Skip to main content
Erschienen in: European Spine Journal 6/2004

01.10.2004 | Original Article

Kinematic response of lumbar functional spinal units to axial torsion with and without superimposed compression and flexion/extension

verfasst von: Hannes Haberl, Peter A. Cripton, Tracy-E. Orr, Thomas Beutler, Hanspeter Frei, Wolfgang R. Lanksch, L.-P. Nolte

Erschienen in: European Spine Journal | Ausgabe 6/2004

Einloggen, um Zugang zu erhalten

Abstract

Experimental data suggest that lumbar torsion contributes to lumbar disc degenerative changes, such as instability, spondylolisthesis and spinal canal stenosis. However, some basic mechanical characteristics of the lumbar spine under torsional loading have not yet been reported in detail. For example, the function of the facet joints under combined mechanical loads such as torsion with superimposed flexion or extension postures is an area of interest about which little biomechanical data have been reported. In this study, the kinematic response to axial torsion with superimposed axial compression (200 N), compression-flexion (3 and 6 Nm) and compression-extension (3 and 6 Nm) was investigated in 10 cadaveric lumbar functional spinal units. Range of motion (ROM), and helical axes of motion (HAM), were analyzed. There was no difference in ROM between no preload, pure compressive and flexion-compression preload conditions. The ROM was significantly reduced by both extension-compression preload conditions (11% reduction for 3 Nm and 19% reduction for 6 Nm of extension) compared to the pure compressive preload. For no preload, the average HAM position in the transverse plane of the intervertebral disc was near the posteriormost part of the disc and located laterally on the side contralateral to the applied torsional moment. In the transverse plane, the HAM position showed a discrete trend towards the posterior part of the specimens during extension. Kinematic data were visualized using computer animation techniques and CT-based reconstructions of the respective specimens. This information may be used for identifying and characterizing physiologic and pathologic motion and for specifying conservative and surgical treatment concepts and, thus, may find application to identifying indications for spinal fusion or in evaluating the effect of future semi-flexible instrumentation.
Literatur
1.
Zurück zum Zitat Adams MA, Hutton WC (1983) The mechanical function of the lumbar apophyseal joints. Spine 8:327–330PubMed Adams MA, Hutton WC (1983) The mechanical function of the lumbar apophyseal joints. Spine 8:327–330PubMed
2.
Zurück zum Zitat Ahmed AM, Duncan NA, Burke DL (1990) The effect of facet geometry on the axial torque-rotation response of lumbar motion segments. Spine 15:391–401PubMed Ahmed AM, Duncan NA, Burke DL (1990) The effect of facet geometry on the axial torque-rotation response of lumbar motion segments. Spine 15:391–401PubMed
3.
Zurück zum Zitat Cavanaugh JM, Ozaktay AC, Yamashita HT, King AI (1996) Lumbar facet pain: biomechanics, neuroanatomy and neurophysiology. J Biomech 29:1117–1129CrossRefPubMed Cavanaugh JM, Ozaktay AC, Yamashita HT, King AI (1996) Lumbar facet pain: biomechanics, neuroanatomy and neurophysiology. J Biomech 29:1117–1129CrossRefPubMed
4.
Zurück zum Zitat Cholewicki J, Crisco JJ 3rd, Oxland TR, Yamamoto I, Panjabi MM (1996) Effects of posture and structure on three-dimensional coupled rotations in the lumbar spine. A biomechanical analysis. Spine 21:2421–2428CrossRefPubMed Cholewicki J, Crisco JJ 3rd, Oxland TR, Yamamoto I, Panjabi MM (1996) Effects of posture and structure on three-dimensional coupled rotations in the lumbar spine. A biomechanical analysis. Spine 21:2421–2428CrossRefPubMed
5.
Zurück zum Zitat Cossette JW, Farfan HF, Robertson GH, Wells RV (1971) The instantaneous center of rotation of the third lumbar intervertebral joint. J Biomech 4:149–153)CrossRefPubMed Cossette JW, Farfan HF, Robertson GH, Wells RV (1971) The instantaneous center of rotation of the third lumbar intervertebral joint. J Biomech 4:149–153)CrossRefPubMed
6.
Zurück zum Zitat Cripton PA, Bruehlmann SB, Orr TE, Oxland TR, Nolte LP (2000) In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts J Biomech 33:1559–1568 Cripton PA, Bruehlmann SB, Orr TE, Oxland TR, Nolte LP (2000) In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts J Biomech 33:1559–1568
7.
Zurück zum Zitat Cripton PA, Sati M, Orr TE, Bourquin Y, Dumas GA, Nolte LP (2001) Animation of in vitro biomechanical tests. J Biomech 34:1091–1096CrossRefPubMed Cripton PA, Sati M, Orr TE, Bourquin Y, Dumas GA, Nolte LP (2001) Animation of in vitro biomechanical tests. J Biomech 34:1091–1096CrossRefPubMed
8.
Zurück zum Zitat Cyron BM, Hutton WC (1980) Articular tropism and stability of the lumbar spine. Spine 5:168–172PubMed Cyron BM, Hutton WC (1980) Articular tropism and stability of the lumbar spine. Spine 5:168–172PubMed
9.
Zurück zum Zitat Deyo RA, Cherkin D, Conrad D, Violinn E (1991) Cost, controversy, crisis: low back pain and the health of the public. Annu Rev Public Health 12:141–156CrossRefPubMed Deyo RA, Cherkin D, Conrad D, Violinn E (1991) Cost, controversy, crisis: low back pain and the health of the public. Annu Rev Public Health 12:141–156CrossRefPubMed
10.
Zurück zum Zitat Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg Am 52:468–497PubMed Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg Am 52:468–497PubMed
11.
Zurück zum Zitat Frymoyer JW (1988) Backpain and sciatica. N Engl J Med 318:291–300 Frymoyer JW (1988) Backpain and sciatica. N Engl J Med 318:291–300
12.
Zurück zum Zitat Frymoyer JW, Cats-Baril WL (1991) An overview of the incidences and costs of low back pain. Orthop Clin North Am 22:263–271PubMed Frymoyer JW, Cats-Baril WL (1991) An overview of the incidences and costs of low back pain. Orthop Clin North Am 22:263–271PubMed
13.
Zurück zum Zitat GBE (1994) Gesundheitsbericht für Deutschland 8.2:444 GBE (1994) Gesundheitsbericht für Deutschland 8.2:444
14.
Zurück zum Zitat Gibson JN, Waddell G, Grant IC (2000) Surgery for degenerative lumbar spondylosis. Cochrane Database Syst Rev 2+3:CD 001352 Gibson JN, Waddell G, Grant IC (2000) Surgery for degenerative lumbar spondylosis. Cochrane Database Syst Rev 2+3:CD 001352
15.
Zurück zum Zitat Gunzburg R, Hutton WC, Crane G, Fraser RD (1992) Role of capsulo-ligamentous structures in rotation and combined flexion-rotation of the lumbar spine. J Spinal Disord 5:1–7PubMed Gunzburg R, Hutton WC, Crane G, Fraser RD (1992) Role of capsulo-ligamentous structures in rotation and combined flexion-rotation of the lumbar spine. J Spinal Disord 5:1–7PubMed
16.
Zurück zum Zitat Hadler NM (1995) the disabling backache. An international perspective. Spine 20:640–649PubMed Hadler NM (1995) the disabling backache. An international perspective. Spine 20:640–649PubMed
17.
Zurück zum Zitat Haher TR, O’Brien M, Felmly WT et al (1992) Instantaneous axis of rotation as a function of the three columns of the spine. Spine 6 [Suppl]:149–154 Haher TR, O’Brien M, Felmly WT et al (1992) Instantaneous axis of rotation as a function of the three columns of the spine. Spine 6 [Suppl]:149–154
18.
Zurück zum Zitat Kinzel GL, Hall AS, Hillberry BM (1972) Measurement of the total motion between two body segments-I. Analytical development. J Biomech 5:93–105CrossRefPubMed Kinzel GL, Hall AS, Hillberry BM (1972) Measurement of the total motion between two body segments-I. Analytical development. J Biomech 5:93–105CrossRefPubMed
19.
Zurück zum Zitat Krismer M, Haid C, Rabl W (1996) The contribution of anulus fibers to torque resistance. Spine 21:2551–2557CrossRefPubMed Krismer M, Haid C, Rabl W (1996) The contribution of anulus fibers to torque resistance. Spine 21:2551–2557CrossRefPubMed
20.
Zurück zum Zitat Lorenz M, Patwardhan A, Vanderby R Jr (1983) Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments. Spine 8:122–130PubMed Lorenz M, Patwardhan A, Vanderby R Jr (1983) Load-bearing characteristics of lumbar facets in normal and surgically altered spinal segments. Spine 8:122–130PubMed
21.
Zurück zum Zitat Lovett RW (1905) The mechanism of the normal spine and its relation to scoliosis. Boston Med Surg J 13:349–358 Lovett RW (1905) The mechanism of the normal spine and its relation to scoliosis. Boston Med Surg J 13:349–358
22.
Zurück zum Zitat Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80:351–359PubMed Lund T, Oxland TR, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80:351–359PubMed
23.
Zurück zum Zitat Lund T, Oxland TR, Nydegger T, Schlenzka D, Laine T, Heini P (2002) Is there a connection between the clinical response after an external fixation test or a subsequent lumbar fusion and the pre-test intervertebral kinematics? Spine 27:2726–2733CrossRefPubMed Lund T, Oxland TR, Nydegger T, Schlenzka D, Laine T, Heini P (2002) Is there a connection between the clinical response after an external fixation test or a subsequent lumbar fusion and the pre-test intervertebral kinematics? Spine 27:2726–2733CrossRefPubMed
24.
Zurück zum Zitat Lund T, Nydegger T, Schlenzka D, Oxland TR (2002) Three-dimensional motion patterns during active bending in patients with chronic low back pain. Spine 27:1865–1874CrossRefPubMed Lund T, Nydegger T, Schlenzka D, Oxland TR (2002) Three-dimensional motion patterns during active bending in patients with chronic low back pain. Spine 27:1865–1874CrossRefPubMed
25.
Zurück zum Zitat McGill SM, Norman RW (1986) Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine 11:666–678PubMed McGill SM, Norman RW (1986) Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine 11:666–678PubMed
26.
Zurück zum Zitat McGlashen KM, Miller JA, Schultz AB, Andersson GB (1987) Load displacement behavior of the human lumbo-sacral joint. J Orthop Res 5:488–496PubMed McGlashen KM, Miller JA, Schultz AB, Andersson GB (1987) Load displacement behavior of the human lumbo-sacral joint. J Orthop Res 5:488–496PubMed
27.
Zurück zum Zitat Nägerl H, Kubein-Meesenburg D, Cotta H, Fanghänel J, Rossow A, Spiering S (1995) Biomechanische Prinzipien in Diarthrosen und Synarthrosen. Teil IV: Zur Mechanik der Wirbelsäule im Lendenbereich. Eine Pilotstudie. Z Orthop 133:1–11 Nägerl H, Kubein-Meesenburg D, Cotta H, Fanghänel J, Rossow A, Spiering S (1995) Biomechanische Prinzipien in Diarthrosen und Synarthrosen. Teil IV: Zur Mechanik der Wirbelsäule im Lendenbereich. Eine Pilotstudie. Z Orthop 133:1–11
28.
Zurück zum Zitat Natarajan RN, Andersson GB, Patwardhan AG, Andriacchi TP (1999) Study on effect of graded facetectomy on change in lumbar motion segment torsional flexibility using three-dimensional continuum contact representation for facet joints. J Biomech Eng 121:215–221PubMed Natarajan RN, Andersson GB, Patwardhan AG, Andriacchi TP (1999) Study on effect of graded facetectomy on change in lumbar motion segment torsional flexibility using three-dimensional continuum contact representation for facet joints. J Biomech Eng 121:215–221PubMed
29.
Zurück zum Zitat Oxland TR, Panjabi MM, Lin RM (1994) Axes of motion of thoracolumbar burst fractures. J Spinal Disord 7:130–138PubMed Oxland TR, Panjabi MM, Lin RM (1994) Axes of motion of thoracolumbar burst fractures. J Spinal Disord 7:130–138PubMed
30.
Zurück zum Zitat Panjabi MM, Krag MH, White AA 3rd, Southwick WO (1977) Effects of preload on load displacement curves of the lumbar spine. Orthop Clin North Am 8:181–192PubMed Panjabi MM, Krag MH, White AA 3rd, Southwick WO (1977) Effects of preload on load displacement curves of the lumbar spine. Orthop Clin North Am 8:181–192PubMed
31.
Zurück zum Zitat Panjabi M, Yamamoto I, Oxland T, Crisco J (1989) How does posture affect coupling in the lumbar spine? Spine 14:1002–1011PubMed Panjabi M, Yamamoto I, Oxland T, Crisco J (1989) How does posture affect coupling in the lumbar spine? Spine 14:1002–1011PubMed
32.
Zurück zum Zitat Pearcy MJ, Hindle RJ (1991) Axial rotation of lumbar intervertebral joints in forward flexion. Proc Inst Mech Eng [H] 205: 205–209 Pearcy MJ, Hindle RJ (1991) Axial rotation of lumbar intervertebral joints in forward flexion. Proc Inst Mech Eng [H] 205: 205–209
33.
Zurück zum Zitat Pope MH, Wilder DG, Matteri RE, Frymoyer JW (1977) Experimental measurements of vertebral motion under load. Orthop Clin North Am 8:155–167PubMed Pope MH, Wilder DG, Matteri RE, Frymoyer JW (1977) Experimental measurements of vertebral motion under load. Orthop Clin North Am 8:155–167PubMed
34.
Zurück zum Zitat Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26:E557–561PubMed Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ (2001) Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 26:E557–561PubMed
35.
Zurück zum Zitat Schendel MJ, Wood KB, Buttermann GR, Lewis JL, Ogilvie JW (1993) Experimental measurement of ligament force, facet force, and segment motion in the human lumbar spine. J Biomech 26:427–438CrossRefPubMed Schendel MJ, Wood KB, Buttermann GR, Lewis JL, Ogilvie JW (1993) Experimental measurement of ligament force, facet force, and segment motion in the human lumbar spine. J Biomech 26:427–438CrossRefPubMed
36.
Zurück zum Zitat Schultz AB, Warwick DN, Berkson MH, Nachemson AL (1979) Mechanical properties of of human lumbar spine motion segments. Part 1. Responses in flexion, extension, lateral bending, and torsion. J Biomech Eng 101:46–52 Schultz AB, Warwick DN, Berkson MH, Nachemson AL (1979) Mechanical properties of of human lumbar spine motion segments. Part 1. Responses in flexion, extension, lateral bending, and torsion. J Biomech Eng 101:46–52
37.
Zurück zum Zitat Shirazi-Adl A (1994) Nonlinear stress analysis of the whole lumbar spine in torsion-mechanics of facet articulation. J Biomech 27:289–299PubMed Shirazi-Adl A (1994) Nonlinear stress analysis of the whole lumbar spine in torsion-mechanics of facet articulation. J Biomech 27:289–299PubMed
38.
Zurück zum Zitat Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanic response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11:914–927PubMed Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanic response of a lumbar motion segment in axial torque alone and combined with compression. Spine 11:914–927PubMed
39.
Zurück zum Zitat Stokes IA, Wilder DG, Frymoyer JW, Pope MH (1981) Assessment of patients with low-back pain by biplanar radiographic measurement of intervertebral motion. Spine 6:233–240PubMed Stokes IA, Wilder DG, Frymoyer JW, Pope MH (1981) Assessment of patients with low-back pain by biplanar radiographic measurement of intervertebral motion. Spine 6:233–240PubMed
40.
Zurück zum Zitat Tencer AF, Ahmed AM, Burke DL (1982) Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J Biomech Eng 104:193–201PubMed Tencer AF, Ahmed AM, Burke DL (1982) Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J Biomech Eng 104:193–201PubMed
41.
Zurück zum Zitat White AA, Panjabi MM (1978) The basic kinematics of the human spine. Spine 3:12–20 White AA, Panjabi MM (1978) The basic kinematics of the human spine. Spine 3:12–20
Metadaten
Titel
Kinematic response of lumbar functional spinal units to axial torsion with and without superimposed compression and flexion/extension
verfasst von
Hannes Haberl
Peter A. Cripton
Tracy-E. Orr
Thomas Beutler
Hanspeter Frei
Wolfgang R. Lanksch
L.-P. Nolte
Publikationsdatum
01.10.2004
Verlag
Springer-Verlag
Erschienen in
European Spine Journal / Ausgabe 6/2004
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-004-0720-6

Weitere Artikel der Ausgabe 6/2004

European Spine Journal 6/2004 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

TEP mit Roboterhilfe führt nicht zu größerer Zufriedenheit

15.05.2024 Knie-TEP Nachrichten

Der Einsatz von Operationsrobotern für den Einbau von Totalendoprothesen des Kniegelenks hat die Präzision der Eingriffe erhöht. Für die postoperative Zufriedenheit der Patienten scheint das aber unerheblich zu sein, wie eine Studie zeigt.

Lever-Sign-Test hilft beim Verdacht auf Kreuzbandriss

15.05.2024 Vordere Kreuzbandruptur Nachrichten

Mit dem Hebelzeichen-Test lässt sich offenbar recht zuverlässig feststellen, ob ein vorderes Kreuzband gerissen ist. In einer Metaanalyse war die Vorhersagekraft vor allem bei positivem Testergebnis hoch.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.