Skip to main content

Advertisement

Log in

Diabetes abolish cardioprotective effects of remote ischemic conditioning: evidences and possible mechanisms

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Diabetes mellitus significantly hampers the development of cardioprotective response to remote pre/post/perconditioning stimuli by impairing the activation of cardioprotective signaling pathways. Among the different pathways, the impairment in O-linked β-N-acetylglucosamine (O-GlcNAc) signaling and release of cardioprotective humoral factor may contribute in attenuating remote preconditioning-induced cardioprotection. Moreover, the failure to phosphorylate extracellular signal related kinase (ERK), phosphoinositide-3-kinase (PI3K), and AKT along with up-regulation of mechanistic target of rapamycin (mTOR) and decrease in autophagy may also attenuate remote preconditioning-induced cardioprotection. Remote perconditioning stimulus also fails to phosphorylate AKT kinase in diabetic heart. In addition, diabetes may increase the oxidative stress, reactive oxygen species (ROS) production, decrease the beclin expression, and inhibit autophagy to attenuate remote perconditioning-induced cardioprotection. Moreover, diabetes-induced increase in the Rho-associated kinase (ROCK) activity, decrease in the arginase activity, and reduction in nitric oxide (NO) bioavailability may also contribute in decreasing remote perconditioning-induced cardioprotection. Diabetes may reduce the phosphorylation of adenosine 5′-monophosphate activated protein kinase (AMPKα) and increase the phosphorylation of mTOR to attenuate cardioprotection of remote postconditioning. The present review describes the role of diabetes in attenuating remote ischemic conditioning-induced cardioprotection along with the possible mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ansley DM, Wang B (2013 Jan) Oxidative stress and myocardial injury in the diabetic heart. J Pathol 229(2):232–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aulakh AS, Randhawa PK, Singh N, Jaggi AS (2017 Mar) Neurogenic pathways in remote ischemic preconditioning induced cardioprotection: evidences and possible mechanisms. Korean J Physiol Pharmacol 21(2):145–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bao W, Hu E, Tao L, Boyce R, Mirabile R, Thudium DT, Ma XL, Willette RN, Yue TL (2004) Inhibition of rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovasc Res 61(3):548–558

    Article  CAS  PubMed  Google Scholar 

  4. Baranyai T, Nagy CT, Koncsos G, Onódi Z, Károlyi-Szabó M, Makkos A, Varga ZV, Ferdinandy P, Giricz Z (2015) Acute hyperglycemia abolishes cardioprotection by remote ischemic perconditioning. Cardiovasc Diabetol 14:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Birnbaum Y, Hale SL, Kloner RA (1997) Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 96(5):1641–1646

    Article  CAS  PubMed  Google Scholar 

  6. Bøtker HE, Kharbanda R, Schmidt MR, Bøttcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S, Lassen JF, Christiansen EH, Krusell LR, Kristensen SD, Thuesen L, Nielsen SS, Rehling M, Sørensen HT, Redington AN, Nielsen TT (2010) Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375(9716):727–734

    Article  PubMed  Google Scholar 

  7. Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, Holtby HM, Cox PN, Smallhorn JF, Van Arsdell GS, Redington AN (2006) Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol 47(11):2277–2282

    Article  PubMed  Google Scholar 

  8. Cleveland JC Jr, Meldrum DR, Cain BS, Banerjee A, Harken AH (1997) Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited. Circulation 96(1):29–32

    Article  CAS  PubMed  Google Scholar 

  9. Corcoran D, Young R, Cialdella P, McCartney P, Bajrangee A, Hennigan B, Collison D, Carrick D, Shaukat A, Good R, Watkins S, McEntegart M, Watt J, Welsh P, Sattar N, McConnachie A, Oldroyd KG, Berry C (2018) The effects of remote ischaemic preconditioning on coronary artery function in patients with stable coronary artery disease. Int J Cardiol 252:24–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Crimi G, Pica S, Raineri C, Bramucci E, De Ferrari GM, Klersy C, Ferlini M, Marinoni B, Repetto A, Romeo M, Rosti V, Massa M, Raisaro A, Leonardi S, Rubartelli P, Oltrona Visconti L, Ferrario M (2013) Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial. JACC Cardiovasc Interv 6(10):1055–1063

    Article  PubMed  Google Scholar 

  11. Das A, Durrant D, Koka S, Salloum FN, Xi L, Kukreja RC (2014) Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J Biol Chem 289(7):4145–4160

    Article  CAS  PubMed  Google Scholar 

  12. Diwan V, Kant R, Jaggi AS, Singh N, Singh D (2008) Signal mechanism activated by erythropoietin preconditioning and remote renal preconditioning-induced cardioprotection. Mol Cell Biochem 315(1–2):195–201

    Article  CAS  PubMed  Google Scholar 

  13. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66(4):1142–1174

    Article  CAS  PubMed  Google Scholar 

  14. Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, Berthault MF, Magnan C, Cerasi E, Kaiser N, Leibowitz G (2008) mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57(4):945–957

    Article  CAS  PubMed  Google Scholar 

  15. Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94(9):2193–2200

    Article  CAS  PubMed  Google Scholar 

  16. Han Z, Cao J, Song D, Tian L, Chen K, Wang Y, Gao L, Yin Z, Fan Y, Wang C (2014) Autophagy is involved in the cardioprotection effect of remote limb ischemic postconditioning on myocardial ischemia/reperfusion injury in normal mice, but not diabetic mice. PLoS One 9(1):e86838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hao M, Zhu S, Hu L, Zhu H, Wu X, Li Q (2017) Myocardial ischemic postconditioning promotes autophagy against ischemia reperfusion injury via the activation of the nNOS/AMPK/mTOR pathway. Int J Mol Sci 18(3):614

  18. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia–reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61(3):448–460

    Article  CAS  PubMed  Google Scholar 

  19. Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, Knight R, Kunst G, Laing C, Nicholas J, Pepper J, Robertson S, Xenou M, Clayton T, Yellon DM (2015) Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med 373:1408–1417

    Article  CAS  PubMed  Google Scholar 

  20. Heung Yong J, Baek HS, Park TS (2015) Morphologic changes in autonomic nerves in diabetic autonomic neuropathy. Diabetes Metab J 39(6):461–467

    Article  Google Scholar 

  21. Hu Z, Chen M, Zhang P, Liu J, Abbott GW (2017) Remote ischemic preconditioning differentially attenuates post-ischemic cardiac arrhythmia in streptozotocin-induced diabetic versus nondiabetic rats. Cardiovasc Diabetol 16(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iliodromitis EK, Cohen MV, Dagres N, Andreadou I, Kremastinos DT, Downey JM (2015) What is wrong with cardiac conditioning? We may be shooting at moving targets. J Cardiovasc Pharmacol Ther 20(4):357–369

    Article  PubMed  Google Scholar 

  23. Jensen RV, Støttrup NB, Kristiansen SB, Bøtker HE (2012) Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Res Cardiol 107(5):285

    Article  CAS  PubMed  Google Scholar 

  24. Jensen RV, Zachara NE, Nielsen PH, Kimose HH, Kristiansen SB, Bøtker HE (2013) Impact of O-GlcNAc on cardioprotection by remote ischaemic preconditioning in non-diabetic and diabetic patients. Cardiovasc Res 97(2):369–378

    Article  CAS  PubMed  Google Scholar 

  25. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241(19):2035–2038

  26. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106(23):2881–2883

    Article  CAS  PubMed  Google Scholar 

  27. Kiss A, Tratsiakovich Y, Gonon AT, Fedotovskaya O, Lanner J, Andersson DC, Yang J, Pernow J (2014a) The role of arginase and rho kinase in cardioprotection from remote ischemic perconditioning in non-diabetic and diabetic rat in vivo. PLoS One 9(8):e104731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kiss A, Tratsiakovich Y, Gonon AT, Fedotovskaya O, Lanner JT, Andersson DC, Yang J, Pernow J (2014b) The role of arginase and rho kinase in cardioprotection from remote ischemic perconditioning in non-diabetic and diabetic rat in vivo. PLoS One 9(8):e104731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kobayashi S, Xu X, Chen K, Liang Q (2012) Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 8(4):577–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kottenberg E, Musiolik J, Thielmann M, Jakob H, Peters J, Heusch G (2014) Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J Thorac Cardiovasc Surg 147(1):376–382

    Article  CAS  PubMed  Google Scholar 

  31. Lambert JP, Nicholson CK, Amin H, Amin S, Calvert JW (2014) Hydrogen sulfide provides cardioprotection against myocardial/ischemia reperfusion injury in the diabetic state through the activation of the RISK pathway. Med Gas Res 4(1):20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lambert EA, Thomas CJ, Hemmes R, Eikelis N, Pathak A, Schlaich MP, Lambert GW (2016) Sympathetic nervous response to ischemia–reperfusion injury in humans is altered with remote ischemic preconditioning. Am J Physiol Heart Circ Physiol 311:H364–H370

    Article  PubMed  Google Scholar 

  33. Lee TM, Su SF, Chou TF, Lee YT, Tsai CH (2002) Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation 105(3):334–340

    Article  CAS  PubMed  Google Scholar 

  34. Lewis P, Stefanovic N, Pete J, Calkin AC, Giunti S, Thallas-Bonke V, Jandeleit-Dahm KA, Allen TJ, Kola I, Cooper ME, de Haan JB (2007) Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation 115(16):2178–2187

    Article  CAS  PubMed  Google Scholar 

  35. Lim SY, Yellon DM, Hausenloy DJ (2010) The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res Cardiol 105(5):651–655

    Article  PubMed  Google Scholar 

  36. Lindholm CR, Ertel RL, Bauwens JD, Schmuck EG, Mulligan JD, Saupe KW (2013) A high-fat diet decreases AMPK activity in multiple tissues in the absence of hyperglycemia or systemic inflammation in rats. J Physiol Biochem 69(2):165–175

    Article  CAS  PubMed  Google Scholar 

  37. Loubani M, Fowler A, Standen NB, Galiñanes M (2005) The effect of gliclazide and glibenclamide on preconditioning of the human myocardium. Eur J Pharmacol 515(1–3):142–149

    Article  CAS  PubMed  Google Scholar 

  38. Mapanga RF, Joseph D, Symington B, Garson KL, Kimar C, Kelly-Laubscher R, Essop MF (2014) Detrimental effects of acute hyperglycaemia on the rat heart. Acta Physiol (Oxf) 210(3):546–564

    Article  CAS  Google Scholar 

  39. McCafferty K, Forbes S, Thiemermann C, Yaqoob MM (2014) The challenge of translating ischemic conditioning from animal models to humans: the role of comorbidities. Dis Model Mech 7(12):1321–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, Coburn M, Schaelte G, Boning A, Niemann B, Roesner J, Kletzin F, Strouhal U, Reyher C, Laufenberg-Feldmann R, Ferner M, Brandes IF, Bauer M, Stehr SN, Kortgen A, Wittmann M, Baumgarten G, Meyer-Treschan T, Kienbaum P, Heringlake M, Schon J, Sander M, Treskatsch S, Smul T, Wolwender E, Schilling T, Fuernau G, Hasenclever D, Zacharowski K (2015) A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med 373:1397–1407

    Article  CAS  PubMed  Google Scholar 

  41. Motta GL, Souza PC, EBdos S, Bona SR, Schaefer PG, Lima CAT, Marroni NAP, Corso CO (2018) Effects of remote ischemic preconditioning and topical hypothermia in renal ischemia–reperfusion injury in rats. Acta Cir Bras 33(5):396–407

    Article  PubMed  Google Scholar 

  42. Przyklenk K (2011) Efficacy of cardioprotective ‘conditioning’ strategies in aging and diabetic cohorts the co-morbidity conundrum. Drugs Aging 28(5):331–343

    Article  PubMed  Google Scholar 

  43. Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87(3):893–899

    Article  CAS  PubMed  Google Scholar 

  44. Qian J, Ren X, Wang X, Zhang P, Jones WK, Molkentin JD, Fan G, Kranias EG (2009) Blockade of Hsp20 phosphorylation exacerbates cardiac ischemia/reperfusion injury by suppressed autophagy and increased cell death. Circ Res 105:1223–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ramakrishna V, Jailkhani R (2008) Oxidative stress in non-insulin-dependent diabetes mellitus (NIDDM) patients. Acta Diabetol 45(1):41–46

    Article  CAS  PubMed  Google Scholar 

  46. Randhawa PK, Jaggi AS (2016) Gadolinium and ruthenium red attenuate remote hind limb preconditioning-induced cardioprotection: possible role of TRP and especially TRPV channels. Arch Pharmacol 389(8):887–896

    Article  CAS  Google Scholar 

  47. Randhawa PK, Jaggi AS (2017a) Investigating the involvement of glycogen synthase kinase-3β and gap junction signaling in TRPV1 and remote hind preconditioning-induced cardioprotection. Eur J Pharmacol 814:9–17

    Article  CAS  PubMed  Google Scholar 

  48. Randhawa PK, Jaggi AS (2017b) Investigating the involvement of TRPV1 ion channels in remote hind limb preconditioning-induced cardioprotection in rats. Naunyn Schmiedeberg's Arch Pharmacol 390(2):117–126

    Article  CAS  Google Scholar 

  49. Randhawa PK, Jaggi AS (2017c) Opioids in remote ischemic preconditioning-induced cardioprotection. J Cardiovasc Pharmacol Ther 22(2):112–121

    Article  CAS  PubMed  Google Scholar 

  50. Randhawa PK, Bali A, Jaggi AS (2015) RIPC for multiorgan salvage in clinical settings: evolution of concept, evidences and mechanisms. Eur J Pharmacol 746:317–332

    Article  CAS  PubMed  Google Scholar 

  51. Randhawa PK, Bali A, Virdi JK, Jaggi AS (2018) Conditioning-induced cardioprotection: aging as a confounding factor. Korean J Physiol Pharmacol. 22(5):467–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rohailla S, Clarizia N, Sourour M, Sourour W, Gelber N, Wei C, Li J, Redington AN (2014) Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS One 9(10):e111291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rossello X, Yellon DM (2017) The RISK pathway and beyond. Basic Res Cardiol 113(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Saxena P, Newman MA, Shehatha JS, Redington AN, Konstantinov IE (2010) Remote ischemic conditioning: evolution of the concept, mechanisms, and clinical application. J Card Surg 25(1):127–134

    Article  PubMed  Google Scholar 

  55. Schmidt MR, Smerup M, Konstantinov IE, Shimizu M, Li J, Cheung M, White PA, Kristiansen SB, Sorensen K, Dzavik V, Redington AN, Kharbanda RK (2007) Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am J Physiol Heart Circ Physiol 292(4):H1883–H1890

    Article  CAS  PubMed  Google Scholar 

  56. Schmidt MR, Rasmussen ME, Bøtker HE (2017) Remote ischemic conditioning for patients with STEMI. J Cardiovasc Pharmacol Ther 22(4):302–309

    Article  PubMed  Google Scholar 

  57. Singh H, Kumar M, Singh N, Jaggi AS (2018) Late phases of cardioprotection during remote ischemic preconditioning and adenosine preconditioning involves activation of neurogenic pathway. J Cardiovasc Pharmacol. https://doi.org/10.1097/FJC.0000000000000634

  58. Su H, Ji L, Xing W, Zhang W, Zhou H, Qian X, Wang X, Gao F, Sun X, Zhang H (2013) Acute hyperglycaemia enhances oxidative stress and aggravates myocardial ischaemia/reperfusion injury: role of thioredoxin-interacting protein. J Cell Mol Med 17(1):181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun Z, Wu X, Li W, Peng H, Shen X, Ma L, Liu H, Li H (2016) RhoA/rock signaling mediates peroxynitrite-induced functional impairment of rat coronary vessels. BMC Cardiovasc Disord 16(1):193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tan W, Zhang C, Liu J, Li X, Chen Y, Miao Q (2018) Remote ischemic preconditioning has a cardioprotective effect in children in the early postoperative phase: a meta-analysis of randomized controlled trials. Pediatr Cardiol 39(3):617–626

    Article  PubMed  Google Scholar 

  61. Varga ZV, Giricz Z, Bencsik P, Madonna R, Gyongyosi M, Schulz R, Mayr M, Thum T, Puskas LG, Ferdinandy P (2015) Functional genomics of cardioprotection by ischemic conditioning and the influence of comorbid conditions: implications in target identification. Curr Drug Targets 16(8):904–911

    Article  CAS  PubMed  Google Scholar 

  62. Völkers M, Konstandin MH, Doroudgar S, Toko H, Quijada P, Din S, Joyo A, Ornelas L, Samse K, Thuerauf DJ, Gude N, Glembotski CC, Sussman MA (2013) Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage. Circulation 128(19):2132–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Voucharas C, Lazou A, Triposkiadis F, Tsilimingas N (2011 Mar 23) Remote preconditioning in normal and hypertrophic rat hearts. J Cardiothorac Surg 6:34

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wider J, Przyklenk K (2014) Ischemic conditioning: the challenge of protecting the diabetic heart. Cardiovasc Diagn Ther 4(5):383–396

    PubMed  PubMed Central  Google Scholar 

  65. Yamamoto K, Maruyama K, Himori N, Omodaka K, Yokoyama Y, Shiga Y, Morin R, Nakazawa T (2014) The novel rho kinase (ROCK) inhibitor K-115: a new candidate drug for neuroprotective treatment in glaucoma. Invest Ophthalmol Vis Sci 55(11):7126–7136

    Article  CAS  PubMed  Google Scholar 

  66. Zhang J, Liu XB, Cheng C, Xu DL, Lu QH, Ji XP (2014) Rho-kinase inhibition is involved in the activation of PI3-kinase/Akt during ischemic-preconditioning-induced cardiomyocyte apoptosis. Int J Clin Exp Med 7(11):4107–4114 eCollection 2014

    PubMed  PubMed Central  Google Scholar 

  67. Zhang M, Sun D, Li S, Pan X, Zhang X, Zhu D, Li C, Zhang R, Gao E, Wang H (2015) Lin28a protects against cardiac ischaemia/reperfusion injury in diabetic mice through the insulin-PI3K-mTOR pathway. J Cell Mol Med 19(6):1174–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou CC, Ge YZ, Yao WT, Wu R, Xin H, Lu TZ, Li MH, Song KW, Wang M, Zhu YP, Zhu M, Geng LG, Gao XF, Zhou LH, Zhang SL, Zhu JG, Jia RP (2017) Limited clinical utility of remote ischemic conditioning in renal transplantation: a meta-analysis of randomized controlled trials. PLoS One 12(1):e0170729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu SB, Liu Y, Zhu Y, Yin GL, Wang RP, Zhang Y, Zhu J, Jiang W (2013) Remote preconditioning, perconditioning, and postconditioning: a comparative study of their cardio-protective properties in rat models. Clinics (Sao Paulo) 68(2):263–268

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India for supporting the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amteshwar Singh Jaggi.

Ethics declarations

Disclosure of potential conflicts of interest

The authors declare no conflict of interests.

Research involving human participants and/or animals

The study did not involve usage of animals or employment of human participants.

Informed consent

The study did not involve participants of human volunteers.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.T. did the literature review and prepared the manuscript

J.K.V. helped in writing the manuscript and revised the manuscript

N.S. helped in literature review and completion of the article

A.S.J. conceived the idea and edited the manuscript

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, S., Singh, N., Virdi, J.k. et al. Diabetes abolish cardioprotective effects of remote ischemic conditioning: evidences and possible mechanisms. J Physiol Biochem 75, 19–28 (2019). https://doi.org/10.1007/s13105-019-00664-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00664-w

Keywords

Navigation