Skip to main content
Erschienen in: Experimental Brain Research 2/2007

01.06.2007 | Research Article

Impaired predictive motor timing in patients with cerebellar disorders

verfasst von: Martin Bares, Ovidiu Lungu, Tao Liu, Tobias Waechter, Christopher M. Gomez, James Ashe

Erschienen in: Experimental Brain Research | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

The ability to precisely time events is essential for both perception and action. There is evidence that the cerebellum is important for the neural representation of time in a variety of behaviors including time perception, the tapping of specific time intervals, and eye-blink conditioning. It has been difficult to assess the contribution of the cerebellum to timing during more dynamic motor behavior because the component movements themselves may be abnormal or any motor deficit may be due to an inability to combine the component movements into a complete action rather than timing per se. Here we investigated the performance of subjects with cerebellar disease in predictive motor timing using a task that involved mediated interception of a moving target, and we tested the effect of movement type (acceleration, deceleration, constant), speed (slow, medium, fast), and angle (0°, 15° and 30°) on performance. The subjects with cerebellar damage were significantly worse at interception than healthy controls even when we controlled for basic motor impairments such as response time. Our data suggest that subjects with damage to the cerebellum have a fundamental problem with predictive motor timing and indicate that the cerebellum plays an essential role in integrating incoming visual information with motor output when making predictions about upcoming actions. The findings demonstrate that the cerebellum may have properties that would facilitate the processing or storage of internal models of motor behavior.
Literatur
Zurück zum Zitat Blakemore SJ, Sirigu A (2003) Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res 153:239–245PubMedCrossRef Blakemore SJ, Sirigu A (2003) Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res 153:239–245PubMedCrossRef
Zurück zum Zitat Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res 25:334–346PubMed Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res 25:334–346PubMed
Zurück zum Zitat Brouwer AM, Middelburg T, Smeets JBJ, Brenner E (2003) Hitting moving targets. A dissociation between the use of the target’s speed and direction of motion. Exp Brain Res 152:368–375PubMedCrossRef Brouwer AM, Middelburg T, Smeets JBJ, Brenner E (2003) Hitting moving targets. A dissociation between the use of the target’s speed and direction of motion. Exp Brain Res 152:368–375PubMedCrossRef
Zurück zum Zitat Caljouw SR, van der Kamp J, Savelsbergh GJP (2004) Catching optical information for the regulation of timing. Exp Brain Res 155:427–438PubMedCrossRef Caljouw SR, van der Kamp J, Savelsbergh GJP (2004) Catching optical information for the regulation of timing. Exp Brain Res 155:427–438PubMedCrossRef
Zurück zum Zitat Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D (2005) Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci 25:3919–3931PubMedCrossRef Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D (2005) Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci 25:3919–3931PubMedCrossRef
Zurück zum Zitat Grant MP, Leigh RJ, Seidman SH, Riley DE, Hanna JP (1992) Comparison of predictable smooth ocular and combined eye-head tracking behaviour in patients with lesions affecting the brainstem and cerebellum. Brain 115:1323–1342PubMedCrossRef Grant MP, Leigh RJ, Seidman SH, Riley DE, Hanna JP (1992) Comparison of predictable smooth ocular and combined eye-head tracking behaviour in patients with lesions affecting the brainstem and cerebellum. Brain 115:1323–1342PubMedCrossRef
Zurück zum Zitat Haendel BF, Lutzenberger W, Thier P, Haarmeier P (2005) Functional correlates of visual motion discrimination deficits in patients with cerebellar damage. Program No. 619.7. Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC. Online Haendel BF, Lutzenberger W, Thier P, Haarmeier P (2005) Functional correlates of visual motion discrimination deficits in patients with cerebellar damage. Program No. 619.7. Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC. Online
Zurück zum Zitat Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT (2004) Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain 127:561–574PubMedCrossRef Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT (2004) Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain 127:561–574PubMedCrossRef
Zurück zum Zitat Hore J, Watts S (2005) Timing finger opening in overarm throwing based on a spatial representation of hand path. J Neurophysiol 93:3189–99PubMedCrossRef Hore J, Watts S (2005) Timing finger opening in overarm throwing based on a spatial representation of hand path. J Neurophysiol 93:3189–99PubMedCrossRef
Zurück zum Zitat Hore J, Timmann D, Watts S (2002) Disorders in timing and force of finger opening in overarm throws made by cerebellar subjects. Ann NY Acad Sci 978:1–15PubMedCrossRef Hore J, Timmann D, Watts S (2002) Disorders in timing and force of finger opening in overarm throws made by cerebellar subjects. Ann NY Acad Sci 978:1–15PubMedCrossRef
Zurück zum Zitat Hore J, O´Brien M, Watts S (2005) Control of joints rotations in overarm throws of different speeds made by dominant and nondominant arms. J Neurophysiol 94:3975–86PubMedCrossRef Hore J, O´Brien M, Watts S (2005) Control of joints rotations in overarm throws of different speeds made by dominant and nondominant arms. J Neurophysiol 94:3975–86PubMedCrossRef
Zurück zum Zitat Ivry R (1993) Cerebellar involvement in the explicit representation of temporal information. Ann NY Acad Sci 682:214–230PubMedCrossRef Ivry R (1993) Cerebellar involvement in the explicit representation of temporal information. Ann NY Acad Sci 682:214–230PubMedCrossRef
Zurück zum Zitat Ivry RB, Keele SW (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136–152 Ivry RB, Keele SW (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136–152
Zurück zum Zitat Ivry RB, Spencer RMC (2004) The neural representation of time. Curr Opin Neurobiol 14:225–232PubMedCrossRef Ivry RB, Spencer RMC (2004) The neural representation of time. Curr Opin Neurobiol 14:225–232PubMedCrossRef
Zurück zum Zitat Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res 73:167–180PubMedCrossRef Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res 73:167–180PubMedCrossRef
Zurück zum Zitat Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J (2002) The cerebellum and event timing. Ann NY Acad Sci 978:302–317PubMedCrossRef Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J (2002) The cerebellum and event timing. Ann NY Acad Sci 978:302–317PubMedCrossRef
Zurück zum Zitat Jordan MI, Rumelhart D (1992) Forward models: Supervised learning with a distal teacher. Cogn Science 16:307–354CrossRef Jordan MI, Rumelhart D (1992) Forward models: Supervised learning with a distal teacher. Cogn Science 16:307–354CrossRef
Zurück zum Zitat Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57:169–185PubMedCrossRef Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern 57:169–185PubMedCrossRef
Zurück zum Zitat Lang CE, Bastian A (1999) Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol 82:2108–2119PubMed Lang CE, Bastian A (1999) Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol 82:2108–2119PubMed
Zurück zum Zitat Lewis PA, Miall RC (2003a) Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia 41:1583–1592CrossRef Lewis PA, Miall RC (2003a) Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia 41:1583–1592CrossRef
Zurück zum Zitat Lewis PA, Miall RC (2003b) Distinct systems for automatic and cognitively controlled time measurements: evidence from neuroimaging. Cur Opin Neurobiol 13:250–255CrossRef Lewis PA, Miall RC (2003b) Distinct systems for automatic and cognitively controlled time measurements: evidence from neuroimaging. Cur Opin Neurobiol 13:250–255CrossRef
Zurück zum Zitat Merchant H, Battaglia-Mayer A, Georgopoulos AP (2003) Interception of real and apparent motion targets: psychophysics in humans and monkeys. Exp Brain Res 152:106–112PubMedCrossRef Merchant H, Battaglia-Mayer A, Georgopoulos AP (2003) Interception of real and apparent motion targets: psychophysics in humans and monkeys. Exp Brain Res 152:106–112PubMedCrossRef
Zurück zum Zitat Miall RC, Jenkinson EW (2005) Functional imaging of changes in cerebellar activity related to learning during a novel eye-hand tracking task. Exp Brain Res 166:170–183PubMedCrossRef Miall RC, Jenkinson EW (2005) Functional imaging of changes in cerebellar activity related to learning during a novel eye-hand tracking task. Exp Brain Res 166:170–183PubMedCrossRef
Zurück zum Zitat Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a smith predictor? J Motor Behav 25:203–216CrossRef Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a smith predictor? J Motor Behav 25:203–216CrossRef
Zurück zum Zitat Montgomery SA, Asberg M (1979) A new depression scale designed to be sensitive to change. Br J Psychiatr 134:382–389CrossRef Montgomery SA, Asberg M (1979) A new depression scale designed to be sensitive to change. Br J Psychiatr 134:382–389CrossRef
Zurück zum Zitat Mussa-Ivaldi FA, Bizzi E (2000) Motor learning through the combination of primitives. Philos Trans R Soc Lond B Biol Sci 355:1755–1769PubMedCrossRef Mussa-Ivaldi FA, Bizzi E (2000) Motor learning through the combination of primitives. Philos Trans R Soc Lond B Biol Sci 355:1755–1769PubMedCrossRef
Zurück zum Zitat Nawrot M, Rizzo M (1995) Motion perception deficits from midline cerebellar lesions in human. Vision Res 35:723–731PubMedCrossRef Nawrot M, Rizzo M (1995) Motion perception deficits from midline cerebellar lesions in human. Vision Res 35:723–731PubMedCrossRef
Zurück zum Zitat Nichelli P, Alway D, Grafman J (1996) Perceptual timing in cerebellar degeneration. Neuropsychologia 34:863–871PubMedCrossRef Nichelli P, Alway D, Grafman J (1996) Perceptual timing in cerebellar degeneration. Neuropsychologia 34:863–871PubMedCrossRef
Zurück zum Zitat Nixon PD, Passingham RE (2001) Predicting sensory events. The role of the cerebellum in motor learning. Exp Brain Res 138:251–257PubMedCrossRef Nixon PD, Passingham RE (2001) Predicting sensory events. The role of the cerebellum in motor learning. Exp Brain Res 138:251–257PubMedCrossRef
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handeness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef Oldfield RC (1971) The assessment and analysis of handeness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef
Zurück zum Zitat Penhune VB, Zatorre RJ, Evans AC (1998) Cerebellar contribution to motor timing: a PET study of auditory and visual rhythm reproduction. J Cogn Neurosci 10:752–765PubMedCrossRef Penhune VB, Zatorre RJ, Evans AC (1998) Cerebellar contribution to motor timing: a PET study of auditory and visual rhythm reproduction. J Cogn Neurosci 10:752–765PubMedCrossRef
Zurück zum Zitat Perrett SP, Ruiz BP, Mauk MD (1993) Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci 13:1708–1718PubMed Perrett SP, Ruiz BP, Mauk MD (1993) Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci 13:1708–1718PubMed
Zurück zum Zitat Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR (1997) Distributed neural systems underlying the timing of movements. J Neurosci 17:5528–5535PubMed Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR (1997) Distributed neural systems underlying the timing of movements. J Neurosci 17:5528–5535PubMed
Zurück zum Zitat Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323PubMedCrossRef Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323PubMedCrossRef
Zurück zum Zitat Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H (2003) Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. Neuroimage 18:731–739PubMedCrossRef Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H (2003) Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. Neuroimage 18:731–739PubMedCrossRef
Zurück zum Zitat Shin JC, Ivry RB (2003) Spatial and temporal sequence learning in patients with Parkinson’s disease or Cerebellar lesions. J Cogn Neurosci 15:1232–1243PubMedCrossRef Shin JC, Ivry RB (2003) Spatial and temporal sequence learning in patients with Parkinson’s disease or Cerebellar lesions. J Cogn Neurosci 15:1232–1243PubMedCrossRef
Zurück zum Zitat Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’ s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821PubMedCrossRef Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’ s disease but not cerebellar degeneration. J Neurophysiol 93:2809–2821PubMedCrossRef
Zurück zum Zitat Smith A, Lidzba K, Taylor E, Rubia K (2003) A right hemispheric fronto-striatal network for temporal discrimination. Neuroimage 20:344–350PubMedCrossRef Smith A, Lidzba K, Taylor E, Rubia K (2003) A right hemispheric fronto-striatal network for temporal discrimination. Neuroimage 20:344–350PubMedCrossRef
Zurück zum Zitat Spencer RMC, Zelaznik HN, Diedrichsen J, Ivry RB (2003) Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300:1437–1439PubMedCrossRef Spencer RMC, Zelaznik HN, Diedrichsen J, Ivry RB (2003) Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300:1437–1439PubMedCrossRef
Zurück zum Zitat Spencer RMC, Ivry RB, Zelaznik HN (2005) Role of the cerebellum in movements: control of timing or movement transitions? Exp Brain Res 161:383–396PubMedCrossRef Spencer RMC, Ivry RB, Zelaznik HN (2005) Role of the cerebellum in movements: control of timing or movement transitions? Exp Brain Res 161:383–396PubMedCrossRef
Zurück zum Zitat Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, Lowry TP, Press GA (1999) Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci 19:5632–5643PubMed Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, Lowry TP, Press GA (1999) Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci 19:5632–5643PubMed
Zurück zum Zitat Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al (1997) International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci 145:205–211PubMedCrossRef Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, et al (1997) International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J Neurol Sci 145:205–211PubMedCrossRef
Zurück zum Zitat Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347CrossRef Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347CrossRef
Zurück zum Zitat Yamaguchi S, Tsuchiya H, Kobayashi S (1998) Visuospatial attention shift and motor responses in cerebellar disorders. J Cogn Neurosci 10:95–107PubMedCrossRef Yamaguchi S, Tsuchiya H, Kobayashi S (1998) Visuospatial attention shift and motor responses in cerebellar disorders. J Cogn Neurosci 10:95–107PubMedCrossRef
Metadaten
Titel
Impaired predictive motor timing in patients with cerebellar disorders
verfasst von
Martin Bares
Ovidiu Lungu
Tao Liu
Tobias Waechter
Christopher M. Gomez
James Ashe
Publikationsdatum
01.06.2007
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 2/2007
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-007-0857-8

Weitere Artikel der Ausgabe 2/2007

Experimental Brain Research 2/2007 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.