Skip to main content

Cellular Stress and Protein Misfolding During Aging

  • Protocol
  • First Online:
Protein Misfolding and Cellular Stress in Disease and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 648))

Abstract

Cells are under constant onslaught from several intrinsic and extrinsic stressors, which lead to the occurrence and accumulation of molecular damage, functional impairment, aging, and eventual death. Protein misfolding is both a cause and a consequence of increased cellular stress. An age-related failure of the complex systems for handling protein misfolding results in the accumulation of misfolded and aggregated proteins, and consequent conformational diseases. However, some misfolded proteins have been found to be both toxic and, in some cases, protective, highlighting the various complex, dynamic, and interdependent mechanisms at play. Molecular mechanisms are being elucidated for the occurrence of protein misfolding and for its prevention by chaperones and various pathways of degradation. Insights from the knowledge about proteodynamics are likely to impact future interventional strategies to counter stress and to promote healthy aging by preventing and/or treatment of protein conformational diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rattan SI (2008) Increased molecular damage and heterogeneity as the basis of ageing. Biol Chem 389:267–272

    Article  PubMed  CAS  Google Scholar 

  2. Grune T, Jung T, Merker K, Davies KJA (2004) Decreased proteolysis caused by protein aggeregates, inclusion bodies, plaques, lipofuscin, ceroid, and “aggresomes” during oxidative stress, ageing, and disease. Int J Biochem Cell Biol 36:2519–2530

    Article  PubMed  CAS  Google Scholar 

  3. Hipkiss A (2006) Accumulation of altered proteins and ageing: causes and effects. Exp Gerontol 41:464–473

    Article  PubMed  CAS  Google Scholar 

  4. Fenton WA, Horwich AL (1997) GroEL-mediated protein folding. Protein Sci 6:743–760

    Article  PubMed  CAS  Google Scholar 

  5. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  6. Terman A, Gustafsson B, Brunk U (2007) Autophagy, organelles and ageing. J Pathol 211:134–143

    Article  PubMed  CAS  Google Scholar 

  7. Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B, Ward W, Richardson A, Chaudhuri A (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci USA 106:3059–3064

    Article  PubMed  CAS  Google Scholar 

  8. Salmon AB, Leonard S, Masamsetti V, Pierce A, Podlutsky AJ, Podlutskaya N, Richardson A, Austad SN, Chaudhuri AR (2009) The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J 23:2317–2326

    Article  PubMed  CAS  Google Scholar 

  9. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  10. Ellis RJ, Minton AP (2003) Cell biology: join the crowd. Nature 425:27–28

    Article  PubMed  CAS  Google Scholar 

  11. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12

    Article  PubMed  CAS  Google Scholar 

  12. Uversky VN (2003) Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: which way to go? Cell Mol Life Sci 60:1852–1871

    Article  PubMed  CAS  Google Scholar 

  13. Dinner AR, Sali A, Smith LJ, Dobson CM, Karplus M (2000) Understanding protein folding via free-energy surfaces from theory and experiment. Trends Biochem Sci 25:331–339

    Article  PubMed  CAS  Google Scholar 

  14. Ellis RJ (1993) The general concept of molecular chaperones. Philos Trans R Soc Lond B Biol Sci 339:257–261

    Article  PubMed  CAS  Google Scholar 

  15. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  CAS  Google Scholar 

  16. Pelham HR (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46:959–961

    Article  PubMed  CAS  Google Scholar 

  17. Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    Article  PubMed  CAS  Google Scholar 

  18. Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478

    Article  PubMed  CAS  Google Scholar 

  19. Ellis RJ, Hartl FU (1996) Protein folding in the cell: Competing models of chaperonin function. FASEB J 10:20–26

    PubMed  CAS  Google Scholar 

  20. Shtilerman M, Lorimer GH, Englander SW (1999) Chaperonin function: folding by forced unfolding. Science 284:822–825

    Article  PubMed  CAS  Google Scholar 

  21. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–765

    Article  PubMed  CAS  Google Scholar 

  22. Barnhart MM, Pinkner JS, Soto GE, Sauer FG, Langermann S, Waksman G, Frieden C, Hultgren SJ (2000) PapD-like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci USA 97:7709–7714

    Article  PubMed  CAS  Google Scholar 

  23. Sauer FG, Futterer K, Pinkner JS, Dodson KW, Hultgren SJ, Waksman G (1999) Structural basis of chaperone function and pilus biogenesis. Science 285:1058–1061

    Article  PubMed  CAS  Google Scholar 

  24. Krojer T, Sawa J, Schafer E, Saibil HR, Ehrmann M, Clausen T (2008) Structural basis for the regulated protease and chaperone function of DegP. Nature 453:885–890

    Article  PubMed  CAS  Google Scholar 

  25. Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919

    Article  PubMed  CAS  Google Scholar 

  26. Yates FE (1994) Order and complexity in dynamical systems: homeodynamics as a generalized mechanics for biology. Math Comput Model 19:49–74

    Article  Google Scholar 

  27. Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774

    Article  PubMed  CAS  Google Scholar 

  28. Schroder M (2006) The unfolded protein response. Mol Biotechnol 34:279–290

    Article  PubMed  CAS  Google Scholar 

  29. Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41

    Article  PubMed  CAS  Google Scholar 

  30. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  PubMed  CAS  Google Scholar 

  31. Surguchov A (2008) Molecular and cellular biology of synucleins. Int Rev Cell Mol Biol 270:225–317

    Article  PubMed  CAS  Google Scholar 

  32. Uversky VN (2008) Alpha-synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci 9:507–540

    Article  PubMed  CAS  Google Scholar 

  33. Bross P, Corydon TJ, Andresen BS, Jorgensen MM, Bolund L, Gregersen N (1999) Protein misfolding and degradation in genetic diseases. Hum Mutat 14:186–198

    Article  PubMed  CAS  Google Scholar 

  34. Cooper DN, Ball EV, Krawczak M (1998) The human gene mutation database. Nucleic Acids Res 26:285–287

    Article  PubMed  CAS  Google Scholar 

  35. Carrell RW, Lomas DA (1997) Conformational disease. Lancet 350:134–138

    Article  PubMed  CAS  Google Scholar 

  36. Beissinger M, Buchner J (1998) How chaperones fold proteins. Biol Chem 379:245–259

    PubMed  CAS  Google Scholar 

  37. Thomas PJ, Qu BH, Pedersen PL (1995) Defective protein folding as a basis of human disease. Trends Biochem Sci 20:456–459

    Article  PubMed  CAS  Google Scholar 

  38. Amaral MD (2004) CFTR and chaperones: processing and degradation. J Mol Neurosci 23:41–48

    Article  PubMed  CAS  Google Scholar 

  39. Holliday R (1996) The current status of the protein error theory of ageing. Exp Gerontol 31:449–452

    Article  PubMed  CAS  Google Scholar 

  40. Rattan SIS (2006) Theories of biological ageing: genes, proteins and free radicals. Free Rad Res 40:1230–1238

    Article  CAS  Google Scholar 

  41. Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, Ikeda S, Masters CL, Merlini G, Saraiva MJ, Sipe JD (2005) Amyloid: toward terminology clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 12:1–4

    Article  PubMed  CAS  Google Scholar 

  42. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–511

    Article  PubMed  CAS  Google Scholar 

  43. Isaacs AM, Senn DB, Yuan M, Shine JP, Yankner BA (2006) Acceleration of amyloid beta-peptide aggregation by physiological concentrations of calcium. J Biol Chem 281:27916–27923

    Article  PubMed  CAS  Google Scholar 

  44. Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443:774–779

    Article  PubMed  CAS  Google Scholar 

  45. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610

    Article  PubMed  CAS  Google Scholar 

  46. Malgaroli A, Vallar L, Zimarino V (2006) Protein homeostasis in neurons and its pathological alterations. Curr Opin Neurobiol 16:270–274

    Article  PubMed  CAS  Google Scholar 

  47. Rattan SIS (2008) Hormesis in ageing. Ageing Res Rev 7:63–78

    Article  PubMed  Google Scholar 

  48. Maisonneuve E, Fraysse L, Moinier D, Dukan S (2008) Existence of abnormal protein aggregates in healthy Escherichia coli cells. J Bacteriol 190:887–893

    Article  PubMed  CAS  Google Scholar 

  49. Maisonneuve E, Ezraty B, Dukan S (2008) Protein aggregates: an ageing factor involved in cell death. J Bacteriol 190:6070–6075

    Article  PubMed  CAS  Google Scholar 

  50. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  PubMed  CAS  Google Scholar 

  51. Uversky VN (2003) A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21:211–234

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh I. S. Rattan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Basaiawmoit, R.V., Rattan, S.I.S. (2010). Cellular Stress and Protein Misfolding During Aging. In: Bross, P., Gregersen, N. (eds) Protein Misfolding and Cellular Stress in Disease and Aging. Methods in Molecular Biology, vol 648. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-756-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-756-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-755-6

  • Online ISBN: 978-1-60761-756-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics