Skip to main content
Log in

Grundlagen zur tribologischen Analyse von Endoprothesen

Principles of tribological analysis of endoprostheses

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Zur tribologischen Charakterisierung künstlicher Gelenke stehen derzeit verschiedene experimentelle Methoden zur Verfügung, die untereinander allerdings nur begrenzt vergleichbar sind. Auch sind die verwendeten Testbedingungen nur eingeschränkt auf die In-vivo-Situation übertragbar. Dies begründet sich auf die unterschiedlichen eingesetzten Verschleißsimulatorkonzepte sowie auf z. T. ungenügende Abbildung von klinischen Extremsituationen.

Die aktuellen wissenschaftlichen Methoden und Verfahren tribologischer Untersuchungen an künstlichen Gelenken werden in der vorliegenden Arbeit dargestellt. Zudem werden die biologischen Wirkungen von Verschleißprodukten beschrieben, um den Kliniker in die Lage zu versetzen, tribologische Studien und wissenschaftliche Ergebnisse zu hinterfragen und unter Berücksichtigung der klinischen Situation gezielter interpretieren zu können.

Abstract

For the tribological characterization of artificial joints, various experimental methods are currently available. However, the in vitro test conditions applied are only comparable in a limited way and transferability to the in vivo situation is also restricted. This is due to the different wear simulation concepts used and partly insufficient simulation of clinical worst case situations. In the present paper current scientific methods and procedures for tribological testing of artificial joints are presented. In addition, the biological effects of wear products are described enabling clinicians to challenge tribological studies and to facilitate specific interpretation of scientific results taking the clinical situation into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Al-Saffar N, Revell PA (1999) Pathology of the bone-implant interfaces. J Long Term Eff Med Implants 9:319–347

    PubMed  CAS  Google Scholar 

  2. Antoniou J, Zukor DJ, Mwale F et al (2008) Metal ion levels in the blood of patients after hip resurfacing: a comparison between twenty-eight and thirty-six-millimeter-head metal-on-metal prostheses. J Bone Joint Surg [Am] 90(3):142–148

    Google Scholar 

  3. Barbour PS, Barton DC, Fisher J (1997) The influence of stress conditions on the wear of UHMWPE for total joint replacements. J Mater Sci Mater Med 8:603–611

    Article  PubMed  CAS  Google Scholar 

  4. Bishop NE, Waldow F, Morlock MM (2008) Friction moments of large metal-on-metal hip joint bearings and other modern designs. Med Eng Phys 30:1057–1064

    Article  PubMed  CAS  Google Scholar 

  5. Bragdon CR, Jasty M, Muratoglu OK et al (2003) Third-body wear of highly cross-linked polyethylene in a hip simulator. J Arthroplasty 18:553–561

    Article  PubMed  Google Scholar 

  6. Campbell P, Ma S, Yeom B et al (1995) Isolation of predominantly submicron-sized UHMWPE wear particles from periprosthetic tissues. J Biomed Mater Res 29(1):127–131

    Article  PubMed  CAS  Google Scholar 

  7. Catelas I, Campbell PA, Dorey F et al (2003) Semi-quantitative analysis of cytokines in MM THR tissues and their relationship to metal particles. Biomaterials 24:4785–4797

    Article  PubMed  CAS  Google Scholar 

  8. Catelas I, Wimmer MA (2011) New insights into wear and biological effects of metal-on-metal bearings. J Bone Joint Surg [Am] 93(2):76–83

    Google Scholar 

  9. Catelas I, Wimmer MA, Utzschneider S (2011) Polyethylene and metal wear particles: characteristics and biological effects. Semin Immunopathol 33:257–271

    Article  PubMed  CAS  Google Scholar 

  10. Chang CH, Fang HW, Ho YC et al (2008) Chondrocyte acting as phagocyte to internalize polyethylene wear particles and leads to the elevations of osteoarthritis associated NO and PGE2. Biochem Biophys Res Commun 369:884–888

    Article  PubMed  CAS  Google Scholar 

  11. De Haan R, Pattyn C, Gill HS et al (2008) Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg [Br] 90-B:1291–1297

  12. Engh CA Jr, Macdonald SJ, Sritulanondha S et al (2009) 2008 John Charnley award: metal ion levels after metal-on-metal total hip arthroplasty: a randomized trial. Clin Orthop Relat Res 467:101–111

    Article  PubMed  Google Scholar 

  13. Ezzet KA, Hermida JC, Steklov N et al (2012) Wear of polyethylene against oxidized zirconium femoral components effect of aggressive kinematic conditions and malalignment in total knee arthroplasty. J Arthroplasty 27(1):116–121

    Article  PubMed  Google Scholar 

  14. Fang HW, Hsu SM, Sengers JV (2003) Generation of narrowly distributed ultra-high-molecular-weight polyethylene particles by surface texturing techniques. J Biomed Mater Res B Appl Biomater 67:741–749

    Article  PubMed  Google Scholar 

  15. Fisher J, McEwen HM, Tipper JL et al (2004) Wear, debris, and biologic activity of cross-linked polyethylene in the knee: benefits and potential concerns. Clin Orthop Relat Res 428:114–119

    Article  PubMed  Google Scholar 

  16. Gallo J, Slouf M, Goodman SB (2010) The relationship of polyethylene wear to particle size, distribution, and number: A possible factor explaining the risk of osteolysis after hip arthroplasty. J Biomed Mater Res B Appl Biomater 94:171–177

    PubMed  Google Scholar 

  17. Galvin AL, Kang L, Udofia I et al (2009) Effect of conformity and contact stress on wear in fixed-bearing total knee prostheses. J Biomech 42:1898–1902

    Article  PubMed  Google Scholar 

  18. Glyn-Jones S, Pandit H, Kwon YM et al (2009) Risk factors for inflammatory pseudotumour formation following hip resurfacing. J Bone Joint Surg [Br] 91(12):1566–1574

    Google Scholar 

  19. Goodman SB (2007) Wear particles, periprosthetic osteolysis and the immune system. Biomaterials 28:5044–5048

    Article  PubMed  CAS  Google Scholar 

  20. Green TR, Fisher J, Matthews JB et al (2000) Effect of size and dose on bone resorption activity of macrophages by in vitro clinically relevant ultra high molecular weight polyethylene particles. J Biomed Mater Res 53:490–497

    Article  PubMed  CAS  Google Scholar 

  21. Grupp TM, Stulberg D, Kaddick C et al (2009) Fixed bearing knee congruency – influence on contact mechanics, abrasive wear and kinematics. Int J Artif Organs 32:213–223

    PubMed  Google Scholar 

  22. Grupp TM, Utzschneider S, Schroder C et al (2010) Biotribology of alternative bearing materials for unicompartmental knee arthroplasty. Acta Biomater 6:3601–3610

    Article  PubMed  CAS  Google Scholar 

  23. Hallab NJ, Anderson S, Caicedo M et al (2005) Effects of soluble metals on human peri-implant cells. J Biomed Mater Res A 74:124–140

    PubMed  Google Scholar 

  24. Hallab NJ, Jacobs JJ (2009) Biologic effects of implant debris. Bull NYU Hosp Jt Dis 67:182–188

    PubMed  Google Scholar 

  25. Harman MK, Desjardins J, Benson L et al (2009) Comparison of polyethylene tibial insert damage from in vivo function and in vitro wear simulation. J Orthop Res 27:540–548

    Article  PubMed  Google Scholar 

  26. Heisel C, Kleinhans JA, Menge M et al (2009) Ten different hip resurfacing systems: biomechanical analysis of design and material properties. Int Orthop 33:939–943

    Article  PubMed  Google Scholar 

  27. Heisel C, Streich N, Krachler M et al (2008) Characterization of the running-in period in total hip resurfacing arthroplasty: an in vivo and in vitro metal ion analysis. J Bone Joint Surg [Am] 90(3):125–133

    Google Scholar 

  28. Illgen RL II, Forsythe TM, Pike JW et al (2008) Highly crosslinked vs conventional polyethylene particles – an in vitro comparison of biologic activities. J Arthroplasty 23(5):721–731

    Article  PubMed  Google Scholar 

  29. Koreny T, Tunyogi-Csapo M, Gal I et al (2006) The role of fibroblasts and fibroblast-derived factors in periprosthetic osteolysis. Arthritis Rheum 54:3221–3232

    Article  PubMed  CAS  Google Scholar 

  30. Kretzer JP (2010) Biotribology of total hip replacement: the metal-on-metal articulation. In: Davim JP (ed) Biotribology. Wiley, Hoboken, pp 1–49

  31. Kretzer JP, Jakubowitz E, Reinders J et al (2011) Wear analysis of unicondylar mobile bearing and fixed bearing knee systems: a knee simulator study. Acta Biomater 7:710–715

    Article  PubMed  Google Scholar 

  32. Kretzer JP, Jakubowitz E, Sonntag R et al (2010) Effect of joint laxity on polyethylene wear in total knee replacement. J Biomech 43:1092–1096

    Article  PubMed  Google Scholar 

  33. Kretzer J, Krachler M, Reinders J et al (2010) Determination of low wear rates in metal-on-metal hip joint replacements based on ultra trace element analysis in simulator studies. Tribol Lett 37:23–29

    Article  CAS  Google Scholar 

  34. Langton DJ, Jameson SS, Joyce TJ et al (2010) Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: a consequence of excess wear. J Bone Joint Surg [Br] 92(1):38–46

    Google Scholar 

  35. Libouban H, Massin P, Gaudin C et al (2009) Migration of wear debris of polyethylene depends on bone microarchitecture. J Biomed Mater Res B Appl Biomater 90:730–737

    PubMed  Google Scholar 

  36. Malik A, Maheshwari A, Dorr LD (2007) Impingement with total hip replacement. J Bone Joint Surg [Am] 89:1832–1842

    Google Scholar 

  37. Manson TT, Kelly NH, Lipman JD et al (2010) Unicondylar knee retrieval analysis. J Arthroplasty 25(6):108–111

    Article  PubMed  Google Scholar 

  38. Mcewen HM, Barnett PI, Bell CJ et al (2005) The influence of design, materials and kinematics on the in vitro wear of total knee replacements. J Biomech 38:357–365

    Article  PubMed  CAS  Google Scholar 

  39. McKellop HA (2007) The lexicon of polyethylene wear in artificial joints. Biomaterials 28:5049–5057

    Article  PubMed  CAS  Google Scholar 

  40. Niedzwiecki S, Klapperich C, Short J et al (2001) Comparison of three joint simulator wear debris isolation techniques: acid digestion, base digestion, and enzyme cleavage. J Biomed Mater Res 56:245–249

    Article  PubMed  CAS  Google Scholar 

  41. Purdue PE, Koulouvaris P, Potter HG et al (2007) The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res 454:251–261

    Article  PubMed  Google Scholar 

  42. Ragab AA, Nalepka JL, Bi Y et al (2002) Cytokines synergistically induce osteoclast differentiation: support by immortalized or normal calvarial cells. Am J Physiol Cell Physiol 283:C679–687

    PubMed  CAS  Google Scholar 

  43. Revell PA (2008) The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J R Soc Interface 5:1263–1278

    Article  PubMed  CAS  Google Scholar 

  44. Schmalzried TP, Jasty M, Harris WH (1992) Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space. J Bone Joint Surg [Am] 74(6):849–863

    Google Scholar 

  45. Scholes SC, Unsworth A (2006) The effects of proteins on the friction and lubrication of artificial joints. Proc Inst Mech Eng H 220:687–693

    Article  PubMed  CAS  Google Scholar 

  46. Sieving A, Wu B, Mayton L et al (2003) Morphological characteristics of total joint arthroplasty-derived ultra-high molecular weight polyethylene (UHMWPE) wear debris that provoke inflammation in a murine model of inflammation. J Biomed Mater Res A 64:457–464

    Article  PubMed  Google Scholar 

  47. Tsukamoto R, Chen S, Asano T et al (2006) Improved wear performance with crosslinked UHMWPE and zirconia implants in knee simulation. Acta Orthop 77:505–511

    Article  PubMed  Google Scholar 

  48. Underwood R, Matthies A, Cann P et al (2011) A comparison of explanted articular surface replacement and Birmingham hip resurfacing components. J Bone Joint Surg [Br] 93:1169–1177

    Google Scholar 

  49. Urban RM, Jacobs JJ, Tomlinson MJ et al (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg [Am] 82(4):457–476

    Google Scholar 

  50. Utzschneider S (2010) Verwendung von crosslinked Polyethylenen in der Knieendoprothetik und deren biologische Aktivität in vivo. Habilitationsschrift. Ludwigs-Maximilians-Universität München, Campus Großhadern

  51. Utzschneider S, Becker F, Grupp TM et al (2010) Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo. Acta Biomater 6:4296–4304

    Article  PubMed  CAS  Google Scholar 

  52. Utzschneider S, Harrasser N, Schroeder C et al (2009) Wear of contemporary total knee replacements – a knee simulator study of six current designs. Clin Biomech (Bristol, Avon) 24:583–588

    Google Scholar 

  53. Utzschneider S, Paulus A, Datz JC et al (2009) Influence of design and bearing material on polyethylene wear particle generation in total knee replacement. Acta Biomater 5:2495–2502

    Article  PubMed  CAS  Google Scholar 

  54. Visentin M, Stea S, Squarzoni S et al (2004) A new method for isolation of polyethylene wear debris from tissue and synovial fluid. Biomaterials 25:5531–5537

    Article  PubMed  CAS  Google Scholar 

  55. Visuri T, Pulkkinen P, Paavolainen P et al (2010) Cancer risk is not increased after conventional hip arthroplasty. Acta Orthop 81:77–81

    Article  PubMed  Google Scholar 

  56. Walter WL, Insley GM, Walter WK et al (2004) Edge loading in third generation alumina ceramic-on-ceramic bearings: Stripe wear. J Arthroplasty 19:402–413

    Article  PubMed  Google Scholar 

  57. Willert HG, Semlitsch M (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11:157–164

    Article  PubMed  CAS  Google Scholar 

  58. Wooley PH, Morren R, Andary J et al (2002) Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials 23:517–526

    Article  PubMed  CAS  Google Scholar 

  59. Zysk SP, Gebhard H, Plitz W et al (2004) Influence of orthopedic particulate biomaterials on inflammation and synovial microcirculation in the murine knee joint. J Biomed Mater Res B Appl Biomater 71:108–115

    Article  PubMed  Google Scholar 

  60. Zysk SP, Gebhard HH, Kalteis T et al (2005) Particles of all sizes provoke inflammatory responses in vivo. Clin Orthop Relat Res (433):258–264

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.P. Kretzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretzer, J., Zietz, C., Schröder, C. et al. Grundlagen zur tribologischen Analyse von Endoprothesen. Orthopäde 41, 844–852 (2012). https://doi.org/10.1007/s00132-012-1948-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-012-1948-1

Schlüsselwörter

Keywords

Navigation