Skip to main content
Log in

Color axis evaluation of the Farnsworth Munsell 100-hue test in primary open-angle glaucoma and normal-pressure glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

• Background: It was the aim of the present study to analyze a separate color-axis evaluation of the Farnsworth Munsell 100-hue test (FM100) in primary open-angle glaucoma (POAG) and normal pressure glaucoma (NPG). • Patients and methods: One eye of each of 112 individuals (age 35–65 years, visual acuity >20/28, myopia <−7.5 D) was included. The groups consisted of 62 normal subjects and 50 glaucoma patients (33 POAG and 17 NPG). We evaluated the FM 100 overall error score and the error scores of the protan, deutan and tritan axes. The results were compared with perimetric (Octopus G1 mean defect) and morphometric data of the optic disc. • Results: All error scores were significantly higher in the glaucoma group than in the normal group. In an age-related evaluation, differences were significant in age groups above 45 years. No significant differences were found between the POAG and NPG groups. The sensitivity of the overall score to identify glaucoma was 62% (specificity 80%). In the glaucoma group the overall score and the protan score increased significantly with the mean defect (r>0.3,P<0.01). Several scores increased slightly with decreasing neuroretinal rim area, but not on a significant level. Separate color-axis evaluations did not show any stronger correlations and did not reveal any differences between POAG eyes and NPG eyes. This was true even for the tritan axis error. • Conclusions: Although FM100 error scores are higher in glaucoma eyes and increase with glaucomatous damage, they do not separate well. In the sample of this study, separate color-axis evaluation did not improve the diagnostic value. With the FM100 a different pattern of color vision defects in POAG and NPG eyes could not be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams AJ, Rodic R, Husted R, Stamper R (1982) Spectral sensitivity and color discrimination changes in glaucoma and glaucoma suspect patients. Invest Ophthalmol Vis Sci 23: 516–524

    CAS  PubMed  Google Scholar 

  2. Airaksinen PJ, Lakowski R, Drance SM, Price M (1986) Color vision and retinal nerve fiber layer in early glaucoma. Am J Ophthalmol 101: 208–213

    CAS  PubMed  Google Scholar 

  3. Balazsi AG, Drance SM, Schulzer M, Douglas GR (1984) Neuroretinal rim area in suspected glaucoma and early chronic open angle glaucoma. Correlation with parameters of visual function. Arch Ophthalmol 102: 1011–1014

    CAS  PubMed  Google Scholar 

  4. Bassi CJ, Galanis JC, Hoffman J (1993) Comparison of the Farnsworth Munsell 100 Hue, the Farnsworth D 15, and the L'Anthony D15 desaturated color tests. Arch Ophthalmol 111: 639–641

    CAS  PubMed  Google Scholar 

  5. Drance SM (1985) The early structural and functional disturbances of chronic open-angle glaucoma. Opthalmology 92: 853–857

    CAS  Google Scholar 

  6. Drance SM, Lakowski R, Schulzer M, Douglas GR (1981) Acquired color vision changes in glaucoma. Use of 100-hue test and Pickford anomaloscope as predictors of glaucomatous field change. Arch Ophthalmol 99:829–831

    CAS  PubMed  Google Scholar 

  7. Drance SM, Airaksinen PJ, Price M, Schulzer M, Douglas GR, Tansley BW (1986) The correlation of functional and structural measurements in glaucoma patients and normal subjects. Am J Ophthalmol 102:612–616

    CAS  PubMed  Google Scholar 

  8. De-Jong LA, Snepvangers CE, van den Berg TJ, Langerhorst CT (1990) Blue-yellow perimetry in the detection of early glaucomatous damage. Doc Ophthalmol 75:303–314

    CAS  PubMed  Google Scholar 

  9. Falcao-Reis FM, O'Sullivan F, Spileers W, Hogg C, Arden GB (1991) Macular colour contrast sensitivity in ocular hypertension and glaucoma: evidence for two types of defect. Br J Ophthalmol 75:598–602

    CAS  PubMed  Google Scholar 

  10. Flammer J, Drance SM (1984) Correlation between color vision scores and quantitative perimetry in suspected glaucoma. Arch Ophthalmol 102:38–39

    CAS  PubMed  Google Scholar 

  11. François J, Verriest G (1959) Les dyschromatopsies acquises dans le glaucoma primaire. Ann Ophthalmol 192:191–199

    Google Scholar 

  12. Geijssen HC, Greve EL (1987) The spectrum of primary open-angle glaucoma. I. Senile sclerotic glaucoma versus high tension glaucoma. Ophthalmic Surg 18:207–213

    CAS  PubMed  Google Scholar 

  13. Greenstein VC, Shapiro A, Hood DC, Zaidi Q (1993) Chromatic and luminance sensitivity in diabetes and glaucoma. J Opt Soc Am A 10:1785–1791

    CAS  Google Scholar 

  14. Grützner P, Schleicher S (1972) Acquired color vision defects in glaucoma patients. Mod Probl Ophthalmol 11:136–140

    PubMed  Google Scholar 

  15. Hamill TR, Post RB, Johnson CA, Keltner JL (1984) Correlation of color vision deficits and observable changes in the optic disc in a population of ocular hypertensives. Arch Ophthalmol 102:1637–1639

    CAS  PubMed  Google Scholar 

  16. Johnson CA, Adams AJ, Casson EJ, Brandt JD (1993) Blue on yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 111:645–650

    CAS  PubMed  Google Scholar 

  17. Johnson CA, Adams AJ, Casson EJ, Brandt JD (1993) Progression of early glaucomatous visual field loss as detected by blue on yellow and standard white on white automated perimetry. Arch Ophthalmol 111:651–656

    CAS  PubMed  Google Scholar 

  18. Jonas JB, Zäch FM (1990) Farbsehstörungen bei chronischem Offenwinkelglaukom. Fortschr Ophthalmol 87:255–259

    CAS  PubMed  Google Scholar 

  19. Jonas JB, Gusek GC, Naumann GOH (1988) Optic disc morphometry in chronic primary open-angle glaucoma. I. Morphometric intrapapillary characteristics. Graefe's Arch Clin Exp Ophthalmol 226:522–530

    CAS  Google Scholar 

  20. Kalmus H, Luke I, Seedburgh D (1974) Impairment of colour vision in patients with ocular hypertension and glaucoma. Br J Ophthalmol 58:922–926

    CAS  PubMed  Google Scholar 

  21. Korth M, Horn F, Jonas J (1993) Utility of the color pattern-electroretinogram (PERG) in glaucoma. Graefe's Arch Clin Exp Ophthalmol 231:84–89

    Article  CAS  Google Scholar 

  22. Korth M, Nguyen NX, Jünemann A, Martus P, Jonas JB (1994) VEP test of the blue-sensitive pathway in glaucoma. Invest Ophthalmol Vis Sci 35: 2599–2610

    CAS  PubMed  Google Scholar 

  23. Lachenmayr BJ, Drance SM (1992) Diffuse field loss and central visual function in glaucoma. Ger J Ophthalmol 1: 67–73

    CAS  PubMed  Google Scholar 

  24. Lachenmayr BJ, Airaksinen PJ, Drance SM, Wijsman K (1991) Correlation of retinal nerve fiber layer loss, changes at the optic nerve head and various psychophysical criteria in glaucoma. Graefe's Arch Clin Exp Ophthalmol 229:133–138

    CAS  Google Scholar 

  25. Lakowski R, Drance SM (1979) Aquired dyschromatopsias: the earliest functional losses in glaucoma. Doc Ophthalmol Proc Ser 19: 159–165

    Google Scholar 

  26. Marré M, Marré E (1986) Erworbene Störungen des Farbensehens. VEB Thieme, Leipzig

    Google Scholar 

  27. Motolko M, Drance SM, Douglas GR (1982) The early psychophysical disturbances in chronic open angle glaucoma. A study of visual functions with asymmetric disc cupping. Arch Ophthalmol 100: 1632–1634

    CAS  PubMed  Google Scholar 

  28. Nguyen NX, Korth M, Wisse M, Jünemann A (1994) Anwendung eines neuen Anomaloskop Tests in der Glaukomdiagnostik. Klin Monatsbl Augenheilkd 204:149–154

    CAS  PubMed  Google Scholar 

  29. Perdriel G, Lanthony P, Chevaleraud J (1975) Pathologie du sens chromatique. Diagnostic pratique. Intérêt clinique et applications socio-professionelles. Bull Soc Ophthalmol Fr Spec no: 5–280

  30. Perkins ES, Phelps CD (1982) Open-angle glaucoma, ocular hypertension, low-tension glaucoma and refraction. Arch Ophthalmol 100: 1464–1467

    CAS  PubMed  Google Scholar 

  31. Poinoosawmy D, Nagasubramanian S, Gloster J (1980) Colour vision in patients with chronic simple glaucoma and ocular hypertension. Br J Ophthalmol 64:852–857

    CAS  PubMed  Google Scholar 

  32. Ruben ST, Arden GB, O'Sullivan F, Hitchings RA (1995) Pattern electroretinogram and peripheral colour contrast thresholds in ocular hypertension and glaucoma: comparison and correlation of results. Br J Ophthalmol 79:326–331

    CAS  PubMed  Google Scholar 

  33. Sample PA, Boynton RM, Weinreb RN (1988) Isolating the color vision loss in primary open-angle glaucoma. Am J Ophthalmol 106:686–691

    CAS  PubMed  Google Scholar 

  34. Sample PA, Taylor JD, Martinez GA, Lusky M, Weinreb RN (1993) Short-wavelength color visual fields in glaucoma suspects at risk. Am J Ophthalmol 115:225–233

    CAS  PubMed  Google Scholar 

  35. Smith VC, Pokorny J, Pass AS (1985) Color-axis determination on the Farnsworth-Munsell 100-hue test. Am J Ophthalmol 100: 176–182

    CAS  PubMed  Google Scholar 

  36. Spaeth GL, Katz LJ, Terebuh AK (1995) Managing glaucoma on the basis of tissue damage: a therapeutic approach based largely on the appearance of the optic disc. In: Krieglstein GK (ed) Glaucoma update V. Kaden, Heidelberg, pp 118–123

    Google Scholar 

  37. Trick GL (1993) Visual dysfunction in normotensive glaucoma. Doc Ophthalmol 85:125–133

    Article  CAS  PubMed  Google Scholar 

  38. Trick GL, Nesher R, Cooper DG, Kolker AE, Bickler-Bluth M (1988) Dissociation of visual deficits in ocular hypertension. Invest Ophthalmol Vis Sci 29:1486–1491

    CAS  PubMed  Google Scholar 

  39. Verriest G (1963) Further studies on aquired defiency of color discrimination. J Opt Soc Am 53:185–195

    CAS  PubMed  Google Scholar 

  40. Verriest G (1964) Les déficienes acquise de la discrimination chromatique. Mem Acad R Med Belg Ser II 4:35–327

    Google Scholar 

  41. Vyborny P, Bartos D, Friedova E, Laboha T (1993) Correlation between various methods of examination in glaucoma (in Czech). Cesk Oftalmol 49:35–43

    CAS  PubMed  Google Scholar 

  42. Wessels IF, Hardt DG (1989) Computer program for Farnsworth-Munsell D85 data. Ophthalmology 95 [Suppl]:172

    Google Scholar 

  43. Yamazaki Y, Lakowski R, Drance SM (1989) A comparison of the blue color mechanism in high and low tension glaucoma. Ophthalmology 96:12–15

    CAS  PubMed  Google Scholar 

  44. Zimmermann U (1966) Farbsinnstörungen bei Glaukom. Klin Monatsbl Augenheilkd 148:845–850

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budde, W.M., Jünemann, A. & Korth, M. Color axis evaluation of the Farnsworth Munsell 100-hue test in primary open-angle glaucoma and normal-pressure glaucoma. Graefe's Arch Clin Exp Ophthalmol 234 (Suppl 1), S180–S186 (1996). https://doi.org/10.1007/BF02343069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02343069

Keywords

Navigation