Skip to main content
Log in

Phenelzine Causes an Increase in Brain Ornithine that is Prevented by Prior Monoamine Oxidase Inhibition

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Phenelzine (PLZ), a nonselective irreversible inhibitor of monoamine oxidase (MAO), also inhibits GABA-transaminase (GABA-T), markedly increasing brain GABA levels. PLZ is also a substrate for MAO, and studies suggest that a metabolite formed by the action of this enzyme on PLZ may be responsible for the increase in GABA observed. We have recently found that PLZ also elevates brain ornithine (ORN), an amino acid precursor to both glutamate (and GABA) and the polyamines, and have conducted dose- and time-response studies on this effect. Rats were treated with vehicle or PLZ doses (7.5, 15 or 30 mg/kg i.p.), and brains were collected 3 h later. In the time-response study, animals were treated with vehicle or PLZ (15 mg/kg i.p.) and brains were collected 1–24 h later. To determine whether a metabolite formed by the action of MAO on PLZ may be responsible for the elevation in brain ORN observed, animals were pretreated with vehicle or the MAO inhibitor tranylcypromine (TCP) before vehicle or PLZ (15 mg/kg), and brains collected 3 h later. ORN levels (measured by an HPLC procedure) were dose- and time-dependently increased in PLZ-treated animals, with levels reaching approximately 650% of control at 6 and 12 h. Pretreatment with TCP completely abolished the PLZ-induced increase in brain ORN, suggesting, as with GABA, that a metabolite of PLZ formed by the action of MAO is responsible for the elevation of brain ORN observed. The possible contribution of increased ORN to therapeutic and/or neuroprotective properties of PLZ is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McKenna KF, Baker GB, Coutts RT (1991) N2-acetylphenelzine: effects on rat brain GABA, alanine and biogenic amines. Naunyn Schmiedeberg's Arch Pharmacol 343:478–482

    CAS  Google Scholar 

  2. Parent MB, Habib MK, Baker GB (2000) Time-dependent changes in brain monoamine oxidase activity and in brain levels of monoamines and amino acids following acute administration of the antidepressant/antipanic drug phenelzine. Biochem Pharmacol 59:1253–1263

    Article  PubMed  CAS  Google Scholar 

  3. Caille D, Bergis OE, Fankhauser C, Gardes A, Adam R, Charieras T, Grosset A, Rovei V, Jarreau FX (1996) Befloxatone, a new reversible and selective monoamine oxidase-A inhibitor. II. Pharmacological profile. J Pharmacol Exp Ther 277:265–277

    PubMed  CAS  Google Scholar 

  4. Paslawski T, Treit D, Baker GB, George M, Coutts RT (1996) The antidepressant drug phenelzine produces antianxiety effects in the plus-maze and increases in rat brain GABA. Psychopharmacology (Berl) 127:19–24

    CAS  Google Scholar 

  5. Griebel G, Curet O, Perrault G, Sanger DJ (1998) Behavioral effects of phenelzine in an experimental model for screening anxiolytic and anti-panic drugs: correlation with changes in monoamine-oxidase activity and monoamine levels. Neuropharmacology 37:927–935

    Article  PubMed  CAS  Google Scholar 

  6. Sowa BN, Todd KG, Tanay VA, Holt A, Baker GB (2004) Monoamine oxidase inhibitors and development of neuroprotective drugs. Curr Neuropharmacol 2:153–168

    Article  CAS  Google Scholar 

  7. Wood PL, Khan MA, Moskal JR, Todd KG, Tanay VA, Baker G (2006) Aldehyde load in ischemia-reperfusion brain injury: neuroprotection by neutralization of reactive aldehydes with phenelzine. Brain Res 1122:184–190

    Article  PubMed  CAS  Google Scholar 

  8. McKim RH, Calverly DG, Dewhurst WG, Baker GB (1983) Regional concentrations of cerebral amines: effects of tranylcypromine and phenelzine. Prog Neuropsychopharmacol Biol Psychiatry 7:783–786

    Article  PubMed  CAS  Google Scholar 

  9. Baker GB, LeGatt DF, Coutts RT, Dewhurst WG (1984) Rat brain concentrations of 5-hydroxytryptamine following acute and chronic administration of MAO-inhibiting antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 8:653–656

    Article  PubMed  CAS  Google Scholar 

  10. Popov N, Matthies H (1969) Some effects of monoamine oxidase inhibitors on the metabolism of gamma-aminobutyric acid in rat brain. J Neurochem 16:899–907

    Article  PubMed  CAS  Google Scholar 

  11. Perry TL, Hansen S (1973) Sustained drug-induced elevation of brain GABA in the rat. J Neurochem 21:1167–1175

    Article  PubMed  CAS  Google Scholar 

  12. Baker GB, Wong JT, Yeung JM, Coutts RT (1991) Effects of the antidepressant phenelzine on brain levels of gamma-aminobutyric acid (GABA). J Affect Disord 21:207–211

    Article  PubMed  CAS  Google Scholar 

  13. McManus DJ, Baker GB, Martin IL, Greenshaw AJ, McKenna KF (1992) Effects of the antidepressant/antipanic drug phenelzine on GABA concentrations and GABA-transaminase activity in rat brain. Biochem Pharmacol 43:2486–2489

    Article  PubMed  CAS  Google Scholar 

  14. Paslawski TM, Sloley BD, Baker GB (1995) Effects of the MAO inhibitor phenelzine on glutamine and GABA concentrations in rat brain. Prog Brain Res 106:181–186

    Article  PubMed  CAS  Google Scholar 

  15. Todd KG, Baker GB (1995) GABA-elevating effects of the antidepressant/antipanic drug phenelzine in brain: effects of pretreatment with tranylcypromine, (-)-deprenyl and clorgyline. J Affect Disord 35:125–129

    Article  PubMed  CAS  Google Scholar 

  16. Parent MB, Habib MK, Baker GB (1999) Task-dependent effects of the antidepressant/antipanic drug phenelzine on memory. Psychopharmacology (Berl) 142:280–288

    Article  CAS  Google Scholar 

  17. Yang J, Shen J (2005) In vivo evidence for reduced cortical glutamate-glutamine cycling in rats treated with the antidepressant/antipanic drug phenelzine. Neuroscience 135:927–937

    Article  PubMed  CAS  Google Scholar 

  18. Wong JT, Baker GB, Coutts RT, Dewhurst WG (1990) Long-lasting elevation of alanine in brain produced by the antidepressant phenelzine. Brain Res Bull 25:179–181

    Article  PubMed  CAS  Google Scholar 

  19. Tanay VA, Parent MB, Wong JT, Paslawski T, Martin IL, Baker GB (2001) Effects of the antidepressant/antipanic drug phenelzine on alanine and alanine transaminase in rat brain. Cell Mol Neurobiol 21:325-339

    Article  PubMed  CAS  Google Scholar 

  20. Parent MB, Master S, Kashlub S, Baker GB (2002) Effects of the antidepressant/antipanic drug phenelzine and its putative metabolite phenylethylidenehydrazine on extracellular gamma-aminobutyric acid levels in the striatum. Biochem Pharmacol 63:57–64

    Article  PubMed  CAS  Google Scholar 

  21. Michael-Titus AT, Bains S, Jeetle J, Whelpton R (2000) Imipramine and phenelzine decrease glutamate overflow in the prefrontal cortex--a possible mechanism of neuroprotection in major depression? Neuroscience 100:681–684

    Article  PubMed  CAS  Google Scholar 

  22. Clineschmidt BV, Horita A (1969) The monoamine oxidase catalyzed degradation of phenelzine-l-14C, an irreversible inhibitor of monoamine oxidase-II. Studies in vivo. Biochem Pharmacol 18:1021–1028

    Article  PubMed  CAS  Google Scholar 

  23. Clineschmidt BV, Horita A (1969) The monoamine oxidase catalyzed degradation of phenelzine-l-14C, an irreversible inhibitor of monoamine oxidase-I. Studies in vitro. Biochem Pharmacol 18:1011–1020

    Article  PubMed  CAS  Google Scholar 

  24. Tipton KF, Spires IP (1972) Oxidation of 2-phenylethylhydrazine by monoamine oxidase. Biochem Pharmacol 21:268–270

    Article  PubMed  CAS  Google Scholar 

  25. Yu PH, Tipton KF (1989) Deuterium isotope effect of phenelzine on the inhibition of rat liver mitochondrial monoamine oxidase activity. Biochem Pharmacol 38:4245–4251

    Article  PubMed  CAS  Google Scholar 

  26. Parent M, Bush D, Rauw G, Master S, Vaccarino F, Baker G (2001) Analysis of amino acids and catecholamines, 5-hydroxytryptamine and their metabolites in brain areas in the rat using in vivo microdialysis. Methods 23:11–20

    Article  PubMed  CAS  Google Scholar 

  27. Yu PH, Boulton AA (1991) A comparison of effect of brofaromine, phenelzine and tranylcypromine on the activities of some enzymes involved in the metabolism of different neurotransmitters. Res Commun Chem Pathol Pharmacol 16:141–153

    CAS  Google Scholar 

  28. Seiler N (2000) Ornithine aminotransferase, a potential target for the treatment of hyperammonemias. Curr Drug Targets 1:119–153

    Article  PubMed  CAS  Google Scholar 

  29. Jung MJ, Seiler N (1978) Enzyme-activated irreversible inhibitors of L-ornithine:2-oxoacid aminotransferase. Demonstration of mechanistic features of the inhibition of ornithine aminotransferase by 4-aminohex-5-ynoic acid and gabaculine and correlation with in vivo activity. J Biol Chem 253:7431–7439

    PubMed  CAS  Google Scholar 

  30. Jung MJ, Heydt JG, Casara P (1984) Gamma-allenyl GABA, a new inhibitor of 4-aminobutyrate amino transferase. Comparison with other inhibitors of this enzyme. Biochem Pharmacol 33:3717–3720

    Article  PubMed  CAS  Google Scholar 

  31. Wong PT, McGeer EG, McGeer PL (1982) Effects of kainic acid injection and cortical lesion on ornithine and aspartate aminotransferases in rat striatum. J Neurosci Res 8:643–650

    Article  PubMed  CAS  Google Scholar 

  32. Daune G, Seiler N (1988) Interrelationships between ornithine, glutamate, and GABA. II. Consequences of inhibition of GABA-T and ornithine aminotransferase in brain. Neurochem Res 13:69–75

    Article  PubMed  CAS  Google Scholar 

  33. Daune G, Gerhart F, Seiler N (1988) 5-Fluoromethylornithine, an irreversible and specific inhibitor of L-ornithine:2-oxo-acid aminotransferase. Biochem J 253:481–488

    PubMed  CAS  Google Scholar 

  34. Seiler N, Daune G, Bolkenius FN, Knodgen B (1989) Ornithine aminotransferase activity, tissue ornithine concentrations and polyamine metabolism. Int J Biochem 21:425–432

    Article  PubMed  CAS  Google Scholar 

  35. Yoneda Y, Roberts E, Dietz GW Jr (1982) A new synaptosomal biosynthetic pathway of glutamate and GABA from ornithine and its negative feedback inhibition by GABA. J Neurochem 38:1686–1694

    Article  PubMed  CAS  Google Scholar 

  36. Raina A, Pajula RL, Eloranta T (1976) A rapid assay method for spermidine and spermine synthases. Distribution of polyamine-synthesizing enzymes and methionine adenosyltransferase in rat tissues. FEBS Lett 67:252–255

    Article  PubMed  CAS  Google Scholar 

  37. Perry TL, Kish SJ, Hansen S, Wright JM, Wall RA, Dunn WL, Bellward GD (1981) Elevation of brain GABA content by chronic low-dosage administration of hydrazine, a metabolite of isoniazid. J Neurochem 37:32–39

    Article  PubMed  CAS  Google Scholar 

  38. Matsuyama K, Sendo T, Yamashita C, Sugiyama K, Noda A, Iguchi S (1983) Brain distribution of hydrazine and its GABA elevating effect in rats. J Pharmacobiodyn 6:136–138

    PubMed  CAS  Google Scholar 

  39. Tunnicliff G (1989) Inhibitors of brain GABA aminotransferase. Comp Biochem Physiol A 93:247–254

    Article  PubMed  CAS  Google Scholar 

  40. Yamada N, Takahashi S, Todd KG, Baker GB, Paetsch PR (1993) Effects of two substituted hydrazine monoamine oxidase (MAO) inhibitors on neurotransmitter amines, gamma-aminobutyric acid, and alanine in rat brain. J Pharm Sci 82:934–937

    Article  PubMed  CAS  Google Scholar 

  41. Paslawski T, Iqbal N, Knaus E, Baker GB, Coutts RT (1998) A comparison of the neurochemical effects of acutely administered phenelzine and a putative metabolite. In Proc Ann Meet Canadian College of Neuropsychopharmacology, Montreal

  42. Paslawski T, Knaus E, Iqbal N, Coutts RT, Baker G (2001) β-phenylethylidenehydrazine, a novel inhibitor of GABA transaminase. Drug Devel Res 54:35–39

    Article  CAS  Google Scholar 

  43. Petty F (1995) GABA and mood disorders: a brief review and hypothesis. J Affect Disord 34:275–281

    Article  PubMed  CAS  Google Scholar 

  44. Uzunova V, Sampson L, Uzunov DP (2006) Relevance of endogenous 3alpha-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 186:351–361

    Article  CAS  Google Scholar 

  45. Zwanzger P, Rupprecht R (2005) Selective GABAergic treatment for panic? Investigations in experimental panic induction and panic disorder. J Psychiatry Neurosci 30:167–175

    PubMed  Google Scholar 

  46. Tassone DM, Boyce E, Guyer J, Nuzum D (2007) Pregabalin: a novel gamma-aminobutyric acid analogue in the treatment of neuropathic pain, partial-onset seizures, and anxiety disorders. Clin Ther 29:26–48

    Article  PubMed  CAS  Google Scholar 

  47. Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309

    Article  PubMed  CAS  Google Scholar 

  48. Youdim MB, Weinstock M (2002) Novel neuroprotective anti-Alzheimer drugs with anti-depressant activity derived from the anti-Parkinson drug, rasagiline. Mech Ageing Dev 123:1081–1086

    Article  PubMed  CAS  Google Scholar 

  49. Shuaib A, Kanthan R (1997) Amplification of inhibitory mechanisms in cerebral ischemia: an alternative approach to neuronal protection. Histol Histopathol 12:185–194

    PubMed  CAS  Google Scholar 

  50. Green AR, Hainsworth AH, Jackson DM (2000) GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology 39:1483–1494

    Article  PubMed  CAS  Google Scholar 

  51. Schwartz-Bloom RD, Sah R (2001) gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia. J Neurochem 77:353–371

    Article  PubMed  CAS  Google Scholar 

  52. Yang Y, Li Q, Miyashita H, Yang T, Shuaib A (2001) Different dynamic patterns of extracellular glutamate release in rat hippocampus after permanent or 30-min transient cerebral ischemia and histological correlation. Neuropathology 21:181–187

    Article  PubMed  CAS  Google Scholar 

  53. Wang CX, Shuaib A (2005) NMDA/NR2B selective antagonists in the treatment of ischemic brain injury. Curr Drug Targets CNS Neurol Disord 4:143–151

    Article  PubMed  CAS  Google Scholar 

  54. Tomitori H, Usui T, Saeki N, Ueda S, Kase H, Nishimura K, Kashiwagi K, Igarashi K (2005) Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke. Stroke 36:2609–2613

    Article  PubMed  CAS  Google Scholar 

  55. Bernstein HG, Muller M (1995) Increased immunostaining for L-ornithine decarboxylase occurs in neocortical neurons of Alzheimer's disease patients. Neurosci Lett 186:123–126

    Article  PubMed  CAS  Google Scholar 

  56. Morrison LD, Cao XC, Kish SJ (1998) Ornithine decarboxylase in human brain: influence of aging, regional distribution, and Alzheimer's disease. J Neurochem 71:288–294

    Article  PubMed  CAS  Google Scholar 

  57. Zarkovic K (2003) 4-Hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 24:293–303

    Article  PubMed  CAS  Google Scholar 

  58. Tanay VA, Todd KG, Baker G (2002) Phenylethylidenehydrazine, a novel GABA-T inhibitor rescues neurons after cerebral ischemia. Int J Neuropsychopharmacol 5:S94

    Google Scholar 

Download references

Acknowledgements

Funds were provided by the Canadian Institutes for Health Research (CIHR), the Canada Research Chair and Canada Foundation for Innovation Programs, the Falk Institute for Molecular Therapeutics, the Davey Endowment and the Berger Fund. EMM is the recipient of an Alberta Heritage Foundation for Medical Research (AHFMR) studentship. The authors gratefully acknowledge the technical assistance of Gail Rauw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen B. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacKenzie, E.M., Grant, S.L., Baker, G.B. et al. Phenelzine Causes an Increase in Brain Ornithine that is Prevented by Prior Monoamine Oxidase Inhibition. Neurochem Res 33, 430–436 (2008). https://doi.org/10.1007/s11064-007-9448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9448-0

Keywords

Navigation