, Halim AS et al (2014) Synergistic effects of chitosan scaffold and TGF-β1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Arch Oral Biol 59:1400–1411CrossRefPubMed Farea M, Husein A, Halim AS et al (2014) Synergistic effects of chitosan scaffold and TGF-β1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth. Arch Oral Biol 59:1400–1411CrossRefPubMed
46.
Zurück zum Zitat Franceschi RT, Iyer BS (1992) Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res 7:235–46CrossRefPubMed Franceschi RT, Iyer BS (1992) Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res 7:235–46CrossRefPubMed
47.
Zurück zum Zitat Zhu W, Robey PG, Boskey AL (2009) The regulatory role of matrix proteins in mineralization of bone. In: Marcus R, Feldman D, Nelson D, Rosen CJ (eds) Fundamentals of osteoporosis. Elsevier Academic Press, San Diego, pp 153–202 Zhu W, Robey PG, Boskey AL (2009) The regulatory role of matrix proteins in mineralization of bone. In: Marcus R, Feldman D, Nelson D, Rosen CJ (eds) Fundamentals of osteoporosis. Elsevier Academic Press, San Diego, pp 153–202
48.
49.
Zurück zum Zitat Kishimoto N, Momota Y, Hashimoto Y et al (2014) The osteoblastic differentiation ability of human dedifferentiated fat cells is higher than that of adipose stem cells from the buccal fat pad. Clin Oral Investig 18:1893–901CrossRefPubMed Kishimoto N, Momota Y, Hashimoto Y et al (2014) The osteoblastic differentiation ability of human dedifferentiated fat cells is higher than that of adipose stem cells from the buccal fat pad. Clin Oral Investig 18:1893–901CrossRefPubMed
50.
Zurück zum Zitat Kim GS (1993) Mineralization of bone and osteocalcin gene expression. J Oral Biol 17:101–106 Kim GS (1993) Mineralization of bone and osteocalcin gene expression. J Oral Biol 17:101–106
51.
Zurück zum Zitat Viereck V, Siggelkow H, Tauber S et al (2002) Differential regulation of Cbfa1/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts. J Cell Biochem 86:348–356CrossRefPubMed Viereck V, Siggelkow H, Tauber S et al (2002) Differential regulation of Cbfa1/Runx2 and osteocalcin gene expression by vitamin-D3, dexamethasone, and local growth factors in primary human osteoblasts. J Cell Biochem 86:348–356CrossRefPubMed
52.
Zurück zum Zitat Chen J, Shapiro HS, Sodek J (1992) Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res 7:987–997CrossRefPubMed Chen J, Shapiro HS, Sodek J (1992) Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res 7:987–997CrossRefPubMed
53.
Zurück zum Zitat Chen JK, Shapiro HS, Wrana JL et al (1991) Localization of bone sialoprotein (BSP) expression to sites of mineralized tissue formation in fetal rat tissues by in situ hybridization. Matrix 11:133–143CrossRefPubMed Chen JK, Shapiro HS, Wrana JL et al (1991) Localization of bone sialoprotein (BSP) expression to sites of mineralized tissue formation in fetal rat tissues by in situ hybridization. Matrix 11:133–143CrossRefPubMed
54.
Zurück zum Zitat McAllister B, Narayanan AS, Miki Y et al (1990) Isolation of a fibroblast attachment protein from cementum. J Periodontal Res 25:99–105CrossRefPubMed McAllister B, Narayanan AS, Miki Y et al (1990) Isolation of a fibroblast attachment protein from cementum. J Periodontal Res 25:99–105CrossRefPubMed
55.
Zurück zum Zitat Pitaru S, Narayanan SA, Olson S et al (1995) Specific cementum attachment protein enhances selectively the attachment and migration of periodontal cells to root surfaces. J Periodontal Res 30:360–368CrossRefPubMed Pitaru S, Narayanan SA, Olson S et al (1995) Specific cementum attachment protein enhances selectively the attachment and migration of periodontal cells to root surfaces. J Periodontal Res 30:360–368CrossRefPubMed
56.
Zurück zum Zitat Wu D, Ikezawa K, Parker T et al (1996) Characterization of a collagenous cementum-derived attachment. J Bone Miner Res 11:686–692CrossRefPubMed Wu D, Ikezawa K, Parker T et al (1996) Characterization of a collagenous cementum-derived attachment. J Bone Miner Res 11:686–692CrossRefPubMed
57.
Zurück zum Zitat Arzate H, Olson SW, Page RC et al (1992) Production of a monoclonal antibody to an attachment protein derived from human cementum. FASEB J 6:2990–5PubMed Arzate H, Olson SW, Page RC et al (1992) Production of a monoclonal antibody to an attachment protein derived from human cementum. FASEB J 6:2990–5PubMed
58.
Zurück zum Zitat Saito M, Iwase M, Maslan S et al (2001) Expression of cementum-derived attachment protein in bovine tooth germ during cementogenesis. Bone 29:242–8CrossRefPubMed Saito M, Iwase M, Maslan S et al (2001) Expression of cementum-derived attachment protein in bovine tooth germ during cementogenesis. Bone 29:242–8CrossRefPubMed
59.
Zurück zum Zitat Bosshardt DD (2005) Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 84:390–406CrossRefPubMed Bosshardt DD (2005) Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 84:390–406CrossRefPubMed
60.
Zurück zum Zitat Zeichner-David M, Oishi K, Su Z et al (2003) Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn 228:651–663CrossRefPubMed Zeichner-David M, Oishi K, Su Z et al (2003) Role of Hertwig’s epithelial root sheath cells in tooth root development. Dev Dyn 228:651–663CrossRefPubMed
Metadaten
Titel
Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells
verfasst von
Manal Farea
Adam Husein
Ahmad Sukari Halim
Zurairah Berahim
Asma Abdullah Nurul
Khairani Idah Mokhtar
Kasmawati Mokhtar
Publikationsdatum
22.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Oral Investigations / Ausgabe 6/2016
Print ISSN: 1432-6981
Elektronische ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-015-1601-6

Weitere Artikel der Ausgabe 6/2016

Clinical Oral Investigations 6/2016 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Zahnmedizin

Bestellen Sie unseren kostenlosen Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.