Skip to main content

Trophic Actions of IGF-I, IGF-II and Insulin on Cholinergic and Dopaminergic Brain Neurons

  • Chapter
Molecular Biology and Physiology of Insulin and Insulin-Like Growth Factors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 293))

Abstract

Insulin, IGF-I and IGF-II have only recently been proposed to possess physiological functions distinctive for the central nervous system (review: Baskin et al., 1988). Receptors for insulin and the IGFs are found in rat brain and seem to be heterogeneously distributed (Hill et al., 1986; Mendelson, 1987; Bohannon et al., 1988). While evidence that insulin occurs in the brain is still equivocal (Baskin et al., 1988), mRNAs for IGF-I and IGF-II were detected in many brain areas and are differentially regulated during development (Rotwein et al., 1988). With cell culture methods it has been shown that insulin, IGF-I and IGF-II can have effects on neurons which are generally described as “neurotrophic”. Thus, in cultures of brain cells these hormones promote neuron survival, neurite extension, and expression of neuron-specific genes and, in astrocytes but possibly also in neurons, DNA synthesis (Bhat, 1983; Lenoir and Honegger, 1983; Mill et al., 1985; Recio-Pinto et al., 1986; Aizenman and de Vellis, 1987; Kyriakis et al., 1987; Avola et al., 1988; DiCicco-Bloom and Black, 1988). These effects are reminiscent of those produced by NGF in cell cultures. NGF and other polypeptide growth factors are believed to play decisive roles in the mammalian nervous system, particularly during early development but also in the adult organism (reviews: Thoenen et al., 1987; Snider and Johnson, 1989; Barde, 1989). Best established are the roles of NGF and brain-derived neurotrophic factor (BDNF) in the control of neuronal survival during development of certain peripheral neuron populations (Thoenen et al., 1987; Barde, 1989) and there is initial evidence for a similar action of neurotrophin-3, a polypeptide related to NGF and BDNF (Hohn et al., 1989; Maisonpierre et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avola, R., Condorelli, D.F., Surrentino, S., Turpeenoja, L., Costa, A., and Giuffrida Stella, A.M. 1988, Effect of epidermal growth factor, and insulin on DNA, RNA, and cytoskeletal protein labeling in primary rat astroglial cell cultures. J. Neurosci. Res., 19:230–238.

    Article  PubMed  CAS  Google Scholar 

  • Barde, YA. 1989, Trophic factors and neuronal survival. Neuron, 2:1525–1534.

    Article  PubMed  CAS  Google Scholar 

  • Barde, YA., Davies, A.M., Johnson, J.E., Lindsay, R.M. and Thoenen, H. 1987, Brain-derived neurotrophic factor. Prog. Brain Res., 71:185–189.

    Article  PubMed  CAS  Google Scholar 

  • Baskin, D.G., Wilcox, B.J., Figlewicz, D.P., and Dorsa, D.M. 1988, Insulin and insulin-like growth factors in the CNS. Trends in Neurosci.. 11:107–111.

    Article  CAS  Google Scholar 

  • Bassas, L., De Pablo, F., Lesniak, M.A., and Roth, J. 1985, Ontogeny of receptors for insulin-like peptide in chick embryo tissues: Early dominance of insulin-like growth factor over insulin receptors in brain. Endocrinology, 117:2321–2329.

    Article  PubMed  CAS  Google Scholar 

  • Bhat, N. 1983, Insulin dependent neurite outgrowth in cultured embryonic mouse brain cells. Dev. Brain Res.. 11:315–318.

    Article  CAS  Google Scholar 

  • Bohannon, N.J., Corp, E.S., Wilcox, B.J., Figlewicz, D.P., Dorsa, D.M., and Baskin, D.G. 1988, Localization of binding sites for insulin-like growth factor I (IGF-I) in the rat brain by quantitative autoradiography. Brain Res., 444:205–213.

    Article  PubMed  CAS  Google Scholar 

  • Bothwell, M. 1982, Insulin and somatomedin MSA promote nerve growth factor-independent neurite formation by cultured chick dorsal root ganglionic sensory neurons. J. Neurosci. Res., 8:225–231.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, S.K., Jacobs, S., Cuatrecasas, P., and Sahyoun, N. 1987, Characterization of a neuronal subtype of insulin-like growth factor I receptor. J. Biol. Chem.. 262:1618–1622.

    PubMed  CAS  Google Scholar 

  • Cassel, J.C. and Kelche, C. 1989, Scopolamine treatment and fimbria-fornix lesions: Mimetic effects on radial maze performance. Physiol. Behav., 46:347–353.

    Article  PubMed  CAS  Google Scholar 

  • DiCicco-Bloom, E., and Black, I. 1988, Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts. Proc. Natl. Acad. Sci. USA. 85:4066–4070.

    Article  PubMed  CAS  Google Scholar 

  • Dorn, A., Bernstein, H.G., Rinne, A., Hahn, H.J., and Ziegler, M. 1982, Insulin-like immunoreactivity in the human brain. Histochemistry. 74:293–300.

    Article  PubMed  CAS  Google Scholar 

  • Doucet, G., Brundin, P., Descarries, L. and Bjorklund, A. 1990, Effect of prior dopamine denervation on survival and fiber outgrowth from intrastriatal fetal mesencephalic grafts. Eur. J. Neurosci., 2:279– 290.

    Article  PubMed  Google Scholar 

  • Flicker, C., Dean, R.L., Watkins, D.L., Fisher, S.K. and Bartus, R.T. 1983, Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat. Pharmacol. Biochem. Behav.. 18:973–981.

    Article  PubMed  CAS  Google Scholar 

  • Fujita-Yamaguchi, Y. and Kathuria, S. 1988, Characterization of receptor tyrosine-specific protein kinases by the use of inhibitors. Staurosporine is a 100-times more potent inhibitor of insulin receptor than IGF-I receptor. Biochem. Biophvs. Res. Commun.. 157:955–962.

    Article  CAS  Google Scholar 

  • Gensburger, C., Labourdette, G., and Sensenbrenner, M. 1987, Brain basic fibroblast growth factor stimulates the proliferation of rat neuronal precursor cells in vitro. FEBS Lett., 217:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Gnahn, H., Hefti, F., Heumann, R., Schwab, M. and Thoenen, H. 1983, NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal forebrain: Evidence for a physiological role of NGF in the brain? Dev. Brain Res., 9:45–52

    Article  CAS  Google Scholar 

  • Grothe, C., Otto, D. and Unsicker, K. 1989, Basic fibroblast growth factor promotes in vitro survival and cholinergic development of rat septal neurons: Comparison with the effects of nerve growth factor. Neuroscience. 31:649–661.

    Article  PubMed  CAS  Google Scholar 

  • Hartikka, J. and Hefti, F. 1988a, Development of septal cholinergic neurons in culture: plating density and glial cells modulate effects of NGF on survival, fiber growth, and expression of transmitter-specific enzymes. J. Neurosci, 8:2967–2985.

    PubMed  CAS  Google Scholar 

  • Hartikka, J., and Hefti, F. 1988b, Comparison of nerve growth factor’s effects on development of septum, striatum, and nucleus basalis cholinergic neurons in vitro. J. Neurosci. Res., 21:352–364.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, S. and Hagino, A. 1989, Blockage of nerve growth factor action in PC12h Cells by staurosporine, a potent protein kinase inhibitor. J. Neurochem.. 53:1675–1685.

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka, H., and Tsukui, H. 1986, Differential effects of nerve growth factor and glioma-conditioned medium on neurons cultured from various regions of fetal rat central nervous system. Dev. Brain Res., 30:47–56.

    Article  CAS  Google Scholar 

  • Hatanaka, H., Tsukui, H. and Nihonmatsu, I. 1987, Septal cholinergic neurons from postnatal rat can survive in the dissociate culture conditions in the presence of nerve growth factor. Neurosci. Lett., 79:85–90.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F., Hartikka, J. and Knusel, B. 1989, Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegenerative diseases. Neurobiol. Aging, 10:515–533.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F., Hartikka, J., Eckenstein, F., Gnahn, H., Heumann, R. and Schwab, M. 1985, Nerve growth factor (NGF) increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neuroscience, 14:55–68.

    Article  PubMed  CAS  Google Scholar 

  • Hill, J.M., Lesniak, M.A., Pert, C.B., and Roth, J. 1986, Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience. 17:1127–1138.

    Article  PubMed  CAS  Google Scholar 

  • Hohn, A., Leibrock, J., Bailey, K. and Barde, Y.A. 1990, Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature 344:339–341.

    Article  PubMed  CAS  Google Scholar 

  • Honegger, P., Lenoir, D. 1982, Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Dev. Brain Res., 3:229–239.

    Article  CAS  Google Scholar 

  • Johnston, M.V., Ruthkowski, J.L., Wainer, B.H., Long, J.B. and Mobely, W.C. 1987, NGF effects on developing forebrain cholinergic neurons are regionally specific. Neurochem. Res., 12:985–994.

    Article  PubMed  CAS  Google Scholar 

  • Knusel, B., and Hefti, F. 1988, Nerve growth factor promotes development of rat forebrain but not pedunculopontine cholinergic neurons in vitro; lack of effect of ciliary neuronotrophic factor and retinoic acid. J. Neurosci. Res., 21:365–375.

    Article  PubMed  CAS  Google Scholar 

  • Knusel, B., Michel, P.P., Schwaber, J.S. and Hefti, F. 1990a, Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J. Neuroscience. 10:558–570.

    CAS  Google Scholar 

  • Knusel, B. and Hefti, F. 1990, NGF stimulation, but not bFGF or insulin stimulation, of brain neuron development in vitro ,is blocked by protein kinase inhibitors K-252a, K-252b, and staurosporine. (Submitted).

    Google Scholar 

  • Knusel, B., Winslow, J.W., Rosenthal, A., Burton, L.E., Seid, D.P., Nikolics, K. and Hefti, F. 1990b, Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin-3. (Submitted).

    Google Scholar 

  • Koh, S. and Loy, R. 1989, Localization and development of nerve growth factor-sensitive rat basal forebrain neurons and their afferent projections to hippocampus and neocortex. J. Neurosci., 9:2999–3018.

    PubMed  CAS  Google Scholar 

  • Koizumi, S., Contreras, M.L., Matsuda, Y., Hama, T., Lazarovici, P. and Guroff, G. 1988, K-252a: a specific inhibitor of the action of nerve growth factor on PC12 cells. J. Neurosci.. 8:715–721.

    PubMed  CAS  Google Scholar 

  • Kyriakis, J.M., Hausman, R.E., and Peterson, S.W. 1987, Insulin stimulates choline acetyltransferase activity in cultured embryonic chicken retina neurons. Proc. Natl. Acad. Sci. USA. 84:7463–7467.

    Article  PubMed  CAS  Google Scholar 

  • Lenoir, D., and Honegger, P. 1983, Insulin-like growth factor I (IGF-I) stimulates DNA synthesis in fetal rat brain cell cultures. Dev. Brain Res., 7:205–213.

    Article  CAS  Google Scholar 

  • Maisonpierre, P.C., Belluscio, L., quinto, S., Ip, N.Y., Furth, M.E., Linsay, R.M. and Yancopoulos, G.D. 1990, Neurotrophin-3: A neurotrophic factor related to NGF and BDNF. Science. 247:1446–1451.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, H.J., Dreyfus, C.F., Jonakait, G.M. and Black, I.B. 1987, Nerve growth factor selectively increases cholinergic markers but not neuropeptides in rat basal forebrain in culture. Brain Res., 412:295–301.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, Y. and Fukuda, J. 1988, Inhibition by K-252a, a new inhibitor of protein kinase, of nerve growth factor-induced neurite outgrowth of chick embryo dorsal root ganglion cells. Neurosci. Lett., 87:11– 17.

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn, L.G. 1987, Visualization of IGF-II receptors in rat brain, jn: “Insulin, Insulin-like Growth Factors, and Their Receptors in the Central Nervous System,” M.K. Raizada, M.I. Phillips, D. LeRoith, eds. Plenum Press, New York, pp. 269–275.

    Chapter  Google Scholar 

  • Mill, J.F., Chao, M.V., and Ishii, D.N. 1985, Insulin, insulin-like growth factor II, and nerve growth factor effects on tubulin mRNA levels and neurite formation. Proc. Natl. Acad. Sci. USA. 82:7126–7130.

    Article  PubMed  CAS  Google Scholar 

  • Mobley, W.C., Rutkowski, J.L., Tennekoon, G.I., Buchanan, K. and Johnston, M.V. 1985, Choline acetyltransferase activity in striatum of neonatal rats increased by nerve growth factor. Science. 229:284–287.

    Article  PubMed  CAS  Google Scholar 

  • Mobley, W.C., Rutkowski, J.L., Tennekoon, G.I., Gemski, J. Buchanan, K. and Johnston, M.V. 1986, Nerve Growth Factor increases choline acetyltransferase activity in developing basal forebrain neurons. Mol. Brain Res.. 1:53–62.

    Article  Google Scholar 

  • Morrison, R.S., Sharma, A., DeVellis, J. and Bradshaw, R.A. 1986, Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture. Proc. Natl. Acad. Sci. USA. 83:7537–7541.

    Article  PubMed  CAS  Google Scholar 

  • Pomerance, M., Gavaret, J.-M., Jacquemin, C., Matricon, C., Toru-Delbauffe, D., and Pierre, M. 1988, Insulin and insulin-like growth factor 1 receptors during postnatal development of rat brain. Dev. Brain Res., 42:77–83.

    Article  CAS  Google Scholar 

  • Prochiantz, A.M., Di Porzio, U., Kato, A., Berger, B. and Glowinsky, J. 1979, In vitro maturation of mesencephalic dopaminergic neurons from mouse embryos is enhanced in presence of their striatal target cells. Proc. Natl. Acad. Sci. USA. 76:5387–5391.

    Article  PubMed  CAS  Google Scholar 

  • Puro, D.G., Agardh, E. 1984, Insulin-mediated regulation of neuronal maturation. Science 225,1170–1172.

    Article  PubMed  CAS  Google Scholar 

  • Purves, D. 1986, The trophic theory of neural connections. Trends Neurosci.. 9:486–489.

    Article  Google Scholar 

  • Recio-Pinto, E., Rechter, M.M., and Ishii, D.N. 1986, Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons. J. Neurosci.. 6:1211–1219.

    PubMed  CAS  Google Scholar 

  • Rotwein, P., Burgess, S.K., Milbrandt, J.D., and Krause, J.E. 1988, Differential expression of insulin-like growth factor genes in rat central nervous system. Proc. Natl. Acad. Sci. USA. 85:265–269.

    Article  PubMed  CAS  Google Scholar 

  • Sara, V.R., Hall, K., von Holtz, H., Humber, R., Sjogren, B., and Wetterberg, L. 1982, Evidence for the presence of specific receptors for insulin-like growth factors 1 (IGF-1) and 2 (IGF-2) and insulin throughout the adult human brain. Neurosci. Lett., 34:39–44.

    Article  PubMed  CAS  Google Scholar 

  • Shalaby, I A., Kotake, C., Hoffmann, P.C. and Hellelr, A. 1983, A release of dopamine from coaggregate cultures of mesencephalic tegmentum and corpus striatum. J. Neurosci.. 3:1565–1571.

    PubMed  CAS  Google Scholar 

  • Snider, W.D. and Johnson, E.M. Jr. 1989, Neurotrophic molecules. Annals Neurol., 26:489–506.

    Article  CAS  Google Scholar 

  • Thoenen, H., and Edgar, D. 1985, Neurotrophic factors. Science. 229:238–242.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen, H., Bandtlow, C., and Heumann, R. 1987, The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev. Physiol. Biochem. Pharmacol., 109:145–178.

    Article  PubMed  CAS  Google Scholar 

  • Tilson, HA., McLamb, R.L., Shaw, S., Rogers, B.C., Pediaditakis, P. and Cook, L. 1988, Radial-arm maze deficits produced by colchicine administered into the area of the nucleus basalis are ameliorated by cholinergic agents. Brain Res., 438:83–94.

    Article  PubMed  CAS  Google Scholar 

  • Walicke, P. Cowan, W.M., Ueno, N., Baird, A. and Guillemin, R. 1986, Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc. Natl. Acad. Sci. USA. 83:3012–3016.

    Article  PubMed  CAS  Google Scholar 

  • Walicke, PA. 1988, Basic and acidic fibroblast growth factors have trophic effects on neurons from multiple CNS regions. J. Neurosci.. 8:2618–2627.

    PubMed  CAS  Google Scholar 

  • Woolf, N.J., and Butcher, L.L., 1986, Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res. Bull.. 16:603–637.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Knusel, B., Hefti, F. (1991). Trophic Actions of IGF-I, IGF-II and Insulin on Cholinergic and Dopaminergic Brain Neurons. In: Raizada, M.K., LeRoith, D. (eds) Molecular Biology and Physiology of Insulin and Insulin-Like Growth Factors. Advances in Experimental Medicine and Biology, vol 293. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5949-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5949-4_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5951-7

  • Online ISBN: 978-1-4684-5949-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics