Skip to main content

Zusammenfassung

Eine Vielzahl dieser seltenen Erkrankungen ist zwar in der Zwischenzeit molekularbiologisch charakterisiert, die Therapiemöglichkeiten sind jedoch nach wie vor eingeschränkt. Die Ursachen hierfür liegen in:

- Der relativen Seltenheit der Erkrankungen,

- der Heterogenität von Geno- und Phänotyp,

- der Unvorhersagbarkeit des klinischen Verlaufs,

- dem undulierenden oder remittierenden Verlauf der Krankheiten,

- präexistierender, irreversibler Gewebeschädigung zum Zeitpunkt der Diagnose und/oder bei Therapiebeginn sowie im

- inadäquaten Follow up und fehlenden Langzeitevaluierungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Barbiroll B (1995) Lipoic (thioctic) acid increases brain energy availability and skeletal muscle performance as shown by in vivo 31P-MRS in a patient with mitochondrial cytopathy. J Neurol 242: 472–477

    Article  Google Scholar 

  • Campos Y, Huertas R, Lorenzo G et al. (1993) Plasma carnitine insufficiency and effectiveness of L-carnitine therapy in patients with mitochondrial myopathy. Muscle Nerve 16: 150–153

    Article  CAS  PubMed  Google Scholar 

  • DiMauro S, Rustin P (2009) A critical approach to the therapy of mitochondrial respiratory chain and oxidative phosphorylation diseases. Biochim Biophys Acta 1792: 1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Eleff S, Kennaway NG, Buist NR et al. (1984) 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc Natl Acad Sci USA 81: 3529–3533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haack TB, Danhauser K, Haberberger B et al. (2010) Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 42: 1131–1134

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann P, Engelstad K, Wei Y-H et al. (2006) Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial. Neurology 66: 324–330

    Article  CAS  PubMed  Google Scholar 

  • Klopstock T, Schlamp V, Schmidt F et al. (1999) Creatine monohydrate in mitochondrial diseases: a double-blind, placebo-controlled, cross-over study in 16 patients with progressive external ophthalmoplegia or mitochondrial myopathy. Neurology 52: A543–A544

    Google Scholar 

  • Klopstock T, Yu-Wai-Mai P, Dimitriadis K, et al. (2011) A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 134: 2677–2686

    Article  PubMed Central  PubMed  Google Scholar 

  • Naito E, Ito M, Takeda E et al.(1994) Molecular analysis of abnormal pyruvate dehydrogenase in a patient with thiamine-responsive congenital lactic acidemia. Pediatr Res 36: 340–346

    Article  CAS  PubMed  Google Scholar 

  • Oguro H, Iijima K, Takahashi K et al. (2004) Successful treatment with succinate in a patient with MELAS. Intern Med 43: 427–431

    Article  PubMed  Google Scholar 

  • Panetta J, Smith LJ, Boneh A. (2004) Effect of high-dose vitamins, coenzyme Q and high-fat diet in paediatric patients with mitochondrial diseases. J Inherit Metab Dis 27:487–498

    Article  CAS  PubMed  Google Scholar 

  • Pineda M, Ormazabal A, Lopez-Gallardo E et al. (2006) Cerebral folate deficiency and leukoencephalopathy caused by a mitochondrial DNA deletion. Ann Neurol 59: 394–398

    Article  CAS  PubMed  Google Scholar 

  • Sedel F, Challe G et al. (2008) Thiamine responsive pyruvate dehydrogenase deficiency in an adult with peripheral neuropathy and optic neuropathy. Neurol Neurosurg Psychiatry 79: 846–847

    Article  CAS  Google Scholar 

  • Stacpoole PW, Kerr DS, Barnes C et al. (2006) Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children. Pediatrics 117: 1519–1531

    Article  PubMed  Google Scholar 

  • Tarnopolsky MA, Roy BD, MacDonald JR (1997) A randomized, controlled trial of creatine monohydrate in patients with mitochondrial cytopathies. Muscle Nerve 20(12): 1502–1509

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC, Fan W, Procaccio V. (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol Mech Dis 5: 297–348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sperl, W., Freisinger, P. (2014). Mitochondriopathien. In: Reinhardt, D., Nicolai, T., Zimmer, KP. (eds) Therapie der Krankheiten im Kindes- und Jugendalter. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41814-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41814-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41813-6

  • Online ISBN: 978-3-642-41814-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics