Skip to main content
Erschienen in: Herzschrittmachertherapie + Elektrophysiologie 1/2022

08.02.2022 | Schwerpunkt

Big Data in electrophysiology

verfasst von: Sotirios Nedios, MD, PhD, Konstantinos Iliodromitis, Christopher Kowalewski, Andreas Bollmann, Gerhard Hindricks, Nikolaos Dagres, Harilaos Bogossian

Erschienen in: Herzschrittmachertherapie + Elektrophysiologie | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Abstract

The quantity of data produced and captured in medicine today is unprecedented. Technological improvements and automation have expanded the traditional statistical methods and enabled the analysis of Big Data. This has permitted the discovery of new associations with a granularity that was previously hidden to human eyes. In the first part of this review, the authors would like to provide an overview of basic Machine Learning (ML) principles and techniques in order to better understand their application in recent publications about cardiac arrhythmias. In the second part, ML-enabled advances in disease detection and diagnosis, outcome prediction, and novel disease characterization in topics like electrocardiography, atrial fibrillation, ventricular arrhythmias, and cardiac devices are presented. Finally, the limitations and challenges of applying ML in clinical practice, such as validation, replication, generalizability, and regulatory issues, are discussed. More carefully designed studies and collaborations are needed for ML to become feasible, trustworthy, accurate, and reproducible and to reach its full potential for patient-oriented precision medicine.
Literatur
1.
Zurück zum Zitat Austin C, Kusumoto F (2016) The application of big data in medicine: current implications and future directions. J Interv Card Electrophysiol 47:51–59PubMed Austin C, Kusumoto F (2016) The application of big data in medicine: current implications and future directions. J Interv Card Electrophysiol 47:51–59PubMed
2.
Zurück zum Zitat Andreu-Perez J, Poon CC, Merrifield RD, Wong ST, Yang GZ (2015) Big data for health. IEEE J Biomed Health Inform 19:1193–1208PubMed Andreu-Perez J, Poon CC, Merrifield RD, Wong ST, Yang GZ (2015) Big data for health. IEEE J Biomed Health Inform 19:1193–1208PubMed
3.
Zurück zum Zitat Stevens LM, Mortazavi BJ, Deo RC, Curtis L, Kao DP (2020) Recommendations for reporting machine learning analyses in clinical research. Circ Cardiovasc Qual Outcomes 13:e6556PubMedPubMedCentral Stevens LM, Mortazavi BJ, Deo RC, Curtis L, Kao DP (2020) Recommendations for reporting machine learning analyses in clinical research. Circ Cardiovasc Qual Outcomes 13:e6556PubMedPubMedCentral
4.
Zurück zum Zitat Beam AL, Kohane IS (2018) Big data and machine learning in health care. JAMA 319:1317–1318PubMed Beam AL, Kohane IS (2018) Big data and machine learning in health care. JAMA 319:1317–1318PubMed
5.
Zurück zum Zitat Levy AE, Biswas M, Weber R, Tarakji K, Chung M, Noseworthy PA et al (2019) Applications of machine learning in decision analysis for dose management for dofetilide. PLoS ONE 14:e227324PubMedPubMedCentral Levy AE, Biswas M, Weber R, Tarakji K, Chung M, Noseworthy PA et al (2019) Applications of machine learning in decision analysis for dose management for dofetilide. PLoS ONE 14:e227324PubMedPubMedCentral
6.
Zurück zum Zitat Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G et al (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489PubMed Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G et al (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484–489PubMed
7.
Zurück zum Zitat Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP et al (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25:65–69PubMedPubMedCentral Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP et al (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25:65–69PubMedPubMedCentral
8.
Zurück zum Zitat He R, Wang K, Zhao N, Liu Y, Yuan Y, Li Q et al (2018) Automatic detection of atrial fibrillation based on continuous wavelet transform and 2D convolutional neural networks. Front Physiol 9:1206PubMedPubMedCentral He R, Wang K, Zhao N, Liu Y, Yuan Y, Li Q et al (2018) Automatic detection of atrial fibrillation based on continuous wavelet transform and 2D convolutional neural networks. Front Physiol 9:1206PubMedPubMedCentral
9.
Zurück zum Zitat Smith SW, Rapin J, Li J, Fleureau Y, Fennell W, Walsh BM et al (2019) A deep neural network for 12-lead electrocardiogram interpretation outperforms a conventional algorithm, and its physician overread, in the diagnosis of atrial fibrillation. Int J Cardiol Heart Vasc 25:100423PubMedPubMedCentral Smith SW, Rapin J, Li J, Fleureau Y, Fennell W, Walsh BM et al (2019) A deep neural network for 12-lead electrocardiogram interpretation outperforms a conventional algorithm, and its physician overread, in the diagnosis of atrial fibrillation. Int J Cardiol Heart Vasc 25:100423PubMedPubMedCentral
10.
Zurück zum Zitat Huang D, Yamauchi K, Inden Y, Yang J, Jiang Z, Ida H et al (2005) Use of an artificial neural network to localize accessory pathways of Wolff-Parkinson-White syndrome with 12-lead electrocardiogram. Med Inform Internet Med 30:277–286PubMed Huang D, Yamauchi K, Inden Y, Yang J, Jiang Z, Ida H et al (2005) Use of an artificial neural network to localize accessory pathways of Wolff-Parkinson-White syndrome with 12-lead electrocardiogram. Med Inform Internet Med 30:277–286PubMed
11.
Zurück zum Zitat Mjahad A, Rosado-Munoz A, Bataller-Mompean M, Frances-Villora JV, Guerrero-Martinez JF (2017) Ventricular fibrillation and tachycardia detection from surface ECG using time-frequency representation images as input dataset for machine learning. Comput Methods Programs Biomed 141:119–127PubMed Mjahad A, Rosado-Munoz A, Bataller-Mompean M, Frances-Villora JV, Guerrero-Martinez JF (2017) Ventricular fibrillation and tachycardia detection from surface ECG using time-frequency representation images as input dataset for machine learning. Comput Methods Programs Biomed 141:119–127PubMed
12.
Zurück zum Zitat Zhou X, Zhu X, Nakamura K, Mahito N (2018) Premature ventricular contraction detection from ambulatory ECG using recurrent neural networks. Annu Int Conf IEEE Eng Med Biol Soc 2018:2551–2554PubMed Zhou X, Zhu X, Nakamura K, Mahito N (2018) Premature ventricular contraction detection from ambulatory ECG using recurrent neural networks. Annu Int Conf IEEE Eng Med Biol Soc 2018:2551–2554PubMed
13.
Zurück zum Zitat Asgari S, Mehrnia A, Moussavi M (2015) Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput Biol Med 60:132–142PubMed Asgari S, Mehrnia A, Moussavi M (2015) Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput Biol Med 60:132–142PubMed
14.
Zurück zum Zitat Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ et al (2019) An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet 394:861–867PubMed Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ et al (2019) An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet 394:861–867PubMed
15.
Zurück zum Zitat Kashou AH, Rabinstein AA, Attia IZ, Asirvatham SJ, Gersh BJ, Friedman PA et al (2020) Recurrent cryptogenic stroke: a potential role for an artificial intelligence-enabled electrocardiogram? HeartRhythm Case Rep 6:202–205PubMedPubMedCentral Kashou AH, Rabinstein AA, Attia IZ, Asirvatham SJ, Gersh BJ, Friedman PA et al (2020) Recurrent cryptogenic stroke: a potential role for an artificial intelligence-enabled electrocardiogram? HeartRhythm Case Rep 6:202–205PubMedPubMedCentral
16.
Zurück zum Zitat Lee H, Shin SY, Seo M, Nam GB, Joo S (2016) Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks. Sci Rep 6:32390PubMedPubMedCentral Lee H, Shin SY, Seo M, Nam GB, Joo S (2016) Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks. Sci Rep 6:32390PubMedPubMedCentral
17.
Zurück zum Zitat Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G et al (2019) Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med 25:70–74PubMed Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G et al (2019) Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med 25:70–74PubMed
18.
Zurück zum Zitat Sengupta PP, Kulkarni H, Narula J (2018) Prediction of abnormal myocardial relaxation from signal processed surface ECG. J Am Coll Cardiol 71:1650–1660PubMed Sengupta PP, Kulkarni H, Narula J (2018) Prediction of abnormal myocardial relaxation from signal processed surface ECG. J Am Coll Cardiol 71:1650–1660PubMed
19.
Zurück zum Zitat Adedinsewo D, Carter RE, Attia Z, Johnson P, Kashou AH, Dugan JL et al (2020) Artificial intelligence-enabled ECG algorithm to identify patients with left ventricular systolic dysfunction presenting to the emergency department with dyspnea. Circ Arrhythm Electrophysiol 13:e8437PubMed Adedinsewo D, Carter RE, Attia Z, Johnson P, Kashou AH, Dugan JL et al (2020) Artificial intelligence-enabled ECG algorithm to identify patients with left ventricular systolic dysfunction presenting to the emergency department with dyspnea. Circ Arrhythm Electrophysiol 13:e8437PubMed
20.
Zurück zum Zitat Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP et al (2019) Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol 4:428–436PubMedPubMedCentral Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP et al (2019) Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol 4:428–436PubMedPubMedCentral
21.
Zurück zum Zitat Porumb M, Stranges S, Pescape A, Pecchia L (2020) Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG. Sci Rep 10:170PubMedPubMedCentral Porumb M, Stranges S, Pescape A, Pecchia L (2020) Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG. Sci Rep 10:170PubMedPubMedCentral
23.
Zurück zum Zitat Attia ZI, Friedman PA, Noseworthy PA, Lopez-Jimenez F, Ladewig DJ, Satam G et al (2019) Age and sex estimation using artificial intelligence from standard 12-lead ECGs. Circ Arrhythm Electrophysiol 12:e7284PubMedPubMedCentral Attia ZI, Friedman PA, Noseworthy PA, Lopez-Jimenez F, Ladewig DJ, Satam G et al (2019) Age and sex estimation using artificial intelligence from standard 12-lead ECGs. Circ Arrhythm Electrophysiol 12:e7284PubMedPubMedCentral
24.
Zurück zum Zitat Kalscheur MM, Kipp RT, Tattersall MC, Mei C, Buhr KA, DeMets DL et al (2018) Machine learning algorithm predicts cardiac resynchronization therapy outcomes: lessons from the COMPANION trial. Circ Arrhythm Electrophysiol 11:e5499PubMedPubMedCentral Kalscheur MM, Kipp RT, Tattersall MC, Mei C, Buhr KA, DeMets DL et al (2018) Machine learning algorithm predicts cardiac resynchronization therapy outcomes: lessons from the COMPANION trial. Circ Arrhythm Electrophysiol 11:e5499PubMedPubMedCentral
25.
Zurück zum Zitat Tokodi M, Schwertner WR, Kovacs A, Toser Z, Staub L, Sarkany A et al (2020) Machine learning-based mortality prediction of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score. Eur Heart J 41:1747–1756PubMedPubMedCentral Tokodi M, Schwertner WR, Kovacs A, Toser Z, Staub L, Sarkany A et al (2020) Machine learning-based mortality prediction of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score. Eur Heart J 41:1747–1756PubMedPubMedCentral
26.
Zurück zum Zitat Feeny AK, Rickard J, Patel D, Toro S, Trulock KM, Park CJ et al (2019) Machine learning prediction of response to cardiac resynchronization therapy: improvement versus current guidelines. Circ Arrhythm Electrophysiol 12:e7316PubMedPubMedCentral Feeny AK, Rickard J, Patel D, Toro S, Trulock KM, Park CJ et al (2019) Machine learning prediction of response to cardiac resynchronization therapy: improvement versus current guidelines. Circ Arrhythm Electrophysiol 12:e7316PubMedPubMedCentral
27.
Zurück zum Zitat Cikes M, Sanchez-Martinez S, Claggett B, Duchateau N, Piella G, Butakoff C et al (2019) Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur J Heart Fail 21:74–85PubMed Cikes M, Sanchez-Martinez S, Claggett B, Duchateau N, Piella G, Butakoff C et al (2019) Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur J Heart Fail 21:74–85PubMed
28.
Zurück zum Zitat Tiwari P, Colborn KL, Smith DE, Xing F, Ghosh D, Rosenberg MA (2020) Assessment of a machine learning model applied to harmonized electronic health record data for the prediction of incident atrial fibrillation. JAMA Netw Open 3:e1919396PubMedPubMedCentral Tiwari P, Colborn KL, Smith DE, Xing F, Ghosh D, Rosenberg MA (2020) Assessment of a machine learning model applied to harmonized electronic health record data for the prediction of incident atrial fibrillation. JAMA Netw Open 3:e1919396PubMedPubMedCentral
29.
Zurück zum Zitat Hill NR, Ayoubkhani D, McEwan P, Sugrue DM, Farooqui U, Lister S et al (2019) Predicting atrial fibrillation in primary care using machine learning. PLoS ONE 14:e224582PubMedPubMedCentral Hill NR, Ayoubkhani D, McEwan P, Sugrue DM, Farooqui U, Lister S et al (2019) Predicting atrial fibrillation in primary care using machine learning. PLoS ONE 14:e224582PubMedPubMedCentral
31.
Zurück zum Zitat Sanatkhani S, Nedios S, Menon PG, Bollmann A, Hindricks G, Shroff SG (2021) Subject-specific calculation of left atrial appendage blood-borne particle residence time distribution in atrial fibrillation. Front Physiol 12:633135PubMedPubMedCentral Sanatkhani S, Nedios S, Menon PG, Bollmann A, Hindricks G, Shroff SG (2021) Subject-specific calculation of left atrial appendage blood-borne particle residence time distribution in atrial fibrillation. Front Physiol 12:633135PubMedPubMedCentral
32.
Zurück zum Zitat Han L, Askari M, Altman RB, Schmitt SK, Fan J, Bentley JP et al (2019) Atrial fibrillation burden signature and near-term prediction of stroke: a machine learning analysis. Circ Cardiovasc Qual Outcomes 12:e5595PubMedPubMedCentral Han L, Askari M, Altman RB, Schmitt SK, Fan J, Bentley JP et al (2019) Atrial fibrillation burden signature and near-term prediction of stroke: a machine learning analysis. Circ Cardiovasc Qual Outcomes 12:e5595PubMedPubMedCentral
33.
Zurück zum Zitat Inohara T, Shrader P, Pieper K, Blanco RG, Thomas L, Singer DE et al (2018) Association of of atrial fibrillation clinical phenotypes with treatment patterns and outcomes: a multicenter registry study. JAMA Cardiol 3:54–63PubMed Inohara T, Shrader P, Pieper K, Blanco RG, Thomas L, Singer DE et al (2018) Association of of atrial fibrillation clinical phenotypes with treatment patterns and outcomes: a multicenter registry study. JAMA Cardiol 3:54–63PubMed
34.
Zurück zum Zitat Verma A, Jiang CY, Betts TR, Chen J, Deisenhofer I, Mantovan R et al (2015) Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med 372:1812–1822PubMed Verma A, Jiang CY, Betts TR, Chen J, Deisenhofer I, Mantovan R et al (2015) Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med 372:1812–1822PubMed
35.
Zurück zum Zitat Schilling C, Keller M, Scherr D, Oesterlein T, Haissaguerre M, Schmitt C et al (2015) Fuzzy decision tree to classify complex fractionated atrial electrograms. Biomed Tech (Berl) 60:245–255 Schilling C, Keller M, Scherr D, Oesterlein T, Haissaguerre M, Schmitt C et al (2015) Fuzzy decision tree to classify complex fractionated atrial electrograms. Biomed Tech (Berl) 60:245–255
36.
Zurück zum Zitat Alhusseini MI, Abuzaid F, Rogers AJ, Zaman JAB, Baykaner T, Clopton P et al (2020) Machine learning to classify Intracardiac electrical patterns during atrial fibrillation: machine learning of atrial fibrillation. Circ Arrhythm Electrophysiol 13:e8160PubMedPubMedCentral Alhusseini MI, Abuzaid F, Rogers AJ, Zaman JAB, Baykaner T, Clopton P et al (2020) Machine learning to classify Intracardiac electrical patterns during atrial fibrillation: machine learning of atrial fibrillation. Circ Arrhythm Electrophysiol 13:e8160PubMedPubMedCentral
37.
Zurück zum Zitat Zolotarev AM, Hansen BJ, Ivanova EA, Helfrich KM, Li N, Janssen PML et al (2020) Optical mapping-validated machine learning improves atrial fibrillation driver detection by multi-electrode mapping. Circ Arrhythm Electrophysiol 13:e8249PubMedPubMedCentral Zolotarev AM, Hansen BJ, Ivanova EA, Helfrich KM, Li N, Janssen PML et al (2020) Optical mapping-validated machine learning improves atrial fibrillation driver detection by multi-electrode mapping. Circ Arrhythm Electrophysiol 13:e8249PubMedPubMedCentral
38.
Zurück zum Zitat Mesquita J, Ferreira AM, Cavaco D, Moscoso Costa F, Carmo P, Marques H et al (2018) Development and validation of a risk score for predicting atrial fibrillation recurrence after a first catheter ablation procedure—ATLAS score. Europace 20:f428–f435PubMed Mesquita J, Ferreira AM, Cavaco D, Moscoso Costa F, Carmo P, Marques H et al (2018) Development and validation of a risk score for predicting atrial fibrillation recurrence after a first catheter ablation procedure—ATLAS score. Europace 20:f428–f435PubMed
39.
Zurück zum Zitat Varela M, Bisbal F, Zacur E, Berruezo A, Aslanidi OV, Mont L et al (2017) Novel computational analysis of left atrial anatomy improves prediction of atrial fibrillation recurrence after ablation. Front Physiol 8:68PubMedPubMedCentral Varela M, Bisbal F, Zacur E, Berruezo A, Aslanidi OV, Mont L et al (2017) Novel computational analysis of left atrial anatomy improves prediction of atrial fibrillation recurrence after ablation. Front Physiol 8:68PubMedPubMedCentral
40.
Zurück zum Zitat Nedios S, Sanatkhani S, Oladosu M, Seewoster T, Richter S, Arya A et al (2021) Association of low-voltage areas with the regional wall deformation and the left atrial shape in patients with atrial fibrillation: a proof of concept study. Int J Cardiol Heart Vasc 33:100730PubMedPubMedCentral Nedios S, Sanatkhani S, Oladosu M, Seewoster T, Richter S, Arya A et al (2021) Association of low-voltage areas with the regional wall deformation and the left atrial shape in patients with atrial fibrillation: a proof of concept study. Int J Cardiol Heart Vasc 33:100730PubMedPubMedCentral
41.
Zurück zum Zitat Nedios S, Lindemann F, Heijman J, Crijns H, Bollmann A, Hindricks G (2021) Atrial remodeling and atrial fibrillation recurrence after catheter ablation : past, present, and future developments. Herz 46:312–317PubMed Nedios S, Lindemann F, Heijman J, Crijns H, Bollmann A, Hindricks G (2021) Atrial remodeling and atrial fibrillation recurrence after catheter ablation : past, present, and future developments. Herz 46:312–317PubMed
42.
Zurück zum Zitat Atta-Fosu T, LaBarbera M, Ghose S, Schoenhagen P, Saliba W, Tchou PJ et al (2021) A new machine learning approach for predicting likelihood of recurrence following ablation for atrial fibrillation from CT. BMC Med Imaging 21:45PubMedPubMedCentral Atta-Fosu T, LaBarbera M, Ghose S, Schoenhagen P, Saliba W, Tchou PJ et al (2021) A new machine learning approach for predicting likelihood of recurrence following ablation for atrial fibrillation from CT. BMC Med Imaging 21:45PubMedPubMedCentral
43.
Zurück zum Zitat Firouznia M, Feeny AK, LaBarbera MA, McHale M, Cantlay C, Kalfas N et al (2021) Machine learning-derived fractal features of shape and texture of the left atrium and pulmonary veins from cardiac computed tomography scans are associated with risk of recurrence of atrial fibrillation postablation. Circ Arrhythm Electrophysiol 14:e9265PubMedPubMedCentral Firouznia M, Feeny AK, LaBarbera MA, McHale M, Cantlay C, Kalfas N et al (2021) Machine learning-derived fractal features of shape and texture of the left atrium and pulmonary veins from cardiac computed tomography scans are associated with risk of recurrence of atrial fibrillation postablation. Circ Arrhythm Electrophysiol 14:e9265PubMedPubMedCentral
44.
Zurück zum Zitat Nedios S, Koutalas E, Sommer P, Arya A, Rolf S, Husser D et al (2017) Asymmetrical left atrial remodelling in atrial fibrillation: relation with diastolic dysfunction and long-term ablation outcomes. Europace 19:1463–1469PubMed Nedios S, Koutalas E, Sommer P, Arya A, Rolf S, Husser D et al (2017) Asymmetrical left atrial remodelling in atrial fibrillation: relation with diastolic dysfunction and long-term ablation outcomes. Europace 19:1463–1469PubMed
45.
Zurück zum Zitat Shade JK, Ali RL, Basile D, Popescu D, Akhtar T, Marine JE et al (2020) Preprocedure application of machine learning and mechanistic simulations predicts likelihood of paroxysmal atrial fibrillation recurrence following pulmonary vein isolation. Circ Arrhythm Electrophysiol 13:e8213PubMedPubMedCentral Shade JK, Ali RL, Basile D, Popescu D, Akhtar T, Marine JE et al (2020) Preprocedure application of machine learning and mechanistic simulations predicts likelihood of paroxysmal atrial fibrillation recurrence following pulmonary vein isolation. Circ Arrhythm Electrophysiol 13:e8213PubMedPubMedCentral
46.
Zurück zum Zitat Shim J, Hwang M, Song JS, Lim B, Kim TH, Joung B et al (2017) Virtual in-Silico modeling guided catheter ablation predicts effective linear ablation lesion set for longstanding persistent atrial fibrillation: multicenter prospective randomized study. Front Physiol 8:792PubMedPubMedCentral Shim J, Hwang M, Song JS, Lim B, Kim TH, Joung B et al (2017) Virtual in-Silico modeling guided catheter ablation predicts effective linear ablation lesion set for longstanding persistent atrial fibrillation: multicenter prospective randomized study. Front Physiol 8:792PubMedPubMedCentral
47.
Zurück zum Zitat Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH et al (2019) Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng 3:870–879PubMedPubMedCentral Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH et al (2019) Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng 3:870–879PubMedPubMedCentral
48.
Zurück zum Zitat Aronis KN, Ali RL, Liang JA, Zhou S, Trayanova NA (2019) Understanding AF mechanisms through computational modelling and simulations. Arrhythm Electrophysiol Rev 8:210–219PubMedPubMedCentral Aronis KN, Ali RL, Liang JA, Zhou S, Trayanova NA (2019) Understanding AF mechanisms through computational modelling and simulations. Arrhythm Electrophysiol Rev 8:210–219PubMedPubMedCentral
49.
50.
Zurück zum Zitat Okada DR, Miller J, Chrispin J, Prakosa A, Trayanova N, Jones S et al (2020) Substrate spatial complexity analysis for the prediction of ventricular arrhythmias in patients with ischemic cardiomyopathy. Circ Arrhythm Electrophysiol 13:e7975PubMedPubMedCentral Okada DR, Miller J, Chrispin J, Prakosa A, Trayanova N, Jones S et al (2020) Substrate spatial complexity analysis for the prediction of ventricular arrhythmias in patients with ischemic cardiomyopathy. Circ Arrhythm Electrophysiol 13:e7975PubMedPubMedCentral
51.
Zurück zum Zitat Alis D, Guler A, Yergin M, Asmakutlu O (2020) Assessment of ventricular tachyarrhythmia in patients with hypertrophic cardiomyopathy with machine learning-based texture analysis of late gadolinium enhancement cardiac MRI. Diagn Interv Imaging 101:137–146PubMed Alis D, Guler A, Yergin M, Asmakutlu O (2020) Assessment of ventricular tachyarrhythmia in patients with hypertrophic cardiomyopathy with machine learning-based texture analysis of late gadolinium enhancement cardiac MRI. Diagn Interv Imaging 101:137–146PubMed
52.
Zurück zum Zitat Rogers AJ, Selvalingam A, Alhusseini MI, Krummen DE, Corrado C, Abuzaid F et al (2021) Machine learned cellular phenotypes in cardiomyopathy predict sudden death. Circ Res 128:172–184PubMed Rogers AJ, Selvalingam A, Alhusseini MI, Krummen DE, Corrado C, Abuzaid F et al (2021) Machine learned cellular phenotypes in cardiomyopathy predict sudden death. Circ Res 128:172–184PubMed
53.
Zurück zum Zitat Marzec L, Raghavan S, Banaei-Kashani F, Creasy S, Melanson EL, Lange L et al (2018) Device-measured physical activity data for classification of patients with ventricular arrhythmia events: a pilot investigation. PLoS ONE 13:e206153PubMedPubMedCentral Marzec L, Raghavan S, Banaei-Kashani F, Creasy S, Melanson EL, Lange L et al (2018) Device-measured physical activity data for classification of patients with ventricular arrhythmia events: a pilot investigation. PLoS ONE 13:e206153PubMedPubMedCentral
54.
Zurück zum Zitat Yokokawa M, Liu TY, Yoshida K, Scott C, Hero A, Good E et al (2012) Automated analysis of the 12-lead electrocardiogram to identify the exit site of postinfarction ventricular tachycardia. Heart Rhythm 9:330–334PubMed Yokokawa M, Liu TY, Yoshida K, Scott C, Hero A, Good E et al (2012) Automated analysis of the 12-lead electrocardiogram to identify the exit site of postinfarction ventricular tachycardia. Heart Rhythm 9:330–334PubMed
55.
Zurück zum Zitat Sapp JL, Bar-Tal M, Howes AJ, Toma JE, El-Damaty A, Warren JW et al (2017) Real-time localization of ventricular tachycardia origin from the 12-lead electrocardiogram. JACC Clin Electrophysiol 3:687–699PubMed Sapp JL, Bar-Tal M, Howes AJ, Toma JE, El-Damaty A, Warren JW et al (2017) Real-time localization of ventricular tachycardia origin from the 12-lead electrocardiogram. JACC Clin Electrophysiol 3:687–699PubMed
56.
Zurück zum Zitat Zhou S, AbdelWahab A, Horacek BM, MacInnis PJ, Warren JW, Davis JS et al (2020) Prospective assessment of an automated Intraprocedural 12-lead ECG-based system for localization of early left ventricular activation. Circ Arrhythm Electrophysiol 13:e8262PubMedPubMedCentral Zhou S, AbdelWahab A, Horacek BM, MacInnis PJ, Warren JW, Davis JS et al (2020) Prospective assessment of an automated Intraprocedural 12-lead ECG-based system for localization of early left ventricular activation. Circ Arrhythm Electrophysiol 13:e8262PubMedPubMedCentral
57.
Zurück zum Zitat Gyawali PK, Horacek BM, Sapp JL, Wang L (2020) Sequential factorized autoencoder for localizing the origin of ventricular activation from 12-lead electrocardiograms. IEEE Trans Biomed Eng 67:1505–1516PubMed Gyawali PK, Horacek BM, Sapp JL, Wang L (2020) Sequential factorized autoencoder for localizing the origin of ventricular activation from 12-lead electrocardiograms. IEEE Trans Biomed Eng 67:1505–1516PubMed
58.
Zurück zum Zitat Yang T, Yu L, Jin Q, Wu L, He B (2018) Localization of origins of premature ventricular contraction by means of convolutional neural network from 12-lead ECG. IEEE Trans Biomed Eng 65:1662–1671PubMed Yang T, Yu L, Jin Q, Wu L, He B (2018) Localization of origins of premature ventricular contraction by means of convolutional neural network from 12-lead ECG. IEEE Trans Biomed Eng 65:1662–1671PubMed
59.
Zurück zum Zitat Bogossian H, Panteloglou D, Karosiene Z, Macher-Heidrich S, Adomeit HJ, Lemke B et al (2021) Perioprocedural mortality after ICD implantation. Herz 46:581–588PubMedPubMedCentral Bogossian H, Panteloglou D, Karosiene Z, Macher-Heidrich S, Adomeit HJ, Lemke B et al (2021) Perioprocedural mortality after ICD implantation. Herz 46:581–588PubMedPubMedCentral
60.
Zurück zum Zitat Markewitz A (2021) Bundesfachgruppe Herzschrittmacher und D. [annual report 2019 of the German pacemaker and defibrillator registry-part 1: cardiac pacemakers : working group on cardiac pacemakers and cardioverter-defibrillators at IQTIG-institute for quality assurance and transparency in healthcare]. Herzschrittmacherther Elektrophysiol 32:510–523PubMed Markewitz A (2021) Bundesfachgruppe Herzschrittmacher und D. [annual report 2019 of the German pacemaker and defibrillator registry-part 1: cardiac pacemakers : working group on cardiac pacemakers and cardioverter-defibrillators at IQTIG-institute for quality assurance and transparency in healthcare]. Herzschrittmacherther Elektrophysiol 32:510–523PubMed
61.
Zurück zum Zitat Nowak B, Misselwitz B, Przibille O, Mehta RH (2017) Is mortality a useful parameter for public reporting in pacemaker implantation? Results of an obligatory external quality control programme. Europace 19:568–572PubMed Nowak B, Misselwitz B, Przibille O, Mehta RH (2017) Is mortality a useful parameter for public reporting in pacemaker implantation? Results of an obligatory external quality control programme. Europace 19:568–572PubMed
62.
Zurück zum Zitat Dewland TA, Pellegrini CN, Wang Y, Marcus GM, Keung E, Varosy PD (2011) Dual-chamber implantable cardioverter-defibrillator selection is associated with increased complication rates and mortality among patients enrolled in the NCDR implantable cardioverter-defibrillator registry. J Am Coll Cardiol 58:1007–1013PubMed Dewland TA, Pellegrini CN, Wang Y, Marcus GM, Keung E, Varosy PD (2011) Dual-chamber implantable cardioverter-defibrillator selection is associated with increased complication rates and mortality among patients enrolled in the NCDR implantable cardioverter-defibrillator registry. J Am Coll Cardiol 58:1007–1013PubMed
63.
Zurück zum Zitat Bogossian H, Frommeyer G, Hochadel M, Ince H, Spitzer SG, Eckardt L et al (2020) Single chamber implantable cardioverter defibrillator compared to dual chamber implantable cardioverter defibrillator: less is more! Data from the German device registry. Clin Res Cardiol 109:911–917PubMed Bogossian H, Frommeyer G, Hochadel M, Ince H, Spitzer SG, Eckardt L et al (2020) Single chamber implantable cardioverter defibrillator compared to dual chamber implantable cardioverter defibrillator: less is more! Data from the German device registry. Clin Res Cardiol 109:911–917PubMed
64.
Zurück zum Zitat Shakibfar S, Krause O, Lund-Andersen C, Aranda A, Moll J, Andersen TO et al (2019) Predicting electrical storms by remote monitoring of implantable cardioverter-defibrillator patients using machine learning. Europace 21:268–274PubMed Shakibfar S, Krause O, Lund-Andersen C, Aranda A, Moll J, Andersen TO et al (2019) Predicting electrical storms by remote monitoring of implantable cardioverter-defibrillator patients using machine learning. Europace 21:268–274PubMed
65.
Zurück zum Zitat Sanroman-Junquera M, Mora-Jimenez I, Almendral J, Garcia-Alberola A, Rojo-Alvarez JL (2015) Automatic supporting system for regionalization of ventricular tachycardia exit site in implantable defibrillators. PLoS ONE 10:e124514PubMedPubMedCentral Sanroman-Junquera M, Mora-Jimenez I, Almendral J, Garcia-Alberola A, Rojo-Alvarez JL (2015) Automatic supporting system for regionalization of ventricular tachycardia exit site in implantable defibrillators. PLoS ONE 10:e124514PubMedPubMedCentral
66.
Zurück zum Zitat Wegner FK, Kochhauser S, Ellermann C, Lange PS, Frommeyer G, Leitz P et al (2020) Prospective blinded evaluation of the smartphone-based AliveCor Kardia ECG monitor for atrial fibrillation detection: the PEAK-AF study. Eur J Intern Med 73:72–75PubMed Wegner FK, Kochhauser S, Ellermann C, Lange PS, Frommeyer G, Leitz P et al (2020) Prospective blinded evaluation of the smartphone-based AliveCor Kardia ECG monitor for atrial fibrillation detection: the PEAK-AF study. Eur J Intern Med 73:72–75PubMed
67.
Zurück zum Zitat van de Leur RR, Boonstra MJ, Bagheri A, Roudijk RW, Sammani A, Taha K et al (2020) Big data and artificial intelligence: opportunities and threats in electrophysiology. Arrhythm Electrophysiol Rev 9:146–154PubMedPubMedCentral van de Leur RR, Boonstra MJ, Bagheri A, Roudijk RW, Sammani A, Taha K et al (2020) Big data and artificial intelligence: opportunities and threats in electrophysiology. Arrhythm Electrophysiol Rev 9:146–154PubMedPubMedCentral
68.
Zurück zum Zitat Howard JP, Fisher L, Shun-Shin MJ, Keene D, Arnold AD, Ahmad Y et al (2019) Cardiac rhythm device identification using neural networks. JACC Clin Electrophysiol 5:576–586PubMedPubMedCentral Howard JP, Fisher L, Shun-Shin MJ, Keene D, Arnold AD, Ahmad Y et al (2019) Cardiac rhythm device identification using neural networks. JACC Clin Electrophysiol 5:576–586PubMedPubMedCentral
69.
Zurück zum Zitat Hindricks G, Elsner C, Piorkowski C, Taborsky M, Geller JC, Schumacher B et al (2014) Quarterly vs. yearly clinical follow-up of remotely monitored recipients of prophylactic implantable cardioverter-defibrillators: results of the REFORM trial. Eur Heart J 35:98–105PubMed Hindricks G, Elsner C, Piorkowski C, Taborsky M, Geller JC, Schumacher B et al (2014) Quarterly vs. yearly clinical follow-up of remotely monitored recipients of prophylactic implantable cardioverter-defibrillators: results of the REFORM trial. Eur Heart J 35:98–105PubMed
70.
Zurück zum Zitat Hindricks G, Varma N, Kacet S, Lewalter T, Sogaard P, Guedon-Moreau L et al (2017) Daily remote monitoring of implantable cardioverter-defibrillators: insights from the pooled patient-level data from three randomized controlled trials (IN-TIME, ECOST, TRUST). Eur Heart J 38:1749–1755PubMedPubMedCentral Hindricks G, Varma N, Kacet S, Lewalter T, Sogaard P, Guedon-Moreau L et al (2017) Daily remote monitoring of implantable cardioverter-defibrillators: insights from the pooled patient-level data from three randomized controlled trials (IN-TIME, ECOST, TRUST). Eur Heart J 38:1749–1755PubMedPubMedCentral
71.
Zurück zum Zitat Rosier A, Mabo P, Temal L, van Hille P, Dameron O, Deleger L et al (2016) Personalized and automated remote monitoring of atrial fibrillation. Europace 18:347–352PubMed Rosier A, Mabo P, Temal L, van Hille P, Dameron O, Deleger L et al (2016) Personalized and automated remote monitoring of atrial fibrillation. Europace 18:347–352PubMed
72.
Zurück zum Zitat Varma N, Cygankiewicz I, Turakhia MP, Heidbuchel H, Hu YF, Chen LY et al (2021) 2021 ISHNE/HRS/EHRA/APHRS expert collaborative statement on mhealth in arrhythmia management: digital medical tools for heart rhythm professionals: from the international society for Holter and noninvasive electrocardiology/heart rhythm society/European heart rhythm association/Asia-pacific heart rhythm society. Circ Arrhythm Electrophysiol 14:e9204PubMedPubMedCentral Varma N, Cygankiewicz I, Turakhia MP, Heidbuchel H, Hu YF, Chen LY et al (2021) 2021 ISHNE/HRS/EHRA/APHRS expert collaborative statement on mhealth in arrhythmia management: digital medical tools for heart rhythm professionals: from the international society for Holter and noninvasive electrocardiology/heart rhythm society/European heart rhythm association/Asia-pacific heart rhythm society. Circ Arrhythm Electrophysiol 14:e9204PubMedPubMedCentral
73.
Zurück zum Zitat Loring Z, Mehrotra S, Piccini JP (2019) Machine learning in ‘big data’: handle with care. Europace 21:1284–1285PubMedPubMedCentral Loring Z, Mehrotra S, Piccini JP (2019) Machine learning in ‘big data’: handle with care. Europace 21:1284–1285PubMedPubMedCentral
74.
Zurück zum Zitat Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK (2018) Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med 15:e1002683PubMedPubMedCentral Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK (2018) Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med 15:e1002683PubMedPubMedCentral
75.
Zurück zum Zitat Obermeyer Z, Powers B, Vogeli C, Mullainathan S (2019) Dissecting racial bias in an algorithm used to manage the health of populations. Science 366:447–453PubMed Obermeyer Z, Powers B, Vogeli C, Mullainathan S (2019) Dissecting racial bias in an algorithm used to manage the health of populations. Science 366:447–453PubMed
76.
Zurück zum Zitat Parikh RB, Teeple S, Navathe AS (2019) Addressing bias in artificial intelligence in health care. JAMA 322:2377–2378PubMed Parikh RB, Teeple S, Navathe AS (2019) Addressing bias in artificial intelligence in health care. JAMA 322:2377–2378PubMed
78.
Zurück zum Zitat Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M (2021) Ethical machine learning in healthcare. Annu Rev Biomed Data Sci 4:123–144PubMed Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M (2021) Ethical machine learning in healthcare. Annu Rev Biomed Data Sci 4:123–144PubMed
Metadaten
Titel
Big Data in electrophysiology
verfasst von
Sotirios Nedios, MD, PhD
Konstantinos Iliodromitis
Christopher Kowalewski
Andreas Bollmann
Gerhard Hindricks
Nikolaos Dagres
Harilaos Bogossian
Publikationsdatum
08.02.2022
Verlag
Springer Medizin
Erschienen in
Herzschrittmachertherapie + Elektrophysiologie / Ausgabe 1/2022
Print ISSN: 0938-7412
Elektronische ISSN: 1435-1544
DOI
https://doi.org/10.1007/s00399-022-00837-z

Weitere Artikel der Ausgabe 1/2022

Herzschrittmachertherapie + Elektrophysiologie 1/2022 Zur Ausgabe

Schwerpunkt

Katheterablation

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.