Skip to main content
Erschienen in: Clinical Neuroradiology 1/2014

01.03.2014 | Review Article

Neuroimaging of Epilepsy: Lesions, Networks, Oscillations

verfasst von: E. Abela, MD, C. Rummel, M. Hauf, C. Weisstanner, K. Schindler, R. Wiest

Erschienen in: Clinical Neuroradiology | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

While analysis and interpretation of structural epileptogenic lesion is an essential task for the neuroradiologist in clinical practice, a substantial body of epilepsy research has shown that focal lesions influence brain areas beyond the epileptogenic lesion, across ensembles of functionally and anatomically connected brain areas. In this review article, we aim to provide an overview about altered network compositions in epilepsy, as measured with current advanced neuroimaging techniques to characterize the initiation and spread of epileptic activity in the brain with multimodal noninvasive imaging techniques. We focus on resting-state functional magnetic resonance imaging (MRI) and simultaneous electroencephalography/fMRI, and oppose the findings in idiopathic generalized versus focal epilepsies. These data indicate that circumscribed epileptogenic lesions can have extended effects on many brain systems. Although epileptic seizures may involve various brain areas, seizure activity does not spread diffusely throughout the brain but propagates along specific anatomic pathways that characterize the underlying epilepsy syndrome. Such a functionally oriented approach may help to better understand a range of clinical phenomena such as the type of cognitive impairment, the development of pharmacoresistance, the propagation pathways of seizures, or the success of epilepsy surgery.
Literatur
1.
Zurück zum Zitat Bell GS, Sander JW. The epidemiology of epilepsy: the size of the problem. Seizure. 2002;11(Suppl A):306–14. (Quiz 15–6).PubMed Bell GS, Sander JW. The epidemiology of epilepsy: the size of the problem. Seizure. 2002;11(Suppl A):306–14. (Quiz 15–6).PubMed
2.
Zurück zum Zitat Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51(4):676–85. doi:10.1111/j.1528-1167.2010.02522.x.PubMedCrossRef Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51(4):676–85. doi:10.1111/j.1528-1167.2010.02522.x.PubMedCrossRef
3.
Zurück zum Zitat Begley CE, Famulari M, Annegers JF, Lairson DR, Reynolds TF, Coan S, et al. The cost of epilepsy in the United States: an estimate from population-based clinical and survey data. Epilepsia. 2000;41(3):342–51.PubMedCrossRef Begley CE, Famulari M, Annegers JF, Lairson DR, Reynolds TF, Coan S, et al. The cost of epilepsy in the United States: an estimate from population-based clinical and survey data. Epilepsia. 2000;41(3):342–51.PubMedCrossRef
4.
Zurück zum Zitat Gaitatzis A, Sander JW. The mortality of epilepsy revisited. Epileptic Disord. 2004;6(1):3–13.PubMed Gaitatzis A, Sander JW. The mortality of epilepsy revisited. Epileptic Disord. 2004;6(1):3–13.PubMed
5.
Zurück zum Zitat Gaitatzis A, Sisodiya SM, Sander JW. The somatic comorbidity of epilepsy: a weighty but often unrecognized burden. Epilepsia. 2012;53(8):1282–93. doi:10.1111/j.1528-1167.2012.03528.x.PubMedCrossRef Gaitatzis A, Sisodiya SM, Sander JW. The somatic comorbidity of epilepsy: a weighty but often unrecognized burden. Epilepsia. 2012;53(8):1282–93. doi:10.1111/j.1528-1167.2012.03528.x.PubMedCrossRef
6.
Zurück zum Zitat Gilliam F, Hecimovic H, Sheline Y. Psychiatric comorbidity, health, and function in epilepsy. Epilepsy Behav. 2003;4(Suppl 4):S26–30. doi:S1525505003002828 [pii].PubMedCrossRef Gilliam F, Hecimovic H, Sheline Y. Psychiatric comorbidity, health, and function in epilepsy. Epilepsy Behav. 2003;4(Suppl 4):S26–30. doi:S1525505003002828 [pii].PubMedCrossRef
7.
Zurück zum Zitat Richardson M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clinical Neurophysiol. 2010;121(8):1153–75. doi:10.1016/j.clinph.2010.01.004.CrossRef Richardson M. Current themes in neuroimaging of epilepsy: brain networks, dynamic phenomena, and clinical relevance. Clinical Neurophysiol. 2010;121(8):1153–75. doi:10.1016/j.clinph.2010.01.004.CrossRef
8.
Zurück zum Zitat Recommendations for neuroimaging of patients with epilepsy. Commission on Neuroimaging of the International League Against Epilepsy. Epilepsia. 1997;38(11):1255–6. Recommendations for neuroimaging of patients with epilepsy. Commission on Neuroimaging of the International League Against Epilepsy. Epilepsia. 1997;38(11):1255–6.
9.
Zurück zum Zitat Craven IJ, Griffiths PD, Bhattacharyya D, Grunewald RA, Hodgson T, Connolly DJ, et al. 3.0 T MRI of 2000 consecutive patients with localisation-related epilepsy. Br J Radiol. 2012;85(1017):1236–42. doi:30177037 [pii] 10.1259/bjr/30177037.PubMedCentralPubMedCrossRef Craven IJ, Griffiths PD, Bhattacharyya D, Grunewald RA, Hodgson T, Connolly DJ, et al. 3.0 T MRI of 2000 consecutive patients with localisation-related epilepsy. Br J Radiol. 2012;85(1017):1236–42. doi:30177037 [pii] 10.1259/bjr/30177037.PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Scott CA, Fish DR, Smith SJ, Free SL, Stevens JM, Thompson PJ, et al. Presurgical evaluation of patients with epilepsy and normal MRI: role of scalp video-EEG telemetry. J Neurol Neurosurg Psychiatry. 1999;66(1):69–71.PubMedCentralPubMedCrossRef Scott CA, Fish DR, Smith SJ, Free SL, Stevens JM, Thompson PJ, et al. Presurgical evaluation of patients with epilepsy and normal MRI: role of scalp video-EEG telemetry. J Neurol Neurosurg Psychiatry. 1999;66(1):69–71.PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Bronen RA, Fulbright RK, Spencer DD, Spencer SS, Kim JH, Lange RC, et al. Refractory epilepsy: comparison of MR imaging, CT, and histopathologic findings in 117 patients. Radiology. 1996;201(1):97–105.PubMed Bronen RA, Fulbright RK, Spencer DD, Spencer SS, Kim JH, Lange RC, et al. Refractory epilepsy: comparison of MR imaging, CT, and histopathologic findings in 117 patients. Radiology. 1996;201(1):97–105.PubMed
12.
Zurück zum Zitat Bernasconi A, Antel SB, Collins DL, Bernasconi N, Olivier A, Dubeau F, et al. Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy. Ann Neurol. 2001;49(6):770–5.PubMedCrossRef Bernasconi A, Antel SB, Collins DL, Bernasconi N, Olivier A, Dubeau F, et al. Texture analysis and morphological processing of magnetic resonance imaging assist detection of focal cortical dysplasia in extra-temporal partial epilepsy. Ann Neurol. 2001;49(6):770–5.PubMedCrossRef
13.
Zurück zum Zitat Besson P, Bernasconi N, Colliot O, Evans A, Bernasconi A. Surface-based texture and morphological analysis detects subtle cortical dysplasia. Med Image Comput Comput Assist Interv. 2008;11(Pt 1):645–52.PubMed Besson P, Bernasconi N, Colliot O, Evans A, Bernasconi A. Surface-based texture and morphological analysis detects subtle cortical dysplasia. Med Image Comput Comput Assist Interv. 2008;11(Pt 1):645–52.PubMed
14.
Zurück zum Zitat Wagner J, Weber B, Urbach H, Elger CE, Huppertz HJ. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011;134(Pt 10):2844–54. doi:awr204 [pii] 10.1093/brain/awr204.PubMedCrossRef Wagner J, Weber B, Urbach H, Elger CE, Huppertz HJ. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011;134(Pt 10):2844–54. doi:awr204 [pii] 10.1093/brain/awr204.PubMedCrossRef
15.
Zurück zum Zitat Engel J Jr, Thompson PM, Stern JM, Staba RJ, Bragin A, Mody I. Connectomics and epilepsy. Current Opin Neurol. 2013;26(2):186–94. doi:10.1097/WCO.0b013e32835ee5b8.CrossRef Engel J Jr, Thompson PM, Stern JM, Staba RJ, Bragin A, Mody I. Connectomics and epilepsy. Current Opin Neurol. 2013;26(2):186–94. doi:10.1097/WCO.0b013e32835ee5b8.CrossRef
16.
Zurück zum Zitat Richardson MP. Large scale brain models of epilepsy: dynamics meets connectomics. J Neurol Neurosurg Psychiatry. 2012;83(12):1238–48. doi:jnnp-2011-301944 [pii] 10.1136/jnnp-2011-301944.PubMedCrossRef Richardson MP. Large scale brain models of epilepsy: dynamics meets connectomics. J Neurol Neurosurg Psychiatry. 2012;83(12):1238–48. doi:jnnp-2011-301944 [pii] 10.1136/jnnp-2011-301944.PubMedCrossRef
17.
Zurück zum Zitat Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43(3):219–27.PubMedCrossRef Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia. 2002;43(3):219–27.PubMedCrossRef
18.
Zurück zum Zitat Engel J Jr, Pitkanen A, Loeb JA, Dudek FE, Bertram EH 3rd, Cole AJ, et al. Epilepsy biomarkers. Epilepsia. 2013;54(Suppl 4):61–9. doi:10.1111/epi.12299.PubMedCrossRef Engel J Jr, Pitkanen A, Loeb JA, Dudek FE, Bertram EH 3rd, Cole AJ, et al. Epilepsy biomarkers. Epilepsia. 2013;54(Suppl 4):61–9. doi:10.1111/epi.12299.PubMedCrossRef
19.
Zurück zum Zitat Sporns O. From simple graphs to the connectome: networks in neuroimaging. NeuroImage. 2012;62(2):881–6. doi:S1053-8119(11)01017-2 [pii] 10.1016/j.neuroimage.2011.08.085. Sporns O. From simple graphs to the connectome: networks in neuroimaging. NeuroImage. 2012;62(2):881–6. doi:S1053-8119(11)01017-2 [pii] 10.1016/j.neuroimage.2011.08.085.
20.
Zurück zum Zitat Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev Neurosci. 2009;10(3):186–98. doi:nrn2575 [pii] 10.1038/nrn2575. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev Neurosci. 2009;10(3):186–98. doi:nrn2575 [pii] 10.1038/nrn2575.
21.
Zurück zum Zitat Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13–36. doi:10.1089/brain.2011.0008.PubMedCrossRef Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13–36. doi:10.1089/brain.2011.0008.PubMedCrossRef
22.
Zurück zum Zitat Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003;19(4):1273–302.PubMedCrossRef Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003;19(4):1273–302.PubMedCrossRef
23.
Zurück zum Zitat Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K. Effective connectivity: influence, causality and biophysical modeling. NeuroImage. 2011;58(2):339–61. doi:10.1016/j.neuroimage.2011.03.058.PubMedCentralPubMedCrossRef Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K. Effective connectivity: influence, causality and biophysical modeling. NeuroImage. 2011;58(2):339–61. doi:10.1016/j.neuroimage.2011.03.058.PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Calhoun VD, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage. 2009;45(1 Suppl):S163–72. doi:10.1016/j.neuroimage.2008.10.057. Calhoun VD, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage. 2009;45(1 Suppl):S163–72. doi:10.1016/j.neuroimage.2008.10.057.
25.
Zurück zum Zitat Calhoun VD, Pekar JJ, McGinty VB, Adali T, Watson TD, Pearlson GD. Different activation dynamics in multiple neural systems during simulated driving. Hum Brain Mapp. 2002;16(3):158–67. doi:10.1002/hbm.10032.PubMedCrossRef Calhoun VD, Pekar JJ, McGinty VB, Adali T, Watson TD, Pearlson GD. Different activation dynamics in multiple neural systems during simulated driving. Hum Brain Mapp. 2002;16(3):158–67. doi:10.1002/hbm.10032.PubMedCrossRef
26.
Zurück zum Zitat Rzepecki-Smith CI, Meda SA, Calhoun VD, Stevens MC, Jafri MJ, Astur RS, et al. Disruptions in functional network connectivity during alcohol intoxicated driving. Alcohol Clin Exp Res. 2010;34(3):479–87. doi:ACER1112 [pii] 10.1111/j.1530-0277.2009.01112.x. Rzepecki-Smith CI, Meda SA, Calhoun VD, Stevens MC, Jafri MJ, Astur RS, et al. Disruptions in functional network connectivity during alcohol intoxicated driving. Alcohol Clin Exp Res. 2010;34(3):479–87. doi:ACER1112 [pii] 10.1111/j.1530-0277.2009.01112.x.
27.
Zurück zum Zitat Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol. 2010;67(3):365–75. doi:10.1002/ana.21905.PubMedCentralPubMed Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, et al. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol. 2010;67(3):365–75. doi:10.1002/ana.21905.PubMedCentralPubMed
28.
Zurück zum Zitat Sours C, Zhuo J, Janowich J, Aarabi B, Shanmuganathan K, Gullapalli RP. Default mode network interference in mild traumatic brain injury—a pilot resting state study. Brain Res. 2013;1537:201–15. doi:S0006-8993(13)01171-2 [pii] 10.1016/j.brainres.2013.08.034. Sours C, Zhuo J, Janowich J, Aarabi B, Shanmuganathan K, Gullapalli RP. Default mode network interference in mild traumatic brain injury—a pilot resting state study. Brain Res. 2013;1537:201–15. doi:S0006-8993(13)01171-2 [pii] 10.1016/j.brainres.2013.08.034.
29.
Zurück zum Zitat Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, et al. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012;265(3):882–92. doi:265/3/882 [pii] 10.1148/radiol.12120748. Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, et al. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012;265(3):882–92. doi:265/3/882 [pii] 10.1148/radiol.12120748.
30.
Zurück zum Zitat Sandrone S, Bacigaluppi M. Learning from default mode network: the predictive value of resting state in traumatic brain injury. J Neurosci. 2012;32(6):1915–7. doi:32/6/1915 [pii] 10.1523/JNEUROSCI.5637-11.2012. Sandrone S, Bacigaluppi M. Learning from default mode network: the predictive value of resting state in traumatic brain injury. J Neurosci. 2012;32(6):1915–7. doi:32/6/1915 [pii] 10.1523/JNEUROSCI.5637-11.2012.
31.
Zurück zum Zitat Rummel C, Verma RK, Schopf V, Abela E, Hauf M, Berruecos JF, et al. Time course based artifact identification for independent components of resting-state FMRI. Front Hum Neurosci. 2013;7:214. doi:10.3389/fnhum.2013.00214.PubMedCentralPubMedCrossRef Rummel C, Verma RK, Schopf V, Abela E, Hauf M, Berruecos JF, et al. Time course based artifact identification for independent components of resting-state FMRI. Front Hum Neurosci. 2013;7:214. doi:10.3389/fnhum.2013.00214.PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20(8):519–34. doi:S0924-977X(10)00068-4 [pii] 10.1016/j.euroneuro.2010.03.008. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20(8):519–34. doi:S0924-977X(10)00068-4 [pii] 10.1016/j.euroneuro.2010.03.008.
33.
Zurück zum Zitat Rummel C, Abela E, Muller M, Hauf M, Scheidegger O, Wiest R, et al. Uniform approach to linear and nonlinear interrelation patterns in multivariate time series. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;83(6 Pt 2):066215.PubMedCrossRef Rummel C, Abela E, Muller M, Hauf M, Scheidegger O, Wiest R, et al. Uniform approach to linear and nonlinear interrelation patterns in multivariate time series. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;83(6 Pt 2):066215.PubMedCrossRef
34.
Zurück zum Zitat Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci. 2009;29(6):1860–73. doi:29/6/1860 [pii] 10.1523/JNEUROSCI.5062-08.2009. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci. 2009;29(6):1860–73. doi:29/6/1860 [pii] 10.1523/JNEUROSCI.5062-08.2009.
35.
Zurück zum Zitat Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, et al. Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage. 2010;50(3):970–83. doi:S1053-8119(09)01315-9 [pii] 10.1016/j.neuroimage.2009.12.027. Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, et al. Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage. 2010;50(3):970–83. doi:S1053-8119(09)01315-9 [pii] 10.1016/j.neuroimage.2009.12.027.
36.
Zurück zum Zitat Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52(3):1059–69. doi:S1053-8119(09)01074-X [pii] 10.1016/j.neuroimage.2009.10.003. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52(3):1059–69. doi:S1053-8119(09)01074-X [pii] 10.1016/j.neuroimage.2009.10.003.
37.
Zurück zum Zitat Tononi G, Sporns O, Edelman GM. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A. 1994;91(11):5033–7.PubMedCentralPubMedCrossRef Tononi G, Sporns O, Edelman GM. A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A. 1994;91(11):5033–7.PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Sporns O. Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol. 2013;23(2):162–71. doi:S0959-4388(12)00189-4 [pii] 10.1016/j.conb.2012.11.015. Sporns O. Network attributes for segregation and integration in the human brain. Curr Opin Neurobiol. 2013;23(2):162–71. doi:S0959-4388(12)00189-4 [pii] 10.1016/j.conb.2012.11.015.
39.
Zurück zum Zitat Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701.PubMedCrossRef Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701.PubMedCrossRef
40.
Zurück zum Zitat Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684):440–2. doi:10.1038/30918.PubMedCrossRef Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393(6684):440–2. doi:10.1038/30918.PubMedCrossRef
41.
Zurück zum Zitat Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys. 2007;1(1):3. doi:1753-4631-1-3 [pii] 10.1186/1753-4631-1-3. Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys. 2007;1(1):3. doi:1753-4631-1-3 [pii] 10.1186/1753-4631-1-3.
42.
Zurück zum Zitat Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8. doi:10.1073/pnas.0135058100.PubMedCentralPubMedCrossRef Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253–8. doi:10.1073/pnas.0135058100.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14(3):140–51. doi:10.1002/hbm.1048 [pii].PubMedCrossRef Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp. 2001;14(3):140–51. doi:10.1002/hbm.1048 [pii].PubMedCrossRef
44.
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–89. doi:10.1006/nimg.2001.0978 S1053811901909784 [pii]. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–89. doi:10.1006/nimg.2001.0978 S1053811901909784 [pii].
45.
Zurück zum Zitat Huster RJ, Debener S, Eichele T, Herrmann CS. Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci. 2012;32(18):6053–60. doi:10.1523/JNEUROSCI.0447-12.2012.PubMedCrossRef Huster RJ, Debener S, Eichele T, Herrmann CS. Methods for simultaneous EEG-fMRI: an introductory review. J Neurosci. 2012;32(18):6053–60. doi:10.1523/JNEUROSCI.0447-12.2012.PubMedCrossRef
46.
Zurück zum Zitat Ritter P, Villringer A. Simultaneous EEG-fMRI. Neurosci Biobehav Rev. 2006;30(6):823–38. doi:10.1016/j.neubiorev.2006.06.008.PubMedCrossRef Ritter P, Villringer A. Simultaneous EEG-fMRI. Neurosci Biobehav Rev. 2006;30(6):823–38. doi:10.1016/j.neubiorev.2006.06.008.PubMedCrossRef
47.
Zurück zum Zitat Mulert C, Lemieux L. EEG-fMRI—phyiological basis, technique and applications. Springer; 2010. p. 309–31. Mulert C, Lemieux L. EEG-fMRI—phyiological basis, technique and applications. Springer; 2010. p. 309–31.
48.
Zurück zum Zitat Moeller F, Muhle H, Wiegand G, Wolff S, Stephani U, Siniatchkin M. EEG-fMRI study of generalized spike and wave discharges without transitory cognitive impairment. Epilepsy Behav. 2010;18(3):313–6. doi:S1525-5050(10)00275-1 [pii] 10.1016/j.yebeh.2010.02.013. Moeller F, Muhle H, Wiegand G, Wolff S, Stephani U, Siniatchkin M. EEG-fMRI study of generalized spike and wave discharges without transitory cognitive impairment. Epilepsy Behav. 2010;18(3):313–6. doi:S1525-5050(10)00275-1 [pii] 10.1016/j.yebeh.2010.02.013.
49.
Zurück zum Zitat LeVan P, Tyvaert L, Moeller F, Gotman J. Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. NeuroImage. 2010;49(1):366–78. doi:10.1016/j.neuroimage.2009.07.064.PubMedCentralPubMedCrossRef LeVan P, Tyvaert L, Moeller F, Gotman J. Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. NeuroImage. 2010;49(1):366–78. doi:10.1016/j.neuroimage.2009.07.064.PubMedCentralPubMedCrossRef
50.
Zurück zum Zitat Jann K, Wiest R, Hauf M, Meyer K, Boesch C, Mathis J, et al. BOLD correlates of continuously fluctuating epileptic activity isolated by independent component analysis. Neuroimage. 2008;42(2):635–48. doi:S1053-8119(08)00612-5 [pii] 10.1016/j.neuroimage.2008.05.001. Jann K, Wiest R, Hauf M, Meyer K, Boesch C, Mathis J, et al. BOLD correlates of continuously fluctuating epileptic activity isolated by independent component analysis. Neuroimage. 2008;42(2):635–48. doi:S1053-8119(08)00612-5 [pii] 10.1016/j.neuroimage.2008.05.001.
51.
Zurück zum Zitat Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007;34(4):1443–9. doi:S1053-8119(06)01109-8 [pii] 10.1016/j.neuroimage.2006.11.004. Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage. 2007;34(4):1443–9. doi:S1053-8119(06)01109-8 [pii] 10.1016/j.neuroimage.2006.11.004.
52.
Zurück zum Zitat Onton J, Makeig S. Information-based modeling of event-related brain dynamics. Prog Brain Res. 2006;159:99–120. doi:S0079-6123(06)59007-7 [pii] 10.1016/S0079-6123(06)59007-7. Onton J, Makeig S. Information-based modeling of event-related brain dynamics. Prog Brain Res. 2006;159:99–120. doi:S0079-6123(06)59007-7 [pii] 10.1016/S0079-6123(06)59007-7.
53.
Zurück zum Zitat De Tiege X, Laufs H, Clark CA, et al. EEG-fMRI in children with pharmacoresistant focal epilepsy. Epilepsia. 2007;48(2):385–9. doi:EPI951 [pii] 10.1111/j.1528-1167.2006.00951.x. De Tiege X, Laufs H, Clark CA, et al. EEG-fMRI in children with pharmacoresistant focal epilepsy. Epilepsia. 2007;48(2):385–9. doi:EPI951 [pii] 10.1111/j.1528-1167.2006.00951.x.
54.
Zurück zum Zitat Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, et al. Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy. Brain Res. 2006;1088(1):148–66. doi:S0006-8993(06)00524-5 [pii] 10.1016/j.brainres.2006.02.098. Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K, et al. Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy. Brain Res. 2006;1088(1):148–66. doi:S0006-8993(06)00524-5 [pii] 10.1016/j.brainres.2006.02.098.
55.
Zurück zum Zitat Moeller F, Tyvaert L, Nguyen DK, LeVan P, Bouthillier A, Kobayashi E, et al. EEG-fMRI: adding to standard evaluations of patients with nonlesional frontal lobe epilepsy. Neurology. 2009;73(23):2023–30. doi:10.1212/WNL.0b013e3181c55d17.PubMedCentralPubMedCrossRef Moeller F, Tyvaert L, Nguyen DK, LeVan P, Bouthillier A, Kobayashi E, et al. EEG-fMRI: adding to standard evaluations of patients with nonlesional frontal lobe epilepsy. Neurology. 2009;73(23):2023–30. doi:10.1212/WNL.0b013e3181c55d17.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Zijlmans M, Huiskamp G, Hersevoort M, Seppenwoolde JH, van Huffelen AC, Leijten FS. EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain. 2007;130(Pt 9):2343–53. doi:10.1093/brain/awm141. Zijlmans M, Huiskamp G, Hersevoort M, Seppenwoolde JH, van Huffelen AC, Leijten FS. EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain. 2007;130(Pt 9):2343–53. doi:10.1093/brain/awm141.
57.
Zurück zum Zitat Weir B. The morphology of the spike-wave complex. Electroencephalogr Clin Neurophysiol. 1965;19(3):284–90.PubMedCrossRef Weir B. The morphology of the spike-wave complex. Electroencephalogr Clin Neurophysiol. 1965;19(3):284–90.PubMedCrossRef
58.
Zurück zum Zitat Panayiotopoulos CP, Chroni E, Daskalopoulos C, Baker A, Rowlinson S, Walsh P. Typical absence seizures in adults: clinical, EEG, video-EEG findings and diagnostic/syndromic considerations. J Neurol Neurosurg Psychiatry. 1992;55(11):1002–8.PubMedCentralPubMedCrossRef Panayiotopoulos CP, Chroni E, Daskalopoulos C, Baker A, Rowlinson S, Walsh P. Typical absence seizures in adults: clinical, EEG, video-EEG findings and diagnostic/syndromic considerations. J Neurol Neurosurg Psychiatry. 1992;55(11):1002–8.PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Holmes GL, McKeever M, Adamson M. Absence seizures in children: clinical and electroencephalographic features. Ann Neurol. 1987;21(3):268–73. doi:10.1002/ana.410210308.PubMedCrossRef Holmes GL, McKeever M, Adamson M. Absence seizures in children: clinical and electroencephalographic features. Ann Neurol. 1987;21(3):268–73. doi:10.1002/ana.410210308.PubMedCrossRef
60.
Zurück zum Zitat Gloor P. Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia. 1968;9(3):249–63.PubMedCrossRef Gloor P. Generalized cortico-reticular epilepsies. Some considerations on the pathophysiology of generalized bilaterally synchronous spike and wave discharge. Epilepsia. 1968;9(3):249–63.PubMedCrossRef
61.
Zurück zum Zitat Meeren H, van Luijtelaar G, Lopes da Silva F, Coenen A. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol. 2005;62(3):371–6. doi:62/3/371 [pii] 10.1001/archneur.62.3.371. Meeren H, van Luijtelaar G, Lopes da Silva F, Coenen A. Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol. 2005;62(3):371–6. doi:62/3/371 [pii] 10.1001/archneur.62.3.371.
62.
Zurück zum Zitat Blumenfeld H, McCormick DA. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J Neurosci. 2000;20(13):5153–62. doi:20/13/5153 [pii].PubMed Blumenfeld H, McCormick DA. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J Neurosci. 2000;20(13):5153–62. doi:20/13/5153 [pii].PubMed
63.
Zurück zum Zitat Archer JS, Abbott DF, Waites AB, Jackson GD. fMRI “deactivation” of the posterior cingulate during generalized spike and wave. NeuroImage. 2003;20(4):1915–22.PubMedCrossRef Archer JS, Abbott DF, Waites AB, Jackson GD. fMRI “deactivation” of the posterior cingulate during generalized spike and wave. NeuroImage. 2003;20(4):1915–22.PubMedCrossRef
64.
Zurück zum Zitat Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain. 2004;127(Pt 5):1127–44. doi:10.1093/brain/awh136. Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain. 2004;127(Pt 5):1127–44. doi:10.1093/brain/awh136.
65.
Zurück zum Zitat Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR, et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies. NeuroImage. 2006;31(4):1700–10. doi:10.1016/j.neuroimage.2006.02.016.PubMedCrossRef Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR, et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies. NeuroImage. 2006;31(4):1700–10. doi:10.1016/j.neuroimage.2006.02.016.PubMedCrossRef
66.
Zurück zum Zitat Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M, et al. Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia. 2010;51(10):2000–10. doi:EPI2698 [pii] 10.1111/j.1528-1167.2010.02698.x. Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M, et al. Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia. 2010;51(10):2000–10. doi:EPI2698 [pii] 10.1111/j.1528-1167.2010.02698.x.
67.
Zurück zum Zitat Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia. 2008;49(9):1510–9. doi:10.1111/j.1528-1167.2008.01626.x.PubMedCrossRef Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia. 2008;49(9):1510–9. doi:10.1111/j.1528-1167.2008.01626.x.PubMedCrossRef
68.
Zurück zum Zitat Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82. doi:10.1073/pnas.98.2.676. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82. doi:10.1073/pnas.98.2.676.
69.
Zurück zum Zitat Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. doi:10.1196/annals.1440.011.PubMedCrossRef Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. doi:10.1196/annals.1440.011.PubMedCrossRef
70.
Zurück zum Zitat Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007;37(4):1083–90. (Discussion 97–9). doi:10.1016/j.neuroimage.2007.02.041. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007;37(4):1083–90. (Discussion 97–9). doi:10.1016/j.neuroimage.2007.02.041.
71.
Zurück zum Zitat Bonnelle V, Ham TE, Leech R, Kinnunen KM, Mehta MA, Greenwood RJ, et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci U S A. 2012;109(12):4690–5. doi:10.1073/pnas.1113455109. Bonnelle V, Ham TE, Leech R, Kinnunen KM, Mehta MA, Greenwood RJ, et al. Salience network integrity predicts default mode network function after traumatic brain injury. Proc Natl Acad Sci U S A. 2012;109(12):4690–5. doi:10.1073/pnas.1113455109.
72.
Zurück zum Zitat Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci. 2010;30(17):5884–93. doi:30/17/5884 [pii] 10.1523/JNEUROSCI.5101-09.2010. Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci. 2010;30(17):5884–93. doi:30/17/5884 [pii] 10.1523/JNEUROSCI.5101-09.2010.
73.
Zurück zum Zitat Benuzzi F, Mirandola L, Pugnaghi M, Farinelli V, Tassinari CA, Capovilla G, et al. Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia. 2012;53(4):622–30. doi:10.1111/j.1528-1167.2011.03385.x.PubMedCrossRef Benuzzi F, Mirandola L, Pugnaghi M, Farinelli V, Tassinari CA, Capovilla G, et al. Increased cortical BOLD signal anticipates generalized spike and wave discharges in adolescents and adults with idiopathic generalized epilepsies. Epilepsia. 2012;53(4):622–30. doi:10.1111/j.1528-1167.2011.03385.x.PubMedCrossRef
74.
Zurück zum Zitat Vaudano AE, Laufs H, Kiebel SJ, Carmichael DW, Hamandi K, Guye M, et al. Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PloS One. 2009;4(8):e6475. doi:10.1371/journal.pone.0006475. Vaudano AE, Laufs H, Kiebel SJ, Carmichael DW, Hamandi K, Guye M, et al. Causal hierarchy within the thalamo-cortical network in spike and wave discharges. PloS One. 2009;4(8):e6475. doi:10.1371/journal.pone.0006475.
75.
Zurück zum Zitat Hauf M, Jann K, Schindler K, Scheidegger O, Meyer K, Rummel C, et al. Localizing seizure-onset zones in presurgical evaluation of drug-resistant epilepsy by electroencephalography/fMRI: effectiveness of alternative thresholding strategies. AJNR Am J Neuroradiol. 2012;33(9):1818–24. doi:10.3174/ajnr.A3052.PubMedCrossRef Hauf M, Jann K, Schindler K, Scheidegger O, Meyer K, Rummel C, et al. Localizing seizure-onset zones in presurgical evaluation of drug-resistant epilepsy by electroencephalography/fMRI: effectiveness of alternative thresholding strategies. AJNR Am J Neuroradiol. 2012;33(9):1818–24. doi:10.3174/ajnr.A3052.PubMedCrossRef
76.
Zurück zum Zitat Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T. BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. NeuroImage. 2009;45(3):903–16.PubMedCrossRef Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T. BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. NeuroImage. 2009;45(3):903–16.PubMedCrossRef
77.
Zurück zum Zitat Masterton RA, Carney PW, Abbott DF, Jackson GD. Absence epilepsy subnetworks revealed by event-related independent components analysis of functional magnetic resonance imaging. Epilepsia. 2013;54(5):801–8. doi:10.1111/epi.12163.PubMedCrossRef Masterton RA, Carney PW, Abbott DF, Jackson GD. Absence epilepsy subnetworks revealed by event-related independent components analysis of functional magnetic resonance imaging. Epilepsia. 2013;54(5):801–8. doi:10.1111/epi.12163.PubMedCrossRef
78.
Zurück zum Zitat Doucet G, Naveau M, Petit L, Delcroix N, Zago L, Crivello F, et al. Brain activity at rest: a multiscale hierarchical functional organization. J Neurophysiol. 2011;105(6):2753–63. doi:10.1152/jn.00895.2010.PubMedCrossRef Doucet G, Naveau M, Petit L, Delcroix N, Zago L, Crivello F, et al. Brain activity at rest: a multiscale hierarchical functional organization. J Neurophysiol. 2011;105(6):2753–63. doi:10.1152/jn.00895.2010.PubMedCrossRef
79.
Zurück zum Zitat Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF. Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex. 2012;22(8):1894–903. doi:bhr268 [pii] 10.1093/cercor/bhr268. Mars RB, Sallet J, Schuffelgen U, Jbabdi S, Toni I, Rushworth MF. Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex. 2012;22(8):1894–903. doi:bhr268 [pii] 10.1093/cercor/bhr268.
80.
Zurück zum Zitat Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med. 2007;48(7):1162–71. doi:10.2967/jnumed.107.039859.PubMedCrossRef Li ZB, Cai W, Cao Q, Chen K, Wu Z, He L, et al. (64)Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med. 2007;48(7):1162–71. doi:10.2967/jnumed.107.039859.PubMedCrossRef
81.
Zurück zum Zitat Bernhardt BC, Chen Z, He Y, Evans AC, Bernasconi N. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb Cortex. 2011;21(9):2147–57. doi:10.1093/cercor/bhq291.PubMedCrossRef Bernhardt BC, Chen Z, He Y, Evans AC, Bernasconi N. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb Cortex. 2011;21(9):2147–57. doi:10.1093/cercor/bhq291.PubMedCrossRef
82.
Zurück zum Zitat Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PloS One. 2010;5(1):e8525. doi:10.1371/journal.pone.0008525. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PloS One. 2010;5(1):e8525. doi:10.1371/journal.pone.0008525.
83.
Zurück zum Zitat Seidenberg M, Kelly KG, Parrish J, Geary E, Dow C, Rutecki P, et al. Ipsilateral and contralateral MRI volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates. Epilepsia. 2005;46(3):420–30. doi:10.1111/j.0013-9580.2005.27004.x.PubMedCrossRef Seidenberg M, Kelly KG, Parrish J, Geary E, Dow C, Rutecki P, et al. Ipsilateral and contralateral MRI volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates. Epilepsia. 2005;46(3):420–30. doi:10.1111/j.0013-9580.2005.27004.x.PubMedCrossRef
84.
Zurück zum Zitat Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp. 2009;30(5):1580–91. doi:10.1002/hbm.20625.PubMedCrossRef Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp. 2009;30(5):1580–91. doi:10.1002/hbm.20625.PubMedCrossRef
85.
Zurück zum Zitat Morgan VL, Rogers BP, Sonmezturk HH, Gore JC, Abou-Khalil B. Cross hippocampal influence in mesial temporal lobe epilepsy measured with high temporal resolution functional magnetic resonance imaging. Epilepsia. 2011;52(9):1741–9. doi:10.1111/j.1528-1167.2011.03196.x.PubMedCrossRef Morgan VL, Rogers BP, Sonmezturk HH, Gore JC, Abou-Khalil B. Cross hippocampal influence in mesial temporal lobe epilepsy measured with high temporal resolution functional magnetic resonance imaging. Epilepsia. 2011;52(9):1741–9. doi:10.1111/j.1528-1167.2011.03196.x.PubMedCrossRef
86.
Zurück zum Zitat Tracy JI, Osipowicz K, Spechler P, Sharan A, Skidmore C, Doucet G, et al. Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy. Hum Brain Mapp. 2014;35(1):353–66. doi:10.1002/hbm.22181. Tracy JI, Osipowicz K, Spechler P, Sharan A, Skidmore C, Doucet G, et al. Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy. Hum Brain Mapp. 2014;35(1):353–66. doi:10.1002/hbm.22181.
87.
Zurück zum Zitat Fahoum F, Lopes R, Pittau F, Dubeau F, Gotman J. Widespread epileptic networks in focal epilepsies: EEG-fMRI study. Epilepsia. 2012;53(9):1618–27. doi:10.1111/j.1528-1167.2012.03533.x.PubMedCrossRef Fahoum F, Lopes R, Pittau F, Dubeau F, Gotman J. Widespread epileptic networks in focal epilepsies: EEG-fMRI study. Epilepsia. 2012;53(9):1618–27. doi:10.1111/j.1528-1167.2012.03533.x.PubMedCrossRef
88.
Zurück zum Zitat Laufs H, Richardson MP, Salek-Haddadi A, Vollmar C, Duncan JS, Gale K, et al. Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology. 2011;77(9):904–10. doi:WNL.0b013e31822c90f2 [pii] 10.1212/WNL.0b013e31822c90f2. Laufs H, Richardson MP, Salek-Haddadi A, Vollmar C, Duncan JS, Gale K, et al. Converging PET and fMRI evidence for a common area involved in human focal epilepsies. Neurology. 2011;77(9):904–10. doi:WNL.0b013e31822c90f2 [pii] 10.1212/WNL.0b013e31822c90f2.
89.
Zurück zum Zitat Wiest R, Estermann L, Scheidegger O, Rummel C, Jann K, Seeck M, et al. Widespread grey matter changes and hemodynamic correlates to interictal epileptiform discharges in pharmacoresistant mesial temporal epilepsy. J Neurol. 2013;260(6):1601–10. doi:10.1007/s00415-013-6841-2. Wiest R, Estermann L, Scheidegger O, Rummel C, Jann K, Seeck M, et al. Widespread grey matter changes and hemodynamic correlates to interictal epileptiform discharges in pharmacoresistant mesial temporal epilepsy. J Neurol. 2013;260(6):1601–10. doi:10.1007/s00415-013-6841-2.
90.
Zurück zum Zitat Ashburner J, Friston KJ. Voxel-based morphometry—the methods. NeuroImage. 2000;11(6 Pt 1):805–21. doi:10.1006/nimg.2000.0582S1053-8119(00)90582-2 [pii]. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. NeuroImage. 2000;11(6 Pt 1):805–21. doi:10.1006/nimg.2000.0582S1053-8119(00)90582-2 [pii].
91.
Zurück zum Zitat Weder BJ, Schindler K, Loher TJ, Wiest R, Wissmeyer M, Ritter P, et al. Brain areas involved in medial temporal lobe seizures: a principal component analysis of ictal SPECT data. Hum Brain Mapp. 2006;27(6):520–34. doi:10.1002/hbm.20196.PubMedCrossRef Weder BJ, Schindler K, Loher TJ, Wiest R, Wissmeyer M, Ritter P, et al. Brain areas involved in medial temporal lobe seizures: a principal component analysis of ictal SPECT data. Hum Brain Mapp. 2006;27(6):520–34. doi:10.1002/hbm.20196.PubMedCrossRef
92.
Zurück zum Zitat Salmenpera T, Kalviainen R, Partanen K, Pitkanen A. Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy. Seizure. 2000;9(3):208–15. doi:10.1053/seiz.1999.0373.PubMedCrossRef Salmenpera T, Kalviainen R, Partanen K, Pitkanen A. Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy. Seizure. 2000;9(3):208–15. doi:10.1053/seiz.1999.0373.PubMedCrossRef
93.
Zurück zum Zitat Keller SS, Roberts N. Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia. 2008;49(5):741–57. doi:10.1111/j.1528-1167.2007.01485.x.PubMedCrossRef Keller SS, Roberts N. Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia. 2008;49(5):741–57. doi:10.1111/j.1528-1167.2007.01485.x.PubMedCrossRef
94.
Zurück zum Zitat Bernhardt BC, Worsley KJ, Besson P, Concha L, Lerch JP, Evans AC, et al. Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy. NeuroImage. 2008;42(2):515–24. doi:10.1016/j.neuroimage.2008.04.261.PubMedCrossRef Bernhardt BC, Worsley KJ, Besson P, Concha L, Lerch JP, Evans AC, et al. Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy. NeuroImage. 2008;42(2):515–24. doi:10.1016/j.neuroimage.2008.04.261.PubMedCrossRef
95.
Zurück zum Zitat Riederer F, Lanzenberger R, Kaya M, Prayer D, Serles W, Baumgartner C. Network atrophy in temporal lobe epilepsy: a voxel-based morphometry study. Neurology. 2008;71(6):419–25. doi:10.1212/01.wnl.0000324264.96100.e0.PubMedCrossRef Riederer F, Lanzenberger R, Kaya M, Prayer D, Serles W, Baumgartner C. Network atrophy in temporal lobe epilepsy: a voxel-based morphometry study. Neurology. 2008;71(6):419–25. doi:10.1212/01.wnl.0000324264.96100.e0.PubMedCrossRef
96.
Zurück zum Zitat Cascino GD. Temporal lobe epilepsy is a progressive neurologic disorder: time means neurons! Neurology. 2009;72(20):1718–9. doi:10.1212/WNL.0b013e3181a4e465.PubMedCrossRef Cascino GD. Temporal lobe epilepsy is a progressive neurologic disorder: time means neurons! Neurology. 2009;72(20):1718–9. doi:10.1212/WNL.0b013e3181a4e465.PubMedCrossRef
97.
Zurück zum Zitat Voets NL, Beckmann CF, Cole DM, Hong S, Bernasconi A, Bernasconi N. Structural substrates for resting network disruption in temporal lobe epilepsy. Brain. 2012;135(Pt 8):2350–7. doi:10.1093/brain/aws137. Voets NL, Beckmann CF, Cole DM, Hong S, Bernasconi A, Bernasconi N. Structural substrates for resting network disruption in temporal lobe epilepsy. Brain. 2012;135(Pt 8):2350–7. doi:10.1093/brain/aws137.
98.
Zurück zum Zitat Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–54. doi:S1053-8119(11)01181-5 [pii] 10.1016/j.neuroimage.2011.10.018. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage. 2012;59(3):2142–54. doi:S1053-8119(11)01181-5 [pii] 10.1016/j.neuroimage.2011.10.018.
99.
Zurück zum Zitat Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2013;84C:320–41. doi:S1053-8119(13)00911-7 [pii] 10.1016/j.neuroimage.2013.08.048. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2013;84C:320–41. doi:S1053-8119(13)00911-7 [pii] 10.1016/j.neuroimage.2013.08.048.
100.
Zurück zum Zitat Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. NeuroImage. 2013;76:439–41. doi:S1053-8119(12)00290-X [pii] 10.1016/j.neuroimage.2012.03.017. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Steps toward optimizing motion artifact removal in functional connectivity MRI; a reply to Carp. NeuroImage. 2013;76:439–41. doi:S1053-8119(12)00290-X [pii] 10.1016/j.neuroimage.2012.03.017.
101.
Zurück zum Zitat Tijssen RH, Jenkinson M, Brooks JC, Jezzard P, Miller KL. Optimizing RetroICor and RetroKCor corrections for multi-shot 3D FMRI acquisitions. NeuroImage. 2013;84C:394–405. doi:S1053-8119(13)00926-9 [pii] 10.1016/j.neuroimage.2013.08.062. Tijssen RH, Jenkinson M, Brooks JC, Jezzard P, Miller KL. Optimizing RetroICor and RetroKCor corrections for multi-shot 3D FMRI acquisitions. NeuroImage. 2013;84C:394–405. doi:S1053-8119(13)00926-9 [pii] 10.1016/j.neuroimage.2013.08.062.
102.
Zurück zum Zitat Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med. 2000;44(1):162–7. doi:10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E [pii]. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med. 2000;44(1):162–7. doi:10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E [pii].
103.
Zurück zum Zitat Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 2007;37(1):90–101. doi:S1053-8119(07)00383-7 [pii] 10.1016/j.neuroimage.2007.04.042. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage. 2007;37(1):90–101. doi:S1053-8119(07)00383-7 [pii] 10.1016/j.neuroimage.2007.04.042.
104.
Zurück zum Zitat Hallquist MN, Hwang K, Luna B. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage. 2013;82:208–25. doi:S1053-8119(13)00626-5 [pii] 10.1016/j.neuroimage.2013.05.116. Hallquist MN, Hwang K, Luna B. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. NeuroImage. 2013;82:208–25. doi:S1053-8119(13)00626-5 [pii] 10.1016/j.neuroimage.2013.05.116.
105.
Zurück zum Zitat Murta T, Leal A, Garrido MI, Figueiredo P. Dynamic Causal Modelling of epileptic seizure propagation pathways: a combined EEG-fMRI study. NeuroImage. 2012;62(3):1634–42. doi:S1053-8119(12)00541-1 [pii] 10.1016/j.neuroimage.2012.05.053. Murta T, Leal A, Garrido MI, Figueiredo P. Dynamic Causal Modelling of epileptic seizure propagation pathways: a combined EEG-fMRI study. NeuroImage. 2012;62(3):1634–42. doi:S1053-8119(12)00541-1 [pii] 10.1016/j.neuroimage.2012.05.053.
Metadaten
Titel
Neuroimaging of Epilepsy: Lesions, Networks, Oscillations
verfasst von
E. Abela, MD
C. Rummel
M. Hauf
C. Weisstanner
K. Schindler
R. Wiest
Publikationsdatum
01.03.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Neuroradiology / Ausgabe 1/2014
Print ISSN: 1869-1439
Elektronische ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-014-0284-8

Weitere Artikel der Ausgabe 1/2014

Clinical Neuroradiology 1/2014 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.