Skip to main content
Erschienen in: Clinical Research in Cardiology 2/2015

01.02.2015 | Review

An insight into short- and long-term mechanical circulatory support systems

verfasst von: Markus Ferrari, Peter Kruzliak, Kyriakos Spiliopoulos

Erschienen in: Clinical Research in Cardiology | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Abstract

Cardiogenic shock due to acute myocardial infarction, postcardiotomy syndrome following cardiac surgery, or manifestation of heart failure remains a clinical challenge with high mortality rates, despite ongoing advances in surgical techniques, widespread use of primary percutaneous interventions, and medical treatment. Clinicians have, therefore, turned to mechanical means of circulatory support. At present, a broad range of devices are available, which may be extracorporeal, implantable, or percutaneous; temporary or long term. Although counter pulsation provided by intra-aortic balloon pump (IABP) and comprehensive mechanical support for both the systemic and the pulmonary circulation through extracorporeal membrane oxygenation (ECMO) remain a major tool of acute care in patients with cardiogenic shock, both before and after surgical or percutaneous intervention, the development of devices such as the Impella or the Tandemheart allows less invasive forms of temporary support. On the other hand, concerning mid-, or long-term support, left ventricular assist devices have evolved from a last resort life-saving therapy to a well-established viable alternative for thousands of heart failure patients caused by the shortage of donor organs available for transplantation. The optimal selection of the assist device is based on the initial consideration according to hemodynamic situation, comorbidities, intended time of use and therapeutic options. The present article offers an update on currently available mechanical circulatory support systems (MCSS) for short and long-term use as well as an insight into future perspectives.
Literatur
1.
Zurück zum Zitat Trost JC, Hillis LD (2006) Intra-aortic balloon counterpulsation. Am J Cardiol 97:1391–1398PubMedCrossRef Trost JC, Hillis LD (2006) Intra-aortic balloon counterpulsation. Am J Cardiol 97:1391–1398PubMedCrossRef
2.
Zurück zum Zitat DiGiorgi PL, Rao V, Naka Y, Mehmet CO (2003) Which patient, which pump? J Heart Lung Transplant 22:221–235PubMedCrossRef DiGiorgi PL, Rao V, Naka Y, Mehmet CO (2003) Which patient, which pump? J Heart Lung Transplant 22:221–235PubMedCrossRef
3.
Zurück zum Zitat Mielck F, Quintel M (2005) Extracorporeal membrane oxygenation. Curr Opin Crit Care 11:87–93PubMedCrossRef Mielck F, Quintel M (2005) Extracorporeal membrane oxygenation. Curr Opin Crit Care 11:87–93PubMedCrossRef
4.
Zurück zum Zitat Zhang T, Cheng G, Koert A et al (2009) Functional and biocompatibility performance of an integrated maglev pump-oxygenator. Artif Organs 33:36–45PubMedCrossRef Zhang T, Cheng G, Koert A et al (2009) Functional and biocompatibility performance of an integrated maglev pump-oxygenator. Artif Organs 33:36–45PubMedCrossRef
5.
Zurück zum Zitat Gibbon JH (1954) Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med 37:171–185PubMed Gibbon JH (1954) Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med 37:171–185PubMed
6.
7.
Zurück zum Zitat Gemmato CJ, Forrester MD, Myers TJ, Frazier OH, Cooley DA (2005) Thirty-five years of mechanical circulatory support at the Texas Heart Institute—an updated overview. Tex Heart Inst J 32:168–177PubMedCentralPubMed Gemmato CJ, Forrester MD, Myers TJ, Frazier OH, Cooley DA (2005) Thirty-five years of mechanical circulatory support at the Texas Heart Institute—an updated overview. Tex Heart Inst J 32:168–177PubMedCentralPubMed
8.
Zurück zum Zitat DeVries WC, Anderson JL, Joyce LD et al (1984) Clinical use of the total artificial heart. N Engl J Med 310:273–278PubMedCrossRef DeVries WC, Anderson JL, Joyce LD et al (1984) Clinical use of the total artificial heart. N Engl J Med 310:273–278PubMedCrossRef
9.
Zurück zum Zitat Fraser KH, Taskin ME, Griffith BP, Wu ZJ (2011) The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys 33:263–280PubMedCentralPubMedCrossRef Fraser KH, Taskin ME, Griffith BP, Wu ZJ (2011) The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys 33:263–280PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Caccamo M, Eckman P, John R (2011) Current state of ventricular assist devices. Curr Heart Fail Rep 8:91–98PubMedCrossRef Caccamo M, Eckman P, John R (2011) Current state of ventricular assist devices. Curr Heart Fail Rep 8:91–98PubMedCrossRef
11.
Zurück zum Zitat Strüber M, Meyer AL, Malehsa D, Kugler C, Simon AR, Haverich A (2009) The current status of heart transplantation and the development of artificial heart systems. Dtsch Arztebl Int 106:471–477PubMedCentralPubMed Strüber M, Meyer AL, Malehsa D, Kugler C, Simon AR, Haverich A (2009) The current status of heart transplantation and the development of artificial heart systems. Dtsch Arztebl Int 106:471–477PubMedCentralPubMed
12.
Zurück zum Zitat Kirklin JK, Naftel DC, Kormos RL et al (2012) The fourth INTERMACS annual report: 4,000 implants and counting. J Heart Lung Trans 31:117–126CrossRef Kirklin JK, Naftel DC, Kormos RL et al (2012) The fourth INTERMACS annual report: 4,000 implants and counting. J Heart Lung Trans 31:117–126CrossRef
13.
Zurück zum Zitat Spiliopoulos K, Giamouzis G, Karayannis G et al (2012) Current status of mechanical circulatory support: a systematic review. Cardiol Res Pract 2012:574198PubMedCentralPubMed Spiliopoulos K, Giamouzis G, Karayannis G et al (2012) Current status of mechanical circulatory support: a systematic review. Cardiol Res Pract 2012:574198PubMedCentralPubMed
14.
Zurück zum Zitat Frazier OH, Rose EA, McCarthy P et al (1995) Improved mortality and rehabilitation of transplant candidates treated with a long-term implantable left ventricular assist system. Ann Surg 222:327–338PubMedCentralPubMedCrossRef Frazier OH, Rose EA, McCarthy P et al (1995) Improved mortality and rehabilitation of transplant candidates treated with a long-term implantable left ventricular assist system. Ann Surg 222:327–338PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat McCarthy PM, James KB, Savage RM et al (1994) Implantable left ventricular assist device: approaching an alternative for end-stage heart failure. Circulation 90:II83–II86PubMed McCarthy PM, James KB, Savage RM et al (1994) Implantable left ventricular assist device: approaching an alternative for end-stage heart failure. Circulation 90:II83–II86PubMed
16.
Zurück zum Zitat Goldstein DJ, Oz MC, Rose EA (1998) Implantable left ventricular assist devices. N Engl J Med 339:1522–1533PubMedCrossRef Goldstein DJ, Oz MC, Rose EA (1998) Implantable left ventricular assist devices. N Engl J Med 339:1522–1533PubMedCrossRef
17.
Zurück zum Zitat Slaughter MS, Rogers JG, Milano CA et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361:2241–2251PubMedCrossRef Slaughter MS, Rogers JG, Milano CA et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361:2241–2251PubMedCrossRef
18.
Zurück zum Zitat Rogers JG, Aaronson KD, Boyle AJ et al (2010) Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol 55:1826–1834PubMedCrossRef Rogers JG, Aaronson KD, Boyle AJ et al (2010) Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol 55:1826–1834PubMedCrossRef
19.
Zurück zum Zitat Kirklin JK, Naftel DC, Kormos RL et al (2010) Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant 29:1–10PubMedCentralPubMedCrossRef Kirklin JK, Naftel DC, Kormos RL et al (2010) Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant 29:1–10PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Pagani FD, Miller LW, Russell SD et al (2009) Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol 54:312–321PubMedCrossRef Pagani FD, Miller LW, Russell SD et al (2009) Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol 54:312–321PubMedCrossRef
21.
Zurück zum Zitat Hoshi H, Shinshi T, Takatani S (2006) Third-generation blood pumps with mechanical noncontact magnetic bearings. Artif Organs 30:324–338PubMedCrossRef Hoshi H, Shinshi T, Takatani S (2006) Third-generation blood pumps with mechanical noncontact magnetic bearings. Artif Organs 30:324–338PubMedCrossRef
22.
Zurück zum Zitat Wieselthaler GM, O’Driscoll G, Jansz P, Khaghani A, Strueber M (2010) Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transpl 29:1218–1225CrossRef Wieselthaler GM, O’Driscoll G, Jansz P, Khaghani A, Strueber M (2010) Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transpl 29:1218–1225CrossRef
23.
Zurück zum Zitat Nishinaka T, Schima H, Roethy W et al (2006) The DuraHeart VAD, a magnetically levitated centrifugal pump: The University of Vienna bridge-to-transplant experience. Circulation 70:1421–1425CrossRef Nishinaka T, Schima H, Roethy W et al (2006) The DuraHeart VAD, a magnetically levitated centrifugal pump: The University of Vienna bridge-to-transplant experience. Circulation 70:1421–1425CrossRef
24.
Zurück zum Zitat Farrar DJ, Bourque K, Dague CP et al (2007) Design features, developmental status, and experimental results with the Heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor. ASAIO J 53:310–315PubMedCrossRef Farrar DJ, Bourque K, Dague CP et al (2007) Design features, developmental status, and experimental results with the Heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor. ASAIO J 53:310–315PubMedCrossRef
25.
Zurück zum Zitat Gazzoli F, Alloni A, Pagani F et al (2007) Arrow CorAide left ventricular assist system: initial experience of the cardio-thoracic surgery center in Pavia. Ann Thorac Surg 83:279–282PubMedCrossRef Gazzoli F, Alloni A, Pagani F et al (2007) Arrow CorAide left ventricular assist system: initial experience of the cardio-thoracic surgery center in Pavia. Ann Thorac Surg 83:279–282PubMedCrossRef
26.
Zurück zum Zitat Goldowsky M (2005) Lafaro, Reed G. Magnevad status of design improvements human blood results and preliminary sheep trial. Artif Organs 29:855–857PubMedCrossRef Goldowsky M (2005) Lafaro, Reed G. Magnevad status of design improvements human blood results and preliminary sheep trial. Artif Organs 29:855–857PubMedCrossRef
27.
Zurück zum Zitat Masuzawa T, Ohta A, Tanaka N et al (2009) Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis. J Artif Organs 12:150–159PubMedCrossRef Masuzawa T, Ohta A, Tanaka N et al (2009) Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis. J Artif Organs 12:150–159PubMedCrossRef
28.
Zurück zum Zitat Ren Z, Jahanmir S, Heshmat H et al (2009) Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump. ASAIO J 55:340–347PubMedCrossRef Ren Z, Jahanmir S, Heshmat H et al (2009) Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump. ASAIO J 55:340–347PubMedCrossRef
29.
Zurück zum Zitat Rose EA, Gelijns AC, Moskowitz AJ et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345:1435–1443PubMedCrossRef Rose EA, Gelijns AC, Moskowitz AJ et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345:1435–1443PubMedCrossRef
30.
Zurück zum Zitat Long JW, Healy AH, Rasmusson BY et al (2008) Improving outcomes with long-term”destination” therapy using left ventricular assist devices. J Thorac Cardiovasc Surg 135:1353–1360PubMedCrossRef Long JW, Healy AH, Rasmusson BY et al (2008) Improving outcomes with long-term”destination” therapy using left ventricular assist devices. J Thorac Cardiovasc Surg 135:1353–1360PubMedCrossRef
31.
Zurück zum Zitat Aaronson KD, Slaughter MS, Miller LW et al (2012) Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation 26(125):3191–3200CrossRef Aaronson KD, Slaughter MS, Miller LW et al (2012) Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation 26(125):3191–3200CrossRef
32.
Zurück zum Zitat Miller LW, Pagani FD, Russell SD et al (2007) Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 357:885–896PubMedCrossRef Miller LW, Pagani FD, Russell SD et al (2007) Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 357:885–896PubMedCrossRef
33.
Zurück zum Zitat Kirklin JK, Naftel DC, Kormos RL et al (2013) Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant 32:141–156PubMedCrossRef Kirklin JK, Naftel DC, Kormos RL et al (2013) Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant 32:141–156PubMedCrossRef
34.
Zurück zum Zitat Copeland JG, Smith RG, Arabia FA et al (2001) Comparison of the CardioWest total artificial heart, the Novacor left ventricular assist system, and the Thoratec ventricular assist system in bridge to transplantation. Ann Thorac Surg 71:S92–S97PubMedCrossRef Copeland JG, Smith RG, Arabia FA et al (2001) Comparison of the CardioWest total artificial heart, the Novacor left ventricular assist system, and the Thoratec ventricular assist system in bridge to transplantation. Ann Thorac Surg 71:S92–S97PubMedCrossRef
35.
Zurück zum Zitat El-Banayosy A, Arusoglu L, Morshuis M et al (2005) CardioWest total artificial heart: bad Oeynhausen experience. Ann Thorac Surg 80:548–552PubMedCrossRef El-Banayosy A, Arusoglu L, Morshuis M et al (2005) CardioWest total artificial heart: bad Oeynhausen experience. Ann Thorac Surg 80:548–552PubMedCrossRef
36.
Zurück zum Zitat Kung RT, Yu LS, Ochs B et al (1993) An atrial hydraulic shunt in a total artificial heart. A balance mechanism for the bronchial shunt. ASAIO J 39:M213–M217PubMedCrossRef Kung RT, Yu LS, Ochs B et al (1993) An atrial hydraulic shunt in a total artificial heart. A balance mechanism for the bronchial shunt. ASAIO J 39:M213–M217PubMedCrossRef
37.
Zurück zum Zitat Samuels L (2003) The AbioCor totally implantable replacement heart. Am Heart Hosp J 1:91–96PubMedCrossRef Samuels L (2003) The AbioCor totally implantable replacement heart. Am Heart Hosp J 1:91–96PubMedCrossRef
38.
Zurück zum Zitat Dowling RD, Gray LA Jr, Etoch SW et al (2004) Initial experience with the AbioCor implantable replacement heart system. J Thorac Cardiovasc Surg 127:131–141PubMedCrossRef Dowling RD, Gray LA Jr, Etoch SW et al (2004) Initial experience with the AbioCor implantable replacement heart system. J Thorac Cardiovasc Surg 127:131–141PubMedCrossRef
39.
Zurück zum Zitat Frazier OH, Dowling RD, Gray LA, Shah NA, Pool T, Gregoric I (2004) The total artificial heart: where do we stand. Cardiology 101:117–121PubMedCrossRef Frazier OH, Dowling RD, Gray LA, Shah NA, Pool T, Gregoric I (2004) The total artificial heart: where do we stand. Cardiology 101:117–121PubMedCrossRef
40.
Zurück zum Zitat Lederman D, Kung RT, McNair DS (2002) Therapeutic potential of implantable replacement hearts. Am J Cardiovasc Drug 2:297–301CrossRef Lederman D, Kung RT, McNair DS (2002) Therapeutic potential of implantable replacement hearts. Am J Cardiovasc Drug 2:297–301CrossRef
41.
Zurück zum Zitat Von Herrick JB (1912) Clinical features of sudden obstruction of the coronary arteries. JAMA 250:1757–1765CrossRef Von Herrick JB (1912) Clinical features of sudden obstruction of the coronary arteries. JAMA 250:1757–1765CrossRef
42.
Zurück zum Zitat Thiele H, Zeymer U, Neumann FJ et al (2012) Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 367:1287–1296PubMedCrossRef Thiele H, Zeymer U, Neumann FJ et al (2012) Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 367:1287–1296PubMedCrossRef
43.
Zurück zum Zitat Werdan K, Ruß M, Buerke M et al (2012) Cardiogenic shock due to myocardial infarction: diagnosis, monitoring and treatment: a German-Austrian S3 Guideline. Dtsch Arztebl Int 109:343–351PubMedCentralPubMed Werdan K, Ruß M, Buerke M et al (2012) Cardiogenic shock due to myocardial infarction: diagnosis, monitoring and treatment: a German-Austrian S3 Guideline. Dtsch Arztebl Int 109:343–351PubMedCentralPubMed
44.
Zurück zum Zitat Vogel RA, Shawl F, Tommaso C et al (1990) Initial report of the national registry of elective cardiopulmonary bypass supported coronary angioplasty. J Am Coll Cardiol 15:23–29PubMedCrossRef Vogel RA, Shawl F, Tommaso C et al (1990) Initial report of the national registry of elective cardiopulmonary bypass supported coronary angioplasty. J Am Coll Cardiol 15:23–29PubMedCrossRef
45.
Zurück zum Zitat Putzer G, Braun P, Zimmermann A et al (2013) LUCAS compared to manual cardiopulmonary resuscitation is more effective during helicopter rescue-a prospective, randomized, cross-over manikin study. Am J Emerg Med 31:384–389PubMedCrossRef Putzer G, Braun P, Zimmermann A et al (2013) LUCAS compared to manual cardiopulmonary resuscitation is more effective during helicopter rescue-a prospective, randomized, cross-over manikin study. Am J Emerg Med 31:384–389PubMedCrossRef
46.
Zurück zum Zitat Marrin CA, Rose EA, Spotnitz HM, Bregman D (1982) Mechanical circulatory support via the left ventricular vent: the concept of left ventricular copulsation. J Thorac Cardiovasc Surg 84:426–429PubMed Marrin CA, Rose EA, Spotnitz HM, Bregman D (1982) Mechanical circulatory support via the left ventricular vent: the concept of left ventricular copulsation. J Thorac Cardiovasc Surg 84:426–429PubMed
47.
Zurück zum Zitat Jung C, Ferrari M, Rödiger C, Fritzenwanger M, Figulla HR (2008) Combined Impella and intra-aortic balloon pump support to improve macro- and microcirculation: a clinical case. Clin Res Cardiol 97:849–850PubMedCrossRef Jung C, Ferrari M, Rödiger C, Fritzenwanger M, Figulla HR (2008) Combined Impella and intra-aortic balloon pump support to improve macro- and microcirculation: a clinical case. Clin Res Cardiol 97:849–850PubMedCrossRef
48.
Zurück zum Zitat Ferrari M, Poerner TC, Brehm BR et al (2008) First use of a novel plug-and-play percutaneous circulatory assist device for high-risk coronary angioplasty. Acute Card Care 10:111–115PubMedCrossRef Ferrari M, Poerner TC, Brehm BR et al (2008) First use of a novel plug-and-play percutaneous circulatory assist device for high-risk coronary angioplasty. Acute Card Care 10:111–115PubMedCrossRef
49.
Zurück zum Zitat Vranckx P, Foley DP, de Feijter PJ, Vos J, Smits P, Serruys PW (2003) Clinical introduction of the Tandemheart, a percutaneous left ventricular assist device, for circulatory support during high-risk percutaneous coronary intervention. Int J Cardiovasc Interv 5:35–39 Vranckx P, Foley DP, de Feijter PJ, Vos J, Smits P, Serruys PW (2003) Clinical introduction of the Tandemheart, a percutaneous left ventricular assist device, for circulatory support during high-risk percutaneous coronary intervention. Int J Cardiovasc Interv 5:35–39
50.
Zurück zum Zitat Smith EJ, Reitan O, Keeble T, Dixon K, Rothman MT (2009) A first-in-man study of the Reitan catheter pump for circulatory support in patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv 73:859–865PubMedCrossRef Smith EJ, Reitan O, Keeble T, Dixon K, Rothman MT (2009) A first-in-man study of the Reitan catheter pump for circulatory support in patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv 73:859–865PubMedCrossRef
51.
Zurück zum Zitat Klotz S, Meyns B, Simon A et al (2010) Partial mechanical long-term support with the circulite synergy® pump as bridge-to-transplant in congestive heart failure. Thorac Cardiov Surg 58:173–178CrossRef Klotz S, Meyns B, Simon A et al (2010) Partial mechanical long-term support with the circulite synergy® pump as bridge-to-transplant in congestive heart failure. Thorac Cardiov Surg 58:173–178CrossRef
52.
Zurück zum Zitat Umeki A, Nishimura T, Ando M et al (2012) Alteration of LV end-diastolic volume by controlling the power of the continuous-flow LVAD, so it is synchronized with cardiac beat: development of a native heart load control system (NHLCS). J Artif Organs 15:128–133PubMedCrossRef Umeki A, Nishimura T, Ando M et al (2012) Alteration of LV end-diastolic volume by controlling the power of the continuous-flow LVAD, so it is synchronized with cardiac beat: development of a native heart load control system (NHLCS). J Artif Organs 15:128–133PubMedCrossRef
53.
Zurück zum Zitat Ando M, Takewa Y, Nishimura T et al (2011) A novel counterpulsation mode of rotary left ventricular assist devices can enhance myocardial perfusion. J Artif Organs 14:185–191PubMedCrossRef Ando M, Takewa Y, Nishimura T et al (2011) A novel counterpulsation mode of rotary left ventricular assist devices can enhance myocardial perfusion. J Artif Organs 14:185–191PubMedCrossRef
54.
Zurück zum Zitat Timms D, Fraser J, Hayne M, Dunning J, McNeil K, Pearcy M (2008) The BiVACOR rotary biventricular assist device: concept and in vitro investigation. Artif Organs 32:816–827PubMedCrossRef Timms D, Fraser J, Hayne M, Dunning J, McNeil K, Pearcy M (2008) The BiVACOR rotary biventricular assist device: concept and in vitro investigation. Artif Organs 32:816–827PubMedCrossRef
55.
Zurück zum Zitat Greatrex NA, Timms DL, Kurita N, Palmer EW, Masuzawa T (2011) Axial magnetic bearing development for the BiVACOR rotary BiVAD/TAH. Ann Biomed Eng 39:2313–2328CrossRef Greatrex NA, Timms DL, Kurita N, Palmer EW, Masuzawa T (2011) Axial magnetic bearing development for the BiVACOR rotary BiVAD/TAH. Ann Biomed Eng 39:2313–2328CrossRef
56.
Zurück zum Zitat Abe Y, Isoyama T, Saito I et al (2007) Development of mechanical circulatory support devices at the University of Tokyo. J Artif Organs. 10:60–70PubMedCrossRef Abe Y, Isoyama T, Saito I et al (2007) Development of mechanical circulatory support devices at the University of Tokyo. J Artif Organs. 10:60–70PubMedCrossRef
57.
Zurück zum Zitat Abe Y, Isoyama T, Saito I et al (2011) Results of animal experiments with the fourth model of the undulation pump total artificial heart. Artif Organs 35:781–790PubMedCrossRef Abe Y, Isoyama T, Saito I et al (2011) Results of animal experiments with the fourth model of the undulation pump total artificial heart. Artif Organs 35:781–790PubMedCrossRef
58.
Zurück zum Zitat Jansen P, van Oeveren W, Capel A, Carpentier A (2012) In vitro haemocompatibility of a novel bioprosthetic total artificial heart. Eur J Cardiothorac Surg 41:e166–e172PubMedCrossRef Jansen P, van Oeveren W, Capel A, Carpentier A (2012) In vitro haemocompatibility of a novel bioprosthetic total artificial heart. Eur J Cardiothorac Surg 41:e166–e172PubMedCrossRef
59.
Zurück zum Zitat Boyle AJ, Ascheim DD, Russo MJ et al (2011) Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transplant 30:402–407PubMedCrossRef Boyle AJ, Ascheim DD, Russo MJ et al (2011) Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transplant 30:402–407PubMedCrossRef
Metadaten
Titel
An insight into short- and long-term mechanical circulatory support systems
verfasst von
Markus Ferrari
Peter Kruzliak
Kyriakos Spiliopoulos
Publikationsdatum
01.02.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Research in Cardiology / Ausgabe 2/2015
Print ISSN: 1861-0684
Elektronische ISSN: 1861-0692
DOI
https://doi.org/10.1007/s00392-014-0771-6

Weitere Artikel der Ausgabe 2/2015

Clinical Research in Cardiology 2/2015 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.