Skip to main content
Erschienen in: Journal of Inherited Metabolic Disease 4/2015

Open Access 01.07.2015 | SSIEM 2014

Spectrum of combined respiratory chain defects

verfasst von: Johannes A. Mayr, Tobias B. Haack, Peter Freisinger, Daniela Karall, Christine Makowski, Johannes Koch, René G. Feichtinger, Franz A. Zimmermann, Boris Rolinski, Uwe Ahting, Thomas Meitinger, Holger Prokisch, Wolfgang Sperl

Erschienen in: Journal of Inherited Metabolic Disease | Ausgabe 4/2015

Abstract

Inherited disorders of mitochondrial energy metabolism form a large and heterogeneous group of metabolic diseases. More than 250 gene defects have been reported to date and this number continues to grow. Mitochondrial diseases can be grouped into (1) disorders of oxidative phosphorylation (OXPHOS) subunits and their assembly factors, (2) defects of mitochondrial DNA, RNA and protein synthesis, (3) defects in the substrate-generating upstream reactions of OXPHOS, (4) defects in relevant cofactors and (5) defects in mitochondrial homeostasis. Deficiency of more than one respiratory chain enzyme is a common finding. Combined defects are found in 49 % of the known disease-causing genes of mitochondrial energy metabolism and in 57 % of patients with OXPHOS defects identified in our diagnostic centre. Combined defects of complexes I, III, IV and V are typically due to deficiency of mitochondrial DNA replication, RNA metabolism or translation. Defects in cofactors can result in combined defects of various combinations, and defects of mitochondrial homeostasis can result in a generalised decrease of all OXPHOS enzymes. Noteworthy, identification of combined defects can be complicated by different degrees of severity of each affected enzyme. Furthermore, even defects of single respiratory chain enzymes can result in combined defects due to aberrant formation of respiratory chain supercomplexes. Combined OXPHOS defects have a great variety of clinical manifestations in terms of onset, course severity and tissue involvement. They can present as classical encephalomyopathy but also with hepatopathy, nephropathy, haematologic findings and Perrault syndrome in a subset of disorders.
Hinweise
Communicated by: Garry Brown
Presented at the Annual Symposium of the Society for the Study of Inborn Errors of Metabolism, Innsbruck, Austria, September 2-5, 2014

Introduction

Mitochondria are cellular organelles essential for aerobic energy metabolism. Proper functioning of mitochondrial energy generation depends on numerous factors. It is assumed that more than 5 % of the human genome plays a role in this metabolism. Indeed, defects involving more than 250 genes (Fig. 1) have been identified to date, making disorders of mitochondrial energy metabolism the most heterogeneous metabolic disease group.
At the heart of mitochondrial energy metabolism is the respiratory chain, which uses the reduced substrates NADH, FADH2, ubiquinol and ferrocytochrome c in a step-wise manner to finally react with molecular oxygen to produce H2O and establish a proton gradient across the inner mitochondrial membrane. In the final step, the F1FO-ATP synthase uses the proton gradient to generate the ubiquitous cellular energy carrier ATP. The whole cascade of reactions is called oxidative phosphorylation (OXPHOS).
All five enzyme complexes of OXPHOS consist of multiple protein subunits, in total approximately 75 protein subunits. The complexes depend on several cofactors and the specific lipid environment of the inner mitochondrial membrane to form supramolecular aggregates, which in turn influence the shape of this membrane. Importantly, 13 protein subunits of the OXPHOS enzymes are encoded by the small mitochondrial genome (mtDNA), which is a specific feature of mitochondria and distinguishes them from other cellular organelles in mammalian cells (Schon et al 2012). Although the number of protein-coding genes in mtDNA is small and their functions are limited to OXPHOS, the presence of the mitochondrial genome necessitates having mitochondrial machinery for replication, transcription, RNA processing, RNA modification and translation, complete with its own ribosomes.

Defects of oxidative phosphorylation

Biochemical investigation of mitochondrial energy metabolism in patient samples dates back to the 1960s, and distinct defects in OXPHOS have been identified affecting either single enzyme complexes or combinations of complexes.
In general, defects of mitochondrial energy metabolism can be grouped into the following five categories (Fig. 1):
1.
Isolated defects of OXPHOS subunits or assembly factors.
 
2.
Defects of mitochondrial DNA, RNA and protein synthesis (including replication, nucleotide metabolism, RNA processing and modification and translation).
 
3.
Disorders in the substrate-generating upstream reactions of OXPHOS (pyruvate dehydrogenase complex, Krebs cycle, fatty acid beta-oxidation, substrate import and anaplerosis).
 
4.
Defects in cofactors of OXPHOS and other enzymes of mitochondrial energy metabolism.
 
5.
Defects in the homeostasis of mitochondria, including their biogenesis, lipid processing, protein import, fission/fusion, and quality control.
 
Furthermore, defects due to inhibition, e.g. by H2S in the case of ETHE1 deficiency and inhibition of cytochrome c oxidase (Tiranti et al 2009) or inhibition of mitochondrial protein import by mutated huntingtin (Yano et al 2014), have been reported.

Combined oxidative phosphorylation defects in diagnostics

Combined OXPHOS defects are a very common finding in the diagnosis of disorders of mitochondrial energy metabolism (Scaglia et al 2004; Gibson et al 2008; Honzik et al 2012). In the patients seen by the diagnostic centre at the Department of Paediatrics in Salzburg, combined OXPHOS defects are by far the most frequent cause of disorders of mitochondrial energy metabolism, with a proportion of 57.3 % (Table 1).
Table 1
Number of patients in the diagnostic centre at Salzburg with defects in mitochondrial energy metabolism
OXPHOS defect
Number of patients (% of total)
Genetic diagnoses (%)
Combined defects
177 (57.3 %)
143 (81 %)
Complex I
59 (19.1 %)
30 (51 %)
Complex II
1 (0.3 %)
1 (100 %)
Complex III
7 (2.3 %)
5 (72 %)
Cytochrome c oxidase
28 (9.1 %)
16 (57 %)
ATP synthesis
37 (12.0 %)
35 (95 %)
total
309
230 (74 %)
It is important to point out that combined OXPHOS defects are often picked up in enzymatic measurements as isolated defects. A well-known example is the most frequent m.3243A > G ‘MELAS’ (mitochondrial encephalopathy lactic acidosis and stroke-like episodes) mutation that affects the mitochondrial tRNALeu(UUR). In muscle biopsies of these patients, an isolated complex I deficiency is a common biochemical finding; however, cytochrome c oxidase-deficient fibres can also be detected (Zierz et al 2014). Other defects are detected mainly as cytochrome c oxidase deficiency (Santorelli et al 1997). Complex I and cytochrome c oxidase seem to be the most vulnerable enzymes. This could be due to their larger number of mitochondrially encoded subunits, especially in the case of complex I (7 subunits, 2117 codons encoded in mtDNA) or cytochrome c oxidase (3 subunits, 1003 codons) versus ATP synthase (2 subunits, 296 codons) and complex III (1 subunit, 380 codons) (Anderson et al 1981). Alternatively, it could be due to different codon distributions; for example, there is a much higher abundance of codons for tRNALeu(UUR) in ND3 (8.7 % of all codons) and ND6 (9.1 % of all codons) of complex I compared to other mtDNA-encoded proteins, which contain less than 3 % of codons for tRNALeu(UUR). Finally, the different sensitivities of the OXPHOS complexes might be due to differences in the in vitro assay conditions in different laboratories (Gellerich et al 2004) resulting in experimental bias, since ATP synthesis cannot be quantified in frozen samples.
Therefore, classification as a combined OXPHOS defect in Table 1 was made on the basis of the genetic defect, which was available in 81 % of these patients, in addition to the results of biochemical measurements.

Typical combinations of defects of oxidative phosphorylation

By investigation of oxidative phosphorylation enzymes in patient samples, different types of combined defects have been identified: e.g. complex I (CI) + complex IV (CIV), CI + CIII + IV + V, CI + CII + CIII, CI + III/CII + III, CIII + CIV or involvement of all complexes (Fig. 2).
More than one enzyme can be affected due to the following molecular mechanisms:
1.
Mitochondrial DNA-related (mitochondrial replication, transcription, RNA processing and modification, translation, large deletions of mtDNA)
 
2.
Cofactor-related (coenzyme Q, iron-sulphur clusters, haem/cytochromes, riboflavin)
 
3.
Mitochondrial homeostasis-related (mitochondrial protein import, lipid metabolism, fission/fusion, mitophagy/quality control)
 
4.
Supercomplex related (especially complex III defects)
 
The mammalian mitochondrial genome is a circular molecule encoding 13 proteins (subunits of complexes I, III, IV and V), two ribosomal RNAs and 22 transfer RNAs. Depending on cell function and size, the number of mitochondria can vary, with copy numbers of mtDNA ranging from just a few to hundreds of thousands per nuclear genome. In contrast to the nuclear genome, mtDNA is replicated in a cell cycle-independent manner. Genetic defects in nuclear genes involved in mtDNA replication, its transcription or translation typically affect only the four OXPHOS enzymes that contain mitochondrially encoded subunits (complexes I, III, IV, and V) but spare complex II and citrate synthase; the latter is commonly used in biochemical analyses as a mitochondrial housekeeping enzyme.

Defects in mitochondrial replication

Mitochondrial DNA replication seems to require a relatively limited number of proteins (Holt and Jacobs 2014). Up to now, mutations in polymerase gamma (POLG gene), its accessory subunit (POLG2), and the Twinkle helicase (C10orf2) have been reported. Furthermore, mutations of the mitochondrial genome maintenance exonuclease 1 (MGME1) (Kornblum et al 2013) and the DNA replication helicase/nuclease 2 (DNA2) (Ronchi et al 2013) have been reported to affect mitochondrial stability. The precise role of the latter in mtDNA metabolism is not completely understood and needs further characterisation.
A set of enzymes is required to provide the nucleotides for mtDNA replication: Mutations in the cytosolic enzymes ribonucleotide reductase subunit M2 B (RRM2B) and thymidine phosphorylase (TYMP) as well as the mitochondrial thymidine kinase (TK2), deoxyguanosine kinase (DGUOK), succinyl CoA ligase subunit alpha (SUCLG1) and beta (SUCLA2), an isoform of the adenine nucleotide translocator (SLC25A4), and an inner membrane protein of unknown function (MPV17) were reported (Copeland 2008).
All of these genetic defects affect mtDNA stability. Accumulation of multiple mtDNA deletions but also point mutations and mtDNA depletion are typical consequences of these nuclear gene defects.

Defects in mitochondrial transcription, RNA processing and modification

Mitochondrial transcription takes place from both the heavy and light strands to produce a large polycistronic transcript, which has to be processed in order to free the 22 tRNAs, 2 rRNAs and 11 mRNAs, of which two stay polycistronic. Processing takes place predominately at the secondary structures formed by tRNAs. RNase P cleaves at the 5’-end of tRNAs, followed by RNase Z cleavage at the 3’-end. Mutations in HSD17B10, one of the three protein subunits of mitochondrial RNase P, have been shown to result in an increase of unprocessed primary transcripts (Deutschmann et al 2014). Mutations in ELAC2, the mitochondrial RNase Z, lead to an accumulation of mRNAs with tRNAs attached to the 5’-ends (Haack et al 2013). Most mitochondrial mRNAs are modified by MTPAP-mediated polyadenylation; a mutation in this gene resulted in a loss of polyadenylation but remarkably the mRNAs remained oligoadenylated (Crosby et al 2010). Mutations in LRPPRC, a leucine-rich pentatricopeptide repeat-containing protein that is involved in posttranscriptional regulator of mtDNA expression, result in decreased mitochondrial mRNA stability (Sasarman et al 2010). The function of PNPT1, polyribonucleotide nucleotidyltransferase 1, is still a matter of debate, but it might be involved in mitochondrial RNase P RNA import (Wang et al 2012) or part of mitochondrial RNA surveillance (Sarkar and Fisher 2006); mutations result in combined respiratory chain deficiency (Vedrenne et al 2012b).
After processing by RNase Z, the 3’-end of transfer RNAs is modified by addition of CCA, a reaction catalysed by TRNT1. A deficiency of this enzyme affects mitochondrial and cytosolic tRNA modification (Chakraborty et al 2014). Mitochondrial rRNAs, but especially tRNAs, are subject to numerous posttranscriptional modifications catalysed by a battery of enzymes, which are necessary to ensure proper codon–anticodon interaction, folding and stability (Suzuki and Nagao 2011). Mutations affecting tRNA modification have been reported in PUS1 (Bykhovskaya et al 2004), TRMU (Zeharia et al 2009), MTO1 (Ghezzi et al 2012), GTPBP3 (Kopajtich et al 2014) and TRIT1 (Yarham et al 2014), resulting in decreased de novo protein synthesis in mitochondria.

Defects in mitochondrial translation

Mitochondria have their own ribosomes with at least 80 ribosomal proteins forming the large 39S and small 28S subunits (Rackham and Filipovska 2014). Mutations have been reported in MRPL3 (Galmiche et al 2011), MRPL12 (Serre et al 2013), MRPL44 (Carroll et al 2013), MRPS16 (Miller et al 2004) and MRPS22 (Saada et al 2007) so far. The 12S and 16S ribosomal RNAs are encoded on the mitochondrial DNA. For translation, 22 mitochondrially encoded tRNAs are required, which are hot spots for mutation. More than 250 pathogenic mutations of mitochondrial tRNAs have been identified (Ruiz-Pesini et al 2007). Loading of each tRNA with its proper amino acid necessitates 19 aminoacyl tRNA synthetases, 17 of which are specific for mitochondria and two (GARS, KARS) are shared between the cytosol and mitochondria. With the exception of PARS2 and WARS2, mutations have been reported in all of these aminoacyl tRNA synthases (Diodato et al 2014; Hallmann et al 2014; Schwartzentruber et al 2014; Vanlander et al 2014). Like in bacteria, nascent mitochondrial proteins start with N-formylmethionine, which is generated by methionyl-tRNA formyltransferase (MTFMT) using the substrates Met-tRNAMet and 10-formyl-tetrahydrofolate. Mutation of this gene leads to a translation deficiency in mitochondria (Tucker et al 2011). Mitochondrial translation is regulated by several factors, and mutations affecting this process have been found in the translation elongation factors G (GFM1 gene, (Coenen et al 2004)), Ts (TSFM gene, (Smeitink et al 2006)) and Tu (TUFM gene, (Valente et al 2007)), in the release factor C12orf65 (Antonicka et al 2010), and in the conserved mitochondrial membrane protein RMND1, whose function in mitochondrial translation is uncharacterised (Garcia-Diaz et al 2012; Janer et al 2012).

Large deletions of the mitochondrial DNA

The midpoint of single large deletions of mtDNA is usually located between positions 9000 and 13,500, with deletion sizes ranging between 2 and 9 kb (Grady et al 2014). Typically, large deletions cover several protein-coding genes and also affect tRNAs. Large deletions are thereby a classic example of combined OXPHOS defects due to loss of protein-coding genes in combination with tRNA deficiency that results in mitochondrial translation defects.

Combined defects due to deficiency of cofactors

Numerous cofactors play an essential role in mitochondrial energy metabolism. Some of these cofactors are required for several of the respiratory chain enzymes like coenzyme Q, iron-sulphur clusters, riboflavin and haem. Their deficiency typically results in defects of more than one respiratory enzyme.

Coenzyme Q deficiency

This cofactor, which is also called ubiquinone, is a lipid compound consisting of a quinone group that can absorb one (forming a semiquinone) or two electrons and a side chain of variable isoprenoid residues. In the case of human ubiquinone, the side chain consists of ten isoprenoid residues (CoQ10). CoQ10 carries electrons from complex I and complex II to complex III, but is also necessary for other reactions like those catalysed by the electron-transferring-flavoprotein dehydrogenase (ETFDH) (involved in fatty acid oxidation and amino acid catabolism) and the mitochondrial glycerol-3-phosphate dehydrogenase (part of the redox transporting glycerol-3-phosphate shuttle). The synthesis of coenzyme Q takes place in mitochondria, and several defects of coenzyme Q biosynthesis affecting either enzymatic steps (PDSS1, PDSS2, COQ2, COQ6), regulatory proteins (ADCK3, ADCK4, COQ4) or an unknown function (COQ9) have been reported (Desbats et al 2014; Brea-Calvo et al 2015). Typically these defects present with defects of complex I + III and II + III, activities that require coenzyme Q (Lopez et al 2006). In addition to defects in CoQ10 synthesis, secondary deficiency has been found in several other genetic disorders: APTX, (Quinzii et al 2005), ETFDH, (Gempel et al 2007), BRAF, (Aeby et al 2007), methylmalonic acidaemia, (Haas et al 2009) and ANO10 (Balreira et al 2014). Supplementation with CoQ10 can improve the outcome of several of these defects significantly (Quinzii et al 2014).

Defects in iron sulphur cluster synthesis

Iron sulphur (FeS) clusters are an ancient compound consisting of varying proportions of iron and sulphur forming an oligomeric molecule with alternating iron and sulphur atoms, in humans predominantly rhombic [2Fe-2S] and cubane [4Fe-4S]. The initial part of FeS cluster biosynthesis takes place in a stepwise process in mitochondria with cysteine as the sulphur donor and iron in the form of a Fe2+ ion (Stehling et al 2014). Due to their capability to accept and donate electrons, FeS clusters are involved in numerous redox reactions, including those carried out by respiratory chain complexes I, II and III but also aconitase from the Krebs cycle and lipoic acid synthetase. The latter is necessary for mitochondrial lipoic acid synthesis and therefore essential for 2-ketoacid dehydrogenases like pyruvate dehydrogenase and α-ketoglutarate dehydrogenase (Mayr et al 2014).
Mutations in the early steps of FeS biosynthesis affecting FDX1L, FXN, ISCU, NFS1 or LYRM4 result in deficiency of the respiratory chain complexes I, II, III and aconitase but affect lipoic acid synthesis to a lesser extent. Mutations in BOLA3, NFU1, IBA57 and GLRX5 result in defects of mitochondrial 4Fe-4S synthesis and a pronounced deficiency of complex II, complex I and lipoic acid synthesis but spare complex III and aconitase. Mutations in NUBPL result in isolated complex I deficiency (Stehling et al 2014).

Other cofactors

Cytochromes (a, a3, b and c) with prosthetic haem groups are essential parts of respiratory chain complexes. Deficiencies of haem biosynthesis are known to result in several types of porphyria (Puy et al 2010), but no involvement of the respiratory chain has been reported in these patients. Autosomal dominant mutations have been identified in CYCS, encoding cytochrome c, which carries electrons from complex III to cytochrome c oxidase (Morison et al 2008). Haem c is transferred to apo-cytochrome c by holocytochrome c synthase encoded by the X-chromosomal HCCS gene. Mutations have been identified in heterozygous females and in a male with somatic mutations (van Rahden et al 2014). Recently, a mutation of FLAD1, which encodes the FAD synthase, was identified by a genetic screening approach in a single patient with combined complex I and cytochrome c oxidase deficiency (Taylor et al 2014). A combined defect of complex I and I + III has been identified in SFXN4 deficiency, affecting an inner membrane protein with a potential role in iron transport (Hildick-Smith et al 2013).

Defects in mitochondrial homeostasis

Mitochondrial homeostasis involves several essential aspects of mitochondrial biogenesis, lipid synthesis, protein import, fission and fusion, quality control and targeted degradation.

Defects in mitochondrial lipid synthesis

Mitochondrial membranes consist of a high proportion of non-bilayer forming lipids. De novo synthesis of the phospholipids phosphatidylethanolamine, cardiolipin (CL) and phosphatidylglycerol takes place in mitochondria (Mayr 2014). Defects have been found in tafazzin, which is encoded by the X-chromosomal TAZ gene, and cause Barth syndrome (MIM 302060) and combined OXPHOS defects (Karkucinska-Wieckowska et al 2013). Tafazzin is involved in remodelling of CL. Mutations in the mitochondrial co-chaperone DNAJC19 are associated with cardiomyopathy and 3-methylglutaconic aciduria. DNAJC19 acts in a complex with prohibitin (PHB). Absence of this complex leads to the accumulation of CL species with altered acyl chains similar to those in Barth syndrome (Richter-Dennerlein et al 2014). De novo synthesis of CL starts from phosphatidic acid (PA). PA formation from diacylglycerol seems to be limiting in AGK deficiency, which is the genetic cause of Sengers syndrome (MIM 212350) (Mayr et al 2012) with combined deficiency of complex I and the adenine nucleotide translocator (Haghighi et al 2014). An abnormal fatty acid composition of phosphatidylglycerol and decreased bis(monoacylglycero)phosphate (BMP) concentration have been found in patients with MEGDEL syndrome and SERAC1 deficiency (Wortmann et al 2012). Abnormal lipid composition, especially of CL, affects the activity of OXPHOS enzymes and also of adenine nucleotide translocator (Mayr 2014).

Deficiencies in protein import, processing and quality control

The highly conserved mitochondrial protein import machinery has been mostly unravelled by studies in yeast (Neupert and Herrmann 2007). In stark contrast to the complexity of this system, only a few defects have been identified, including deficiency of the X-chromosomally encoded subunit TIMM8A of the inner membrane translocase associated with Mohr-Tranebjaerg syndrome (MIM 304700) (Jin et al 1996). A deficiency of the disulphide relay system protein GFER is associated with cataract and combined respiratory chain deficiency (Di Fonzo et al 2009).
Defects of the X-prolyl aminopeptidase 3 encoded by XPNPEP3 result in improper N-terminal protein processing and instability of several subunits of OXPHOS enzymes (Vogtle et al 2009; O'Toole et al 2010).
Protein quality control in mitochondria involves several pathways. Mutations have been identified in the following: HSPD1, encoding the conserved heat shock protein 60 (Hansen et al 2002); CLPP, a caseinolytic mitochondrial matrix peptidase proteolytic subunit (Jenkinson et al 2012); SPG7, encoding a component of the m-AAA protease termed paraplegin (Casari et al 1998); and AFG3L2, encoding the catalytic subunit of the m-AAA protease (Cagnoli et al 2006). Defective respiration has been demonstrated in AFG3L2 complementation studies in yeast (Di Bella et al 2010). Multiple deletions of mtDNA have been identified in muscle biopsies of patients with SPG7 deficiency (Pfeffer et al 2014; Wedding et al 2014) and also with AFG3L2 deficiency (Gorman et al 2014).

Defects of mitochondrial fission and fusion

Mitochondria are dynamic organelles which undergo fission and fusion. The protein machinery needed for fission is widely conserved between mitochondria and peroxisomes (Schrader et al 2012). A central protein in fission is the dynamin 1-like protein DNM1L, frequently also termed Drp1, which forms a ring structure around mitochondria to promote fission. Heterozygous mutations cause deficiency in mitochondrial and peroxisomal fission (Waterham et al 2007). Mutations have also been identified in the mitochondrial fission factors MFF and GDAP1, leading to impaired mitochondrial fission and respiratory chain deficiency (Cassereau et al 2009; Shamseldin et al 2012).
Defects of mitochondrial fusion have been linked to MFN2 (mitofusin 2), a dynamin-like GTPase protein enriched at the endoplasmic reticulum–mitochondria interface, and to OPA1, also a dynamin-like GTPase protein located in the inner mitochondrial membrane and involved in several processes, including mitochondrial fusion. Mutations in these two proteins result in multiple deletions of mtDNA and combined OXPHOS deficiency (Hudson et al 2008; Rouzier et al 2012).
The precise mitochondrial functions of some proteins that cause combined OXPHOS defects are not yet clear. The X-chromosomally encoded AIFM1, well known as an apoptosis-inducing factor, seems to have a mitochondrial function as an NADH oxidoreductase; however, the association with OXPHOS deficiency is not well understood. Similarly the nature of the cytochrome c oxidase decrease in APOPT1 deficiency, a mitochondrial protein termed apoptogenic 1 and known from apoptosis studies, is not well understood (Melchionda et al 2014). CHCHD10 is a coiled-coil-helix-coiled-coil-helix domain-containing protein of unknown function localised to the intermembrane space of mitochondria, and its deficiency causes multiple deletions of mtDNA and combined OXPHOS deficiency (Bannwarth et al 2014). FBXL4, an F-box and leucine-rich repeat protein, is also an intermembrane space mitochondrial protein of unknown function. Deficiency of FBXL4 causes a decrease of all OXPHOS subunits but also of other mitochondrial proteins and mtDNA (Bonnen et al 2013; Gai et al 2013). Deficiency of the mitochondrial protein OPA3 causes 3-methylglutaconic aciduria, which has been found in several other defects of mitochondrial energy metabolism (Wortmann et al 2013), and fragmentation of the mitochondrial network (Grau et al 2013); however, the precise function of OPA3 remains unclear. Finally, multiple deletions of mtDNA have been reported in one study of a family with Aicardi-Goutieres syndrome 5 (MIM 612952) and SAMHD1 deficiency (Leshinsky-Silver et al 2011). The molecular link of SAMHD1 to mitochondrial DNA is not clear but could be related to its function in deoxynucleotide metabolism.

Combined defects due to toxic metabolites

Accumulation of highly reactive metabolites like methacrylyl-CoA has been reported in defects of isoleucine catabolism, which takes place in mitochondria. This compound forms covalent bonds, e.g. with the sulphhydryl group of cysteine in proteins, which can destroy enzymes (Brown et al 1982). In fact, combined OXPHOS defects have been reported in HIBCH- (Loupatty et al 2007) and ECHS1- (Sakai et al 2014) deficient patients. In addition to these defects, combined OXPHOS deficiency has been reported in several forms of organic aciduria like propionic acidaemia and methylmalonic acidaemia (de Keyzer et al 2009).
In 2000 Schägger and Pfeiffer (Schagger and Pfeiffer 2000) introduced the concept of a respirasome with oligomerisation of the respiratory chain complexes and formation of domain structures on the inner mitochondrial membrane. In addition, oligomerisation of the ATP synthase has been shown, which is also integral for inner membrane structure (Wittig and Schagger 2008).
Mouse cells harbouring a high mutation load in cytochrome b, a mitochondrially encoded subunit of complex III, have been shown to be deficient in both complex III and complex I (Acin-Perez et al 2004). Homozygous loss-of-function mutations in cytochrome b have been reported in human oncocytic tumours with a complete loss of complex I (Gasparre et al 2008; Zimmermann et al 2011), which is clear evidence that assembled complex III is necessary for complex I assembly and supercomplex formation. Also a mutation in the UQCRC2 subunit resulted in aberrant supercomplex formation and deficiency of complex I in addition to complex III (Miyake et al 2013). Similar results were found in a knockdown cell line of Rieske iron-sulphur protein, another subunit of complex III (Diaz et al 2012). Furthermore, a deficiency of supercomplex formation was shown in SURF1 deficiency, which is known to be an assembly factor of cytochrome c oxidase (Kovarova et al 2012). Defective supercomplex formation (McKenzie et al 2006) and combined OXPHOS deficiency (Karkucinska-Wieckowska et al 2013) have also been found in patients with Barth syndrome and TAZ mutations leading to an increased lysocardiolipin pool in mitochondria.
This summary, although incomplete, demonstrates that defects in single subunits of OXPHOS enzymes and individual assembly factors but also in the lipid composition can result in deficiency of supercomplex formation and hence a combined OXPHOS deficiency.

Clinical presentation of combined OXPHOS defects

The clinical phenotypes associated with combined OXPHOS defects are very heterogeneous, but in many cases encephalomyopathy is the main presentation. A very well-characterised example is the most common “MELAS” mutation m.3243A > G that can result in different clinical symptoms aside from MELAS, including sensorineural hearing loss, (isolated) myopathy, cardiomyopathy, seizures, migraine, ataxia, cognitive impairment, bowel dysmotility, short stature, diabetes, external ophthalmoplegia and Leigh syndrome (Nesbitt et al 2013). Since this mutation affects the mtDNA, the mutation load is variable and can be different in different tissues. Affected individuals usually carry this mutation in a high proportion; however, clinically unaffected or just mildly affected maternal relatives who carry a high mutation load are also found in these pedigrees (Dubeau et al 2000). Another well-studied example of clinical heterogeneity concerns patients with mutations in the POLG gene, encoding mitochondrial DNA polymerase γ. The clinical features of deficiencies in this gene include seizures and hepatopathy (Alpers disease), ataxia, neuropathy, myopathy, chronic progressive external ophthalmoplegia, ptosis, sensorineural deafness, parkinsonism and premature ovarian failure, hypogonadism and gastrointestinal dysmotility (Tchikviladze et al 2014). The same causative mutation can be either autosomal recessive or dominant, the latter usually resulting in delay of disease onset to adulthood.
As illustrated by these two examples, it is not possible to describe a general clinical picture of combined OXPHOS defects. In the following, some clinical features and syndromes are summarised that are associated with certain types of combined OXPHOS and can be helpful in the diagnosis of patients:
Hepatopathy is found only in certain defects of mitochondrial energy metabolism but especially in a number of combined OXPHOS disorders (Table 2). Hepatic presentation is frequently encountered in disorders of mitochondrial replication associated with POLG or C10orf2 (Twinkle); in disorders of mitochondrial nucleotide metabolism involving DGUOK, MPV, SUCLG1 and TRMU (usually transient infantile manifestation); in aberrant translation regulation by TSFM (Vedrenne et al 2012a) and in some cases of GFM1 deficiency, and was also reported in patients with EARS2 (1 patient) and FARS2 deficiency (Rahman 2013). Furthermore, hepatopathy is also a relatively common feature in MEGDEL syndrome with SERAC1 deficiency, which involves lipid metabolism (Wortmann et al 1993).
Table 2
Characteristic clinical manifestations found in some gene defects associated with combined OXPHOS deficiency
Hepatopathy
Nephropathy
Perrault syndrome
Haematologic manifestation
Leigh-(like)
POLG
RRM2B
HARS2
PUS1
TYMP
C10orf2 (Twinkle)
C10orf2 (Twinkle)
LARS2
YARS2
MTPAP
DGUOK
TSFM
CLPP
TRNT1
LRPPRC
MPV
MRPS22
C10orf2 (Twinkle)
SFXN4
PNPT1
SUCLG1
SARS2
 
GLRX5
TUFM
TRMU
ADCK4
 
FBXL4 (partially)
GFM1
EARS2
COQ2
 
CYCS
C12orf65
FARS2
COQ6
 
TAZ
MT-TI
TSFM
COQ9
 
MT-TL1
MT-TK
GFM1
PDSS2
 
mtDNA deletions
MT-TL1
SERAC1
XPNPEP3
  
MT-TV
 
MT-TF
  
MT-TW
 
MT-TI
  
MTFMT
 
MT-TL1
  
PDSS1
 
MT-TN
  
SERAC1
 
MT-TY
  
AIFM1
 
mtDNA deletions
   
Nephropathy may be an underdiagnosed sign of mitochondrial disease but it has been reported in several combined OXPHOS defects. Proximal tubulopathy is a typical finding in early onset mitochondrial DNA depletion syndrome caused by RRM2B deficiency (Bourdon et al 2007) and was also reported in a family with C10orf2 (Twinkle)-deficient patients (Prasad et al 2013). Renal tubulopathy is further found in translational defects involving SARS2, MRPS22 and TSFM (O'Toole 2014). In coenzyme Q synthesis defects, nephrotic syndrome (ADCK4, PDSS2, COQ2, COQ6) and tubulopathy (COQ9) are leading features (Desbats et al 2014). Patients with XPNPEP3 deficiency, encoding X-prolyl aminopeptidase 3, develop a nephronophthisis-like nephropathy but can also involve other organs (O'Toole et al 2010). Furthermore, tubulointerstitial nephritis and focal segmental glomerulosclerosis have been associated with various mitochondrial tRNA mutations, and single deletions of mtDNA have been reported to cause proximal as well as distal tubulopathy (O'Toole 2014).
Perrault syndrome is an autosomal recessive disorder characterised by sensorineural hearing loss in males and females and ovarian dysfunction in females. Neurologic features have been described in some affected women (Newman et al 1993). To date, mutations in five genes (CLPP, HARS2, LARS2, C10orf2 [Twinkle] (Morino et al 2014), HSD17B4) have been reported, with all but the last causing combined OXPHOS deficiency.
Haematologic manifestations of combined OXPHOS defects include aplastic, macrocytic or sideroblastic anaemia, leukopenia, neutropenia, thrombocytopenia or pancytopenia. Sideroblastic anaemia is characterised by the presence of ringed sideroblasts in the bone marrow and can be caused by PUS1 deficiency (affecting mitochondrial pseudouridine synthase) and presenting clinically as myopathy, lactic acidosis and sideroblastic anaemia (MLASA) (Bykhovskaya et al 2004). Deficiency of YARS2, the mitochondrial tyrosyl-tRNA synthetase, also results in a MLASA phenotype (Riley et al 2010). Recently, patients with mutations in TRNT1 (tRNA CCA-adding nucleotidyl transferase) have been reported. Clinically they present with congenital sideroblastic anaemia with immunodeficiency, fever and developmental delay (SIFD) (Chakraborty et al 2014). Two patients with either homozygous (Camaschella et al 2007) or compound heterozygous (Liu et al 2014) mutations in GLRX5, a mitochondrial enzyme of iron sulphur cluster maturation also needed for haem biosynthesis, have been described. Macrocytic anaemia with megaloblastic features has been reported in patients with SFXN4 deficiency, an inner mitochondrial membrane protein with a presumed iron transport function (Hildick-Smith et al 2013). Thrombocytopenia has been reported as a major feature in patients with autosomal dominant CYCS deficiency of cytochrome c (Morison et al 2008; De Rocco et al 2014). Neutropenia is associated in male patients with Barth syndrome, caused by TAZ mutations, in addition to cardiomyopathy, skeletal myopathy, prepubertal growth delay and a distinctive facial gestalt (Ferreira et al 1993). In addition to global developmental delay, hypotonia and other clinical features, neutropenia has been identified in patients deficient in FBXL4, an intermembrane space mitochondrial protein involved in mitochondrial biogenesis (Gai et al 2013). Furthermore, neutropenia has also been reported in a patient with the common m.3243A > G mutation in the MT-TL1 gene (De Kremer et al 2001). Pearson marrow–pancreas syndrome (MIM 557000) is caused by deletions of mtDNA, with variable generalised clinical manifestations, including haematologic presentation with early transfusion-dependent anaemia, neutropenia, thrombocytopenia, and, less abundant, also ringed sideroblasts in bone marrow aspirates (Broomfield et al 2014).
Leigh syndrome (LS, MIM 256000) is characterised by progressive neurologic disease with motor and intellectual developmental delay, signs and symptoms of brain stem and/or basal ganglia disease, and raised lactate (Thorburn and Rahman 1993). LS or Leigh-like presentation is most prevalent in defects of OXPHOS subunits and assembly factors, but also several combined OXPHOS defects present with this neurologic manifestation and involve either mitochondrial nucleotide or RNA metabolism, translation, a form of coenzyme Q deficiency, and a few defects in mitochondrial homeostasis (Table 2).

Conclusion

Combined OXPHOS defects are the most frequent cause of disorders of mitochondrial energy metabolism found in nearly half of the known gene defects (Fig. 1) and affecting more than 50 % of patients (Table 1).
Diagnosis of combined OXPHOS defects is complicated by the fact that the degree of individual OXPHOS enzyme decrease involvement is not necessarily identical among the different gene defects and it can vary between tissues. Therefore, combined OXPHOS defects can be picked up as isolated defects, especially in cases with mild manifestation.
Clinically, combined OXPHOS defects are highly heterogeneous with a broad spectrum of possible signs even for identical mutations (especially of the mtDNA). Several features are restricted to a subset of genetic defects (Table 2), which may help to pinpoint the underlying molecular cause of a combined respiratory chain deficiency.

Acknowledgments

Supported by the E-Rare project GENOMIT (FWF I 920-B13 for W.S. and 01GM1207 for H.P.), the Vereinigung zur Förderung Pädiatrischer Forschung und Fortbildung Salzburg and the “Wissenschaftspreis 2012” of the Austrian Paediatric Society (ÖGKJ) - prize for the best experimental publication in the year 2011 to J.A.M.

Competing interest

None.

Compliance with Ethics Guidelines

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study. This article does not contain any studies with animals performed by any of the authors.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
Zurück zum Zitat Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P et al (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805–815PubMedCentralPubMed Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P et al (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13:805–815PubMedCentralPubMed
Zurück zum Zitat Aeby A, Sznajer Y, Cave H et al (2007) Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency. J Inherit Metab Dis 30:827PubMed Aeby A, Sznajer Y, Cave H et al (2007) Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency. J Inherit Metab Dis 30:827PubMed
Zurück zum Zitat Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMed Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMed
Zurück zum Zitat Antonicka H, Ostergaard E, Sasarman F et al (2010) Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am J Hum Genet 87:115–122PubMedCentralPubMed Antonicka H, Ostergaard E, Sasarman F et al (2010) Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect. Am J Hum Genet 87:115–122PubMedCentralPubMed
Zurück zum Zitat Balreira A, Boczonadi V, Barca E et al (2014) ANO10 mutations cause ataxia and coenzyme Q10 deficiency. J Neurol 261:2192–2198PubMedCentralPubMed Balreira A, Boczonadi V, Barca E et al (2014) ANO10 mutations cause ataxia and coenzyme Q10 deficiency. J Neurol 261:2192–2198PubMedCentralPubMed
Zurück zum Zitat Bannwarth S, Ait-El-Mkadem S, Chaussenot A et al (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137:2329–2345PubMed Bannwarth S, Ait-El-Mkadem S, Chaussenot A et al (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137:2329–2345PubMed
Zurück zum Zitat Bonnen PE, Yarham JW, Besse A et al (2013) Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. Am J Hum Genet 93:471–481PubMedCentralPubMed Bonnen PE, Yarham JW, Besse A et al (2013) Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. Am J Hum Genet 93:471–481PubMedCentralPubMed
Zurück zum Zitat Bourdon A, Minai L, Serre V et al (2007) Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 39:776–780PubMed Bourdon A, Minai L, Serre V et al (2007) Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 39:776–780PubMed
Zurück zum Zitat Brea-Calvo G, Haack TB, Karall D et al (2015) COQ4 Mutations Cause a Broad Spectrum of Mitochondrial Disorders Associated with CoQ10 Deficiency. Am J Hum Genet 96:309–317PubMed Brea-Calvo G, Haack TB, Karall D et al (2015) COQ4 Mutations Cause a Broad Spectrum of Mitochondrial Disorders Associated with CoQ10 Deficiency. Am J Hum Genet 96:309–317PubMed
Zurück zum Zitat Broomfield A, Sweeney MG, Woodward CE, et al (2014) Paediatric single mitochondrial DNA deletion disorders: an overlapping spectrum of disease. J Inherit Metab Dis. doi:10.1007/s10545-014-9778-4 Broomfield A, Sweeney MG, Woodward CE, et al (2014) Paediatric single mitochondrial DNA deletion disorders: an overlapping spectrum of disease. J Inherit Metab Dis. doi:10.​1007/​s10545-014-9778-4
Zurück zum Zitat Brown GK, Hunt SM, Scholem R et al (1982) beta-hydroxyisobutyryl coenzyme A deacylase deficiency: a defect in valine metabolism associated with physical malformations. Pediatrics 70:532–538PubMed Brown GK, Hunt SM, Scholem R et al (1982) beta-hydroxyisobutyryl coenzyme A deacylase deficiency: a defect in valine metabolism associated with physical malformations. Pediatrics 70:532–538PubMed
Zurück zum Zitat Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N (2004) Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74:1303–1308PubMedCentralPubMed Bykhovskaya Y, Casas K, Mengesha E, Inbal A, Fischel-Ghodsian N (2004) Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am J Hum Genet 74:1303–1308PubMedCentralPubMed
Zurück zum Zitat Cagnoli C, Mariotti C, Taroni F et al (2006) SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 129:235–242PubMed Cagnoli C, Mariotti C, Taroni F et al (2006) SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. Brain 129:235–242PubMed
Zurück zum Zitat Camaschella C, Campanella A, De Falco L et al (2007) The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110:1353–1358PubMed Camaschella C, Campanella A, De Falco L et al (2007) The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110:1353–1358PubMed
Zurück zum Zitat Carroll CJ, Isohanni P, Poyhonen R et al (2013) Whole-exome sequencing identifies a mutation in the mitochondrial ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy. J Med Genet 50:151–159PubMed Carroll CJ, Isohanni P, Poyhonen R et al (2013) Whole-exome sequencing identifies a mutation in the mitochondrial ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy. J Med Genet 50:151–159PubMed
Zurück zum Zitat Casari G, De Fusco M, Ciarmatori S et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983PubMed Casari G, De Fusco M, Ciarmatori S et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983PubMed
Zurück zum Zitat Cassereau J, Chevrollier A, Gueguen N et al (2009) Mitochondrial complex I deficiency in GDAP1-related autosomal dominant Charcot-Marie-Tooth disease (CMT2K). Neurogenetics 10:145–150PubMed Cassereau J, Chevrollier A, Gueguen N et al (2009) Mitochondrial complex I deficiency in GDAP1-related autosomal dominant Charcot-Marie-Tooth disease (CMT2K). Neurogenetics 10:145–150PubMed
Zurück zum Zitat Chakraborty PK, Schmitz-Abe K, Kennedy EK et al (2014) Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124:2867–2871PubMed Chakraborty PK, Schmitz-Abe K, Kennedy EK et al (2014) Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood 124:2867–2871PubMed
Zurück zum Zitat Coenen MJ, Antonicka H, Ugalde C et al (2004) Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N Engl J Med 351:2080–2086PubMed Coenen MJ, Antonicka H, Ugalde C et al (2004) Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N Engl J Med 351:2080–2086PubMed
Zurück zum Zitat Crosby AH, Patel H, Chioza BA et al (2010) Defective mitochondrial mRNA maturation is associated with spastic ataxia. Am J Hum Genet 87:655–660PubMedCentralPubMed Crosby AH, Patel H, Chioza BA et al (2010) Defective mitochondrial mRNA maturation is associated with spastic ataxia. Am J Hum Genet 87:655–660PubMedCentralPubMed
Zurück zum Zitat de Keyzer Y, Valayannopoulos V, Benoist JF et al (2009) Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res 66:91–95PubMed de Keyzer Y, Valayannopoulos V, Benoist JF et al (2009) Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res 66:91–95PubMed
Zurück zum Zitat De Kremer RD, Paschini-Capra A, Bacman S et al (2001) Barth's syndrome-like disorder: a new phenotype with a maternally inherited A3243G substitution of mitochondrial DNA (MELAS mutation). Am J Med Genet 99:83–93PubMed De Kremer RD, Paschini-Capra A, Bacman S et al (2001) Barth's syndrome-like disorder: a new phenotype with a maternally inherited A3243G substitution of mitochondrial DNA (MELAS mutation). Am J Med Genet 99:83–93PubMed
Zurück zum Zitat De Rocco D, Cerqua C, Goffrini P et al (2014) Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect both apoptosis and cellular bioenergetics. Biochim Biophys Acta 1842:269–274PubMed De Rocco D, Cerqua C, Goffrini P et al (2014) Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect both apoptosis and cellular bioenergetics. Biochim Biophys Acta 1842:269–274PubMed
Zurück zum Zitat Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L (2014) Genetic bases and clinical manifestations of coenzyme Q (CoQ ) deficiency. J Inherit Metab Dis doi: 10.1007/s10545-014-9749-9 Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L (2014) Genetic bases and clinical manifestations of coenzyme Q (CoQ ) deficiency. J Inherit Metab Dis doi: 10.1007/s10545-014-9749-9
Zurück zum Zitat Deutschmann AJ, Amberger A, Zavadil C et al (2014) Mutation or knock-down of 17beta-hydroxysteroid dehydrogenase type 10 cause loss of MRPP1 and impaired processing of mitochondrial heavy strand transcripts. Hum Mol Genet 23:3618–3628PubMed Deutschmann AJ, Amberger A, Zavadil C et al (2014) Mutation or knock-down of 17beta-hydroxysteroid dehydrogenase type 10 cause loss of MRPP1 and impaired processing of mitochondrial heavy strand transcripts. Hum Mol Genet 23:3618–3628PubMed
Zurück zum Zitat Di Bella D, Lazzaro F, Brusco A et al (2010) Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 42:313–321PubMed Di Bella D, Lazzaro F, Brusco A et al (2010) Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 42:313–321PubMed
Zurück zum Zitat Di Fonzo A, Ronchi D, Lodi T et al (2009) The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. Am J Hum Genet 84:594–604PubMedCentralPubMed Di Fonzo A, Ronchi D, Lodi T et al (2009) The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency. Am J Hum Genet 84:594–604PubMedCentralPubMed
Zurück zum Zitat Diaz F, Enriquez JA, Moraes CT (2012) Cells lacking Rieske iron-sulfur protein have a reactive oxygen species-associated decrease in respiratory complexes I and IV. Mol Cell Biol 32:415–429PubMedCentralPubMed Diaz F, Enriquez JA, Moraes CT (2012) Cells lacking Rieske iron-sulfur protein have a reactive oxygen species-associated decrease in respiratory complexes I and IV. Mol Cell Biol 32:415–429PubMedCentralPubMed
Zurück zum Zitat Diodato D, Ghezzi D, Tiranti V (2014) The Mitochondrial Aminoacyl tRNA Synthetases: Genes and Syndromes. Int J Cell Biol 2014:787956PubMedCentralPubMed Diodato D, Ghezzi D, Tiranti V (2014) The Mitochondrial Aminoacyl tRNA Synthetases: Genes and Syndromes. Int J Cell Biol 2014:787956PubMedCentralPubMed
Zurück zum Zitat Dubeau F, De Stefano N, Zifkin BG, Arnold DL, Shoubridge EA (2000) Oxidative phosphorylation defect in the brains of carriers of the tRNAleu(UUR) A3243G mutation in a MELAS pedigree. Ann Neurol 47:179–185PubMed Dubeau F, De Stefano N, Zifkin BG, Arnold DL, Shoubridge EA (2000) Oxidative phosphorylation defect in the brains of carriers of the tRNAleu(UUR) A3243G mutation in a MELAS pedigree. Ann Neurol 47:179–185PubMed
Zurück zum Zitat Ferreira C, Thompson R, Vernon H (1993) Barth syndrome. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews, University of Washington, Seattle Ferreira C, Thompson R, Vernon H (1993) Barth syndrome. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews, University of Washington, Seattle
Zurück zum Zitat Gai X, Ghezzi D, Johnson MA et al (2013) Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am J Hum Genet 93:482–495PubMedCentralPubMed Gai X, Ghezzi D, Johnson MA et al (2013) Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am J Hum Genet 93:482–495PubMedCentralPubMed
Zurück zum Zitat Galmiche L, Serre V, Beinat M et al (2011) Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum Mutat 32:1225–1231PubMed Galmiche L, Serre V, Beinat M et al (2011) Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum Mutat 32:1225–1231PubMed
Zurück zum Zitat Garcia-Diaz B, Barros MH, Sanna-Cherchi S et al (2012) Infantile encephaloneuromyopathy and defective mitochondrial translation are due to a homozygous RMND1 mutation. Am J Hum Genet 91:729–736PubMedCentralPubMed Garcia-Diaz B, Barros MH, Sanna-Cherchi S et al (2012) Infantile encephaloneuromyopathy and defective mitochondrial translation are due to a homozygous RMND1 mutation. Am J Hum Genet 91:729–736PubMedCentralPubMed
Zurück zum Zitat Gasparre G, Hervouet E, de Laplanche E et al (2008) Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet 17:986–995PubMed Gasparre G, Hervouet E, de Laplanche E et al (2008) Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet 17:986–995PubMed
Zurück zum Zitat Gellerich FN, Mayr JA, Reuter S, Sperl W, Zierz S (2004) The problem of interlab variation in methods for mitochondrial disease diagnosis: enzymatic measurement of respiratory chain complexes. Mitochondrion 4:427–439PubMed Gellerich FN, Mayr JA, Reuter S, Sperl W, Zierz S (2004) The problem of interlab variation in methods for mitochondrial disease diagnosis: enzymatic measurement of respiratory chain complexes. Mitochondrion 4:427–439PubMed
Zurück zum Zitat Gempel K, Topaloglu H, Talim B et al (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130:2037–2044PubMedCentralPubMed Gempel K, Topaloglu H, Talim B et al (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130:2037–2044PubMedCentralPubMed
Zurück zum Zitat Ghezzi D, Baruffini E, Haack TB et al (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087PubMedCentralPubMed Ghezzi D, Baruffini E, Haack TB et al (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087PubMedCentralPubMed
Zurück zum Zitat Gibson K, Halliday JL, Kirby DM, Yaplito-Lee J, Thorburn DR, Boneh A (2008) Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses. Pediatrics 122:1003–1008PubMed Gibson K, Halliday JL, Kirby DM, Yaplito-Lee J, Thorburn DR, Boneh A (2008) Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses. Pediatrics 122:1003–1008PubMed
Zurück zum Zitat Gorman GS, Pfeffer G, Griffin H et al (2014) Clonal Expansion of Secondary Mitochondrial DNA Deletions Associated With Spinocerebellar Ataxia Type 28. JAMA Neurol 72(1):106–111 doi: 10.1001/jamaneurol.2014.1753 Gorman GS, Pfeffer G, Griffin H et al (2014) Clonal Expansion of Secondary Mitochondrial DNA Deletions Associated With Spinocerebellar Ataxia Type 28. JAMA Neurol 72(1):106–111 doi: 10.1001/jamaneurol.2014.1753
Zurück zum Zitat Grady JP, Campbell G, Ratnaike T et al (2014) Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain 137:323–334PubMedCentralPubMed Grady JP, Campbell G, Ratnaike T et al (2014) Disease progression in patients with single, large-scale mitochondrial DNA deletions. Brain 137:323–334PubMedCentralPubMed
Zurück zum Zitat Grau T, Burbulla LF, Engl G et al (2013) A novel heterozygous OPA3 mutation located in the mitochondrial target sequence results in altered steady-state levels and fragmented mitochondrial network. J Med Genet 50:848–858PubMed Grau T, Burbulla LF, Engl G et al (2013) A novel heterozygous OPA3 mutation located in the mitochondrial target sequence results in altered steady-state levels and fragmented mitochondrial network. J Med Genet 50:848–858PubMed
Zurück zum Zitat Haack TB, Kopajtich R, Freisinger P et al (2013) ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet 93:211–223PubMedCentralPubMed Haack TB, Kopajtich R, Freisinger P et al (2013) ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet 93:211–223PubMedCentralPubMed
Zurück zum Zitat Haas D, Niklowitz P, Horster F et al (2009) Coenzyme Q(10) is decreased in fibroblasts of patients with methylmalonic aciduria but not in mevalonic aciduria. J Inherit Metab Dis 32:570–575PubMed Haas D, Niklowitz P, Horster F et al (2009) Coenzyme Q(10) is decreased in fibroblasts of patients with methylmalonic aciduria but not in mevalonic aciduria. J Inherit Metab Dis 32:570–575PubMed
Zurück zum Zitat Haghighi A, Haack TB, Atiq M et al (2014) Sengers syndrome: six novel AGK mutations in seven new families and review of the phenotypic and mutational spectrum of 29 patients. Orphanet J Rare Dis 9:119PubMedCentralPubMed Haghighi A, Haack TB, Atiq M et al (2014) Sengers syndrome: six novel AGK mutations in seven new families and review of the phenotypic and mutational spectrum of 29 patients. Orphanet J Rare Dis 9:119PubMedCentralPubMed
Zurück zum Zitat Hallmann K, Zsurka G, Moskau-Hartmann S et al (2014) A homozygous splice-site mutation in CARS2 is associated with progressive myoclonic epilepsy. Neurology 83(23):2183–2187PubMed Hallmann K, Zsurka G, Moskau-Hartmann S et al (2014) A homozygous splice-site mutation in CARS2 is associated with progressive myoclonic epilepsy. Neurology 83(23):2183–2187PubMed
Zurück zum Zitat Hansen JJ, Durr A, Cournu-Rebeix I et al (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70:1328–1332PubMedCentralPubMed Hansen JJ, Durr A, Cournu-Rebeix I et al (2002) Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 70:1328–1332PubMedCentralPubMed
Zurück zum Zitat Hildick-Smith GJ, Cooney JD, Garone C et al (2013) Macrocytic anemia and mitochondriopathy resulting from a defect in sideroflexin 4. Am J Hum Genet 93:906–914PubMedCentralPubMed Hildick-Smith GJ, Cooney JD, Garone C et al (2013) Macrocytic anemia and mitochondriopathy resulting from a defect in sideroflexin 4. Am J Hum Genet 93:906–914PubMedCentralPubMed
Zurück zum Zitat Holt IJ, Jacobs HT (2014) Unique features of DNA replication in mitochondria: a functional and evolutionary perspective. Bioessays 36:1024–1031PubMed Holt IJ, Jacobs HT (2014) Unique features of DNA replication in mitochondria: a functional and evolutionary perspective. Bioessays 36:1024–1031PubMed
Zurück zum Zitat Honzik T, Tesarova M, Magner M et al (2012) Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis. J Inherit Metab Dis 35:749–759PubMed Honzik T, Tesarova M, Magner M et al (2012) Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis. J Inherit Metab Dis 35:749–759PubMed
Zurück zum Zitat Hudson G, Amati-Bonneau P, Blakely EL et al (2008) Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 131:329–337PubMed Hudson G, Amati-Bonneau P, Blakely EL et al (2008) Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain 131:329–337PubMed
Zurück zum Zitat Janer A, Antonicka H, Lalonde E et al (2012) An RMND1 Mutation causes encephalopathy associated with multiple oxidative phosphorylation complex deficiencies and a mitochondrial translation defect. Am J Hum Genet 91:737–743PubMedCentralPubMed Janer A, Antonicka H, Lalonde E et al (2012) An RMND1 Mutation causes encephalopathy associated with multiple oxidative phosphorylation complex deficiencies and a mitochondrial translation defect. Am J Hum Genet 91:737–743PubMedCentralPubMed
Zurück zum Zitat Jenkinson EM, Clayton-Smith J, Mehta S et al (2012) Perrault syndrome: further evidence for genetic heterogeneity. J Neurol 259:974–976PubMed Jenkinson EM, Clayton-Smith J, Mehta S et al (2012) Perrault syndrome: further evidence for genetic heterogeneity. J Neurol 259:974–976PubMed
Zurück zum Zitat Jin H, May M, Tranebjaerg L et al (1996) A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet 14:177–180PubMed Jin H, May M, Tranebjaerg L et al (1996) A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet 14:177–180PubMed
Zurück zum Zitat Karkucinska-Wieckowska A, Trubicka J, Werner B et al (2013) Left ventricular noncompaction (LVNC) and low mitochondrial membrane potential are specific for Barth syndrome. J Inherit Metab Dis 36:929–937PubMedCentralPubMed Karkucinska-Wieckowska A, Trubicka J, Werner B et al (2013) Left ventricular noncompaction (LVNC) and low mitochondrial membrane potential are specific for Barth syndrome. J Inherit Metab Dis 36:929–937PubMedCentralPubMed
Zurück zum Zitat Kopajtich R, Nicholls TJ, Rorbach J et al (2014) Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am J Hum Genet 95(6):708–720PubMedCentralPubMed Kopajtich R, Nicholls TJ, Rorbach J et al (2014) Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy. Am J Hum Genet 95(6):708–720PubMedCentralPubMed
Zurück zum Zitat Kornblum C, Nicholls TJ, Haack TB et al (2013) Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat Genet 45:214–219PubMedCentralPubMed Kornblum C, Nicholls TJ, Haack TB et al (2013) Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat Genet 45:214–219PubMedCentralPubMed
Zurück zum Zitat Kovarova N, Cizkova Vrbacka A, Pecina P et al (2012) Adaptation of respiratory chain biogenesis to cytochrome c oxidase deficiency caused by SURF1 gene mutations. Biochim Biophys Acta 1822:1114–1124PubMed Kovarova N, Cizkova Vrbacka A, Pecina P et al (2012) Adaptation of respiratory chain biogenesis to cytochrome c oxidase deficiency caused by SURF1 gene mutations. Biochim Biophys Acta 1822:1114–1124PubMed
Zurück zum Zitat Leshinsky-Silver E, Malinger G, Ben-Sira L et al (2011) A large homozygous deletion in the SAMHD1 gene causes atypical Aicardi-Goutieres syndrome associated with mtDNA deletions. Eur J Hum Genet 19:287–292PubMedCentralPubMed Leshinsky-Silver E, Malinger G, Ben-Sira L et al (2011) A large homozygous deletion in the SAMHD1 gene causes atypical Aicardi-Goutieres syndrome associated with mtDNA deletions. Eur J Hum Genet 19:287–292PubMedCentralPubMed
Zurück zum Zitat Liu G, Guo S, Anderson GJ, Camaschella C, Han B, Nie G (2014) Heterozygous missense mutations in the GLRX5 gene cause sideroblastic anemia in a Chinese patient. Blood 124:2750–2751PubMed Liu G, Guo S, Anderson GJ, Camaschella C, Han B, Nie G (2014) Heterozygous missense mutations in the GLRX5 gene cause sideroblastic anemia in a Chinese patient. Blood 124:2750–2751PubMed
Zurück zum Zitat Lopez LC, Schuelke M, Quinzii CM et al (2006) Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 79:1125–1129PubMedCentralPubMed Lopez LC, Schuelke M, Quinzii CM et al (2006) Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 79:1125–1129PubMedCentralPubMed
Zurück zum Zitat Loupatty FJ, Clayton PT, Ruiter JP et al (2007) Mutations in the gene encoding 3-hydroxyisobutyryl-CoA hydrolase results in progressive infantile neurodegeneration. Am J Hum Genet 80:195–199PubMedCentralPubMed Loupatty FJ, Clayton PT, Ruiter JP et al (2007) Mutations in the gene encoding 3-hydroxyisobutyryl-CoA hydrolase results in progressive infantile neurodegeneration. Am J Hum Genet 80:195–199PubMedCentralPubMed
Zurück zum Zitat Mayr JA (2014) Lipid metabolism in mitochondrial membranes. J Inherit Metab Dis 38(1):137–144PubMed Mayr JA (2014) Lipid metabolism in mitochondrial membranes. J Inherit Metab Dis 38(1):137–144PubMed
Zurück zum Zitat Mayr JA, Haack TB, Graf E et al (2012) Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. Am J Hum Genet 90:314–320PubMedCentralPubMed Mayr JA, Haack TB, Graf E et al (2012) Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. Am J Hum Genet 90:314–320PubMedCentralPubMed
Zurück zum Zitat Mayr JA, Feichtinger RG, Tort F, Ribes A, Sperl W (2014) Lipoic acid biosynthesis defects. J Inherit Metab Dis 37:553–563PubMed Mayr JA, Feichtinger RG, Tort F, Ribes A, Sperl W (2014) Lipoic acid biosynthesis defects. J Inherit Metab Dis 37:553–563PubMed
Zurück zum Zitat McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361:462–469PubMed McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361:462–469PubMed
Zurück zum Zitat Melchionda L, Haack TB, Hardy S et al (2014) Mutations in APOPT1, encoding a mitochondrial protein, cause cavitating leukoencephalopathy with cytochrome c oxidase deficiency. Am J Hum Genet 95:315–325PubMedCentralPubMed Melchionda L, Haack TB, Hardy S et al (2014) Mutations in APOPT1, encoding a mitochondrial protein, cause cavitating leukoencephalopathy with cytochrome c oxidase deficiency. Am J Hum Genet 95:315–325PubMedCentralPubMed
Zurück zum Zitat Miller C, Saada A, Shaul N et al (2004) Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann Neurol 56:734–738PubMed Miller C, Saada A, Shaul N et al (2004) Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann Neurol 56:734–738PubMed
Zurück zum Zitat Miyake N, Yano S, Sakai C et al (2013) Mitochondrial complex III deficiency caused by a homozygous UQCRC2 mutation presenting with neonatal-onset recurrent metabolic decompensation. Hum Mutat 34:446–452PubMed Miyake N, Yano S, Sakai C et al (2013) Mitochondrial complex III deficiency caused by a homozygous UQCRC2 mutation presenting with neonatal-onset recurrent metabolic decompensation. Hum Mutat 34:446–452PubMed
Zurück zum Zitat Morino H, Pierce SB, Matsuda Y et al (2014) Mutations in Twinkle primase-helicase cause Perrault syndrome with neurologic features. Neurology 83(22):2054–2061PubMed Morino H, Pierce SB, Matsuda Y et al (2014) Mutations in Twinkle primase-helicase cause Perrault syndrome with neurologic features. Neurology 83(22):2054–2061PubMed
Zurück zum Zitat Morison IM, Cramer Borde EM, Cheesman EJ et al (2008) A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat Genet 40:387–389PubMed Morison IM, Cramer Borde EM, Cheesman EJ et al (2008) A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat Genet 40:387–389PubMed
Zurück zum Zitat Nesbitt V, Pitceathly RD, Turnbull DM et al (2013) The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m.3243A > G mutation–implications for diagnosis and management. J Neurol Neurosurg Psychiatry 84:936–938PubMed Nesbitt V, Pitceathly RD, Turnbull DM et al (2013) The UK MRC Mitochondrial Disease Patient Cohort Study: clinical phenotypes associated with the m.3243A > G mutation–implications for diagnosis and management. J Neurol Neurosurg Psychiatry 84:936–938PubMed
Zurück zum Zitat Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749PubMed Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749PubMed
Zurück zum Zitat Newman WG, Friedman TB, Conway GS (1993) Perrault Syndrome. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews, Seattle (WA) Newman WG, Friedman TB, Conway GS (1993) Perrault Syndrome. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews, Seattle (WA)
Zurück zum Zitat O'Toole JF, Liu Y, Davis EE et al (2010) Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. J Clin Invest 120:791–802PubMedCentralPubMed O'Toole JF, Liu Y, Davis EE et al (2010) Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. J Clin Invest 120:791–802PubMedCentralPubMed
Zurück zum Zitat Pfeffer G, Gorman GS, Griffin H et al (2014) Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain 137:1323–1336PubMedCentralPubMed Pfeffer G, Gorman GS, Griffin H et al (2014) Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain 137:1323–1336PubMedCentralPubMed
Zurück zum Zitat Prasad C, Melancon SB, Rupar CA et al (2013) Exome sequencing reveals a homozygous mutation in TWINKLE as the cause of multisystemic failure including renal tubulopathy in three siblings. Mol Genet Metab 108:190–194PubMed Prasad C, Melancon SB, Rupar CA et al (2013) Exome sequencing reveals a homozygous mutation in TWINKLE as the cause of multisystemic failure including renal tubulopathy in three siblings. Mol Genet Metab 108:190–194PubMed
Zurück zum Zitat Puy H, Gouya L, Deybach JC (2010) Porphyrias. Lancet 375:924–937PubMed Puy H, Gouya L, Deybach JC (2010) Porphyrias. Lancet 375:924–937PubMed
Zurück zum Zitat Quinzii CM, Kattah AG, Naini A et al (2005) Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 64:539–541PubMed Quinzii CM, Kattah AG, Naini A et al (2005) Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 64:539–541PubMed
Zurück zum Zitat Quinzii CM, Emmanuele V, Hirano M (2014) Clinical presentations of coenzyme Q10 deficiency syndrome. Mol Syndromol 5:141–146PubMedCentralPubMed Quinzii CM, Emmanuele V, Hirano M (2014) Clinical presentations of coenzyme Q10 deficiency syndrome. Mol Syndromol 5:141–146PubMedCentralPubMed
Zurück zum Zitat Rackham O, Filipovska A (2014) Supernumerary proteins of mitochondrial ribosomes. Biochim Biophys Acta 1840:1227–1232PubMed Rackham O, Filipovska A (2014) Supernumerary proteins of mitochondrial ribosomes. Biochim Biophys Acta 1840:1227–1232PubMed
Zurück zum Zitat Rahman S (2013) Gastrointestinal and hepatic manifestations of mitochondrial disorders. J Inherit Metab Dis 36:659–673PubMed Rahman S (2013) Gastrointestinal and hepatic manifestations of mitochondrial disorders. J Inherit Metab Dis 36:659–673PubMed
Zurück zum Zitat Richter-Dennerlein R, Korwitz A, Haag M et al (2014) DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. Cell Metab 20:158–171PubMed Richter-Dennerlein R, Korwitz A, Haag M et al (2014) DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. Cell Metab 20:158–171PubMed
Zurück zum Zitat Riley LG, Cooper S, Hickey P et al (2010) Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia–MLASA syndrome. Am J Hum Genet 87:52–59PubMedCentralPubMed Riley LG, Cooper S, Hickey P et al (2010) Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia–MLASA syndrome. Am J Hum Genet 87:52–59PubMedCentralPubMed
Zurück zum Zitat Ronchi D, Di Fonzo A, Lin W et al (2013) Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Am J Hum Genet 92:293–300PubMedCentralPubMed Ronchi D, Di Fonzo A, Lin W et al (2013) Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Am J Hum Genet 92:293–300PubMedCentralPubMed
Zurück zum Zitat Rouzier C, Bannwarth S, Chaussenot A et al (2012) The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy 'plus' phenotype. Brain 135:23–34PubMed Rouzier C, Bannwarth S, Chaussenot A et al (2012) The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy 'plus' phenotype. Brain 135:23–34PubMed
Zurück zum Zitat Ruiz-Pesini E, Lott MT, Procaccio V et al (2007) An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res 35:D823–D828PubMedCentralPubMed Ruiz-Pesini E, Lott MT, Procaccio V et al (2007) An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res 35:D823–D828PubMedCentralPubMed
Zurück zum Zitat Saada A, Shaag A, Arnon S et al (2007) Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J Med Genet 44:784–786PubMedCentralPubMed Saada A, Shaag A, Arnon S et al (2007) Antenatal mitochondrial disease caused by mitochondrial ribosomal protein (MRPS22) mutation. J Med Genet 44:784–786PubMedCentralPubMed
Zurück zum Zitat Sakai C, Yamaguchi S, Sasaki M, Miyamoto Y, Matsushima Y, Goto YI (2014) ECHS1 mutations cause combined respiratory chain deficiency resulting Leigh syndrome. Hum Mutat 36(2):232–239 Sakai C, Yamaguchi S, Sasaki M, Miyamoto Y, Matsushima Y, Goto YI (2014) ECHS1 mutations cause combined respiratory chain deficiency resulting Leigh syndrome. Hum Mutat 36(2):232–239
Zurück zum Zitat Santorelli FM, Tanji K, Sano M et al (1997) Maternally inherited encephalopathy associated with a single-base insertion in the mitochondrial tRNATrp gene. Ann Neurol 42:256–260PubMed Santorelli FM, Tanji K, Sano M et al (1997) Maternally inherited encephalopathy associated with a single-base insertion in the mitochondrial tRNATrp gene. Ann Neurol 42:256–260PubMed
Zurück zum Zitat Sarkar D, Fisher PB (2006) Human polynucleotide phosphorylase (hPNPase old-35): an RNA degradation enzyme with pleiotrophic biological effects. Cell Cycle 5:1080–1084PubMed Sarkar D, Fisher PB (2006) Human polynucleotide phosphorylase (hPNPase old-35): an RNA degradation enzyme with pleiotrophic biological effects. Cell Cycle 5:1080–1084PubMed
Zurück zum Zitat Sasarman F, Brunel-Guitton C, Antonicka H, Wai T, Shoubridge EA (2010) LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 21:1315–1323PubMedCentralPubMed Sasarman F, Brunel-Guitton C, Antonicka H, Wai T, Shoubridge EA (2010) LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 21:1315–1323PubMedCentralPubMed
Zurück zum Zitat Scaglia F, Towbin JA, Craigen WJ et al (2004) Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 114:925–931PubMed Scaglia F, Towbin JA, Craigen WJ et al (2004) Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 114:925–931PubMed
Zurück zum Zitat Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783PubMedCentralPubMed Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783PubMedCentralPubMed
Zurück zum Zitat Schon EA, DiMauro S, Hirano M (2012) Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 13:878–890PubMedCentralPubMed Schon EA, DiMauro S, Hirano M (2012) Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet 13:878–890PubMedCentralPubMed
Zurück zum Zitat Schrader M, Bonekamp NA, Islinger M (2012) Fission and proliferation of peroxisomes. Biochim Biophys Acta 1822:1343–1357PubMed Schrader M, Bonekamp NA, Islinger M (2012) Fission and proliferation of peroxisomes. Biochim Biophys Acta 1822:1343–1357PubMed
Zurück zum Zitat Schwartzentruber J, Buhas D, Majewski J et al (2014) Mutation in the nuclear-encoded mitochondrial isoleucyl-tRNA synthetase IARS2 in patients with cataracts, growth hormone deficiency with short stature, partial sensorineural deafness, and peripheral neuropathy or with Leigh syndrome. Hum Mutat 35:1285–1289 Schwartzentruber J, Buhas D, Majewski J et al (2014) Mutation in the nuclear-encoded mitochondrial isoleucyl-tRNA synthetase IARS2 in patients with cataracts, growth hormone deficiency with short stature, partial sensorineural deafness, and peripheral neuropathy or with Leigh syndrome. Hum Mutat 35:1285–1289
Zurück zum Zitat Serre V, Rozanska A, Beinat M et al (2013) Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neurological deterioration and mitochondrial translation deficiency. Biochim Biophys Acta 1832:1304–1312PubMedCentralPubMed Serre V, Rozanska A, Beinat M et al (2013) Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neurological deterioration and mitochondrial translation deficiency. Biochim Biophys Acta 1832:1304–1312PubMedCentralPubMed
Zurück zum Zitat Shamseldin HE, Alshammari M, Al-Sheddi T et al (2012) Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet 49:234–241PubMed Shamseldin HE, Alshammari M, Al-Sheddi T et al (2012) Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet 49:234–241PubMed
Zurück zum Zitat Smeitink JA, Elpeleg O, Antonicka H et al (2006) Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am J Hum Genet 79:869–877PubMedCentralPubMed Smeitink JA, Elpeleg O, Antonicka H et al (2006) Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs. Am J Hum Genet 79:869–877PubMedCentralPubMed
Zurück zum Zitat Stehling O, Wilbrecht C, Lill R (2014) Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 100:61–77PubMed Stehling O, Wilbrecht C, Lill R (2014) Mitochondrial iron-sulfur protein biogenesis and human disease. Biochimie 100:61–77PubMed
Zurück zum Zitat Suzuki T, Nagao A (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329PubMed Suzuki T, Nagao A (2011) Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45:299–329PubMed
Zurück zum Zitat Taylor RW, Pyle A, Griffin H et al (2014) Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312:68–77PubMed Taylor RW, Pyle A, Griffin H et al (2014) Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312:68–77PubMed
Zurück zum Zitat Tchikviladze M, Gilleron M, Maisonobe T, et al (2014) A diagnostic flow chart for POLG-related diseases based on signs sensitivity and specificity. J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2013-306799 Tchikviladze M, Gilleron M, Maisonobe T, et al (2014) A diagnostic flow chart for POLG-related diseases based on signs sensitivity and specificity. J Neurol Neurosurg Psychiatry. doi:10.​1136/​jnnp-2013-306799
Zurück zum Zitat Thorburn DR, Rahman S (1993) Mitochondrial DNA-associated Leigh syndrome and NARP. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews, University of Washington, Seattle (WA) Thorburn DR, Rahman S (1993) Mitochondrial DNA-associated Leigh syndrome and NARP. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews, University of Washington, Seattle (WA)
Zurück zum Zitat Tiranti V, Viscomi C, Hildebrandt T et al (2009) Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 15:200–205PubMed Tiranti V, Viscomi C, Hildebrandt T et al (2009) Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 15:200–205PubMed
Zurück zum Zitat Tucker EJ, Hershman SG, Kohrer C et al (2011) Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab 14:428–434PubMedCentralPubMed Tucker EJ, Hershman SG, Kohrer C et al (2011) Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab 14:428–434PubMedCentralPubMed
Zurück zum Zitat Valente L, Tiranti V, Marsano RM et al (2007) Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am J Hum Genet 80:44–58PubMedCentralPubMed Valente L, Tiranti V, Marsano RM et al (2007) Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu. Am J Hum Genet 80:44–58PubMedCentralPubMed
Zurück zum Zitat van Rahden VA, Rau I, Fuchs S et al (2014) Clinical spectrum of females with HCCS mutation: from no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome. Orphanet J Rare Dis 9:53PubMedCentralPubMed van Rahden VA, Rau I, Fuchs S et al (2014) Clinical spectrum of females with HCCS mutation: from no clinical signs to a neonatal lethal form of the microphthalmia with linear skin defects (MLS) syndrome. Orphanet J Rare Dis 9:53PubMedCentralPubMed
Zurück zum Zitat Vanlander AV, Menten B, Smet J et al (2014) Two siblings with homozygous pathogenic splice site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2). Hum Mutat 36(2):222–231 doi: 10.1002/humu.22728 Vanlander AV, Menten B, Smet J et al (2014) Two siblings with homozygous pathogenic splice site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2). Hum Mutat 36(2):222–231 doi: 10.1002/humu.22728
Zurück zum Zitat Vedrenne V, Galmiche L, Chretien D, de Lonlay P, Munnich A, Rotig A (2012a) Mutation in the mitochondrial translation elongation factor EFTs results in severe infantile liver failure. J Hepatol 56:294–297PubMed Vedrenne V, Galmiche L, Chretien D, de Lonlay P, Munnich A, Rotig A (2012a) Mutation in the mitochondrial translation elongation factor EFTs results in severe infantile liver failure. J Hepatol 56:294–297PubMed
Zurück zum Zitat Vedrenne V, Gowher A, De Lonlay P et al (2012b) Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet 91:912–918PubMedCentralPubMed Vedrenne V, Gowher A, De Lonlay P et al (2012b) Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet 91:912–918PubMedCentralPubMed
Zurück zum Zitat Vogtle FN, Wortelkamp S, Zahedi RP et al (2009) Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139:428–439PubMed Vogtle FN, Wortelkamp S, Zahedi RP et al (2009) Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139:428–439PubMed
Zurück zum Zitat Wang G, Shimada E, Koehler CM, Teitell MA (2012) PNPASE and RNA trafficking into mitochondria. Biochim Biophys Acta 1819:998–1007PubMedCentralPubMed Wang G, Shimada E, Koehler CM, Teitell MA (2012) PNPASE and RNA trafficking into mitochondria. Biochim Biophys Acta 1819:998–1007PubMedCentralPubMed
Zurück zum Zitat Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741PubMed Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741PubMed
Zurück zum Zitat Wedding IM, Koht J, Tran GT et al (2014) Spastic paraplegia type 7 is associated with multiple mitochondrial DNA deletions. PLoS One 9:e86340PubMedCentralPubMed Wedding IM, Koht J, Tran GT et al (2014) Spastic paraplegia type 7 is associated with multiple mitochondrial DNA deletions. PLoS One 9:e86340PubMedCentralPubMed
Zurück zum Zitat Wittig I, Schagger H (2008) Structural organization of mitochondrial ATP synthase. Biochim Biophys Acta 1777:592–598PubMed Wittig I, Schagger H (2008) Structural organization of mitochondrial ATP synthase. Biochim Biophys Acta 1777:592–598PubMed
Zurück zum Zitat Wortmann SB, De Brouwer APM, Wevers RA, Morava E (1993) MEGDEL syndrome. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews(R), University of Washington, Seattle (WA) Wortmann SB, De Brouwer APM, Wevers RA, Morava E (1993) MEGDEL syndrome. In: Pagon RA, Adam MP, Ardinger HH et al (eds) GeneReviews(R), University of Washington, Seattle (WA)
Zurück zum Zitat Wortmann SB, Vaz FM, Gardeitchik T et al (2012) Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet 44:797–802PubMed Wortmann SB, Vaz FM, Gardeitchik T et al (2012) Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet 44:797–802PubMed
Zurück zum Zitat Wortmann SB, Kluijtmans LA, Rodenburg RJ et al (2013) 3-Methylglutaconic aciduria–lessons from 50 genes and 977 patients. J Inherit Metab Dis 36:913–921PubMed Wortmann SB, Kluijtmans LA, Rodenburg RJ et al (2013) 3-Methylglutaconic aciduria–lessons from 50 genes and 977 patients. J Inherit Metab Dis 36:913–921PubMed
Zurück zum Zitat Yano H, Baranov SV, Baranova OV et al (2014) Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci 17:822–831PubMedCentralPubMed Yano H, Baranov SV, Baranova OV et al (2014) Inhibition of mitochondrial protein import by mutant huntingtin. Nat Neurosci 17:822–831PubMedCentralPubMed
Zurück zum Zitat Yarham JW, Lamichhane TN, Pyle A et al (2014) Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLoS Genet 10:e1004424PubMedCentralPubMed Yarham JW, Lamichhane TN, Pyle A et al (2014) Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLoS Genet 10:e1004424PubMedCentralPubMed
Zurück zum Zitat Zeharia A, Shaag A, Pappo O et al (2009) Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet 85:401–407PubMedCentralPubMed Zeharia A, Shaag A, Pappo O et al (2009) Acute infantile liver failure due to mutations in the TRMU gene. Am J Hum Genet 85:401–407PubMedCentralPubMed
Zurück zum Zitat Zierz CM, Joshi PR, Zierz S (2014) Frequencies of myohistological mitochondrial changes in patients with mitochondrial DNA deletions and the common m.3243A > G point mutation. Neuropathology. doi:10.1111/neup.12173 Zierz CM, Joshi PR, Zierz S (2014) Frequencies of myohistological mitochondrial changes in patients with mitochondrial DNA deletions and the common m.3243A > G point mutation. Neuropathology. doi:10.​1111/​neup.​12173
Zurück zum Zitat Zimmermann FA, Mayr JA, Feichtinger R et al (2011) Respiratory chain complex I is a mitochondrial tumor suppressor of oncocytic tumors. Front Biosci (Elite Ed) 3:315–325 Zimmermann FA, Mayr JA, Feichtinger R et al (2011) Respiratory chain complex I is a mitochondrial tumor suppressor of oncocytic tumors. Front Biosci (Elite Ed) 3:315–325
Metadaten
Titel
Spectrum of combined respiratory chain defects
verfasst von
Johannes A. Mayr
Tobias B. Haack
Peter Freisinger
Daniela Karall
Christine Makowski
Johannes Koch
René G. Feichtinger
Franz A. Zimmermann
Boris Rolinski
Uwe Ahting
Thomas Meitinger
Holger Prokisch
Wolfgang Sperl
Publikationsdatum
01.07.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Inherited Metabolic Disease / Ausgabe 4/2015
Print ISSN: 0141-8955
Elektronische ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-015-9831-y

Weitere Artikel der Ausgabe 4/2015

Journal of Inherited Metabolic Disease 4/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.