Skip to main content
Log in

Not all approved antibiotic-loaded PMMA bone cement brands are the same: ranking using the utility materials selection concept

  • Clinical Applications of Biomaterials
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the literature on in vitro characterization of approved antibiotic-loaded poly(methyl methacrylate) bone cement brands, there is no information on the basis for selection of a given brand for use in cemented arthroplasties. This shortcoming is addressed in the present study. It involved determining four key properties (fatigue limit, fracture toughness, polymerization rate, and phosphate buffered saline diffusion coefficient) for six brands and then using the mean property values, in conjunction with a materials selection methodology, called the utility concept, to rank the brands. It is emphasized that the present work is an illustration of a rational approach to selection of a cement brand and, as such, the study findings are not intended to be recommendations regarding clinical use or otherwise of a brand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bourne RB. Prophylactic use of antibiotic bone cement. J Arthrop. 2004;19(4, Suppl 1):69.

    Article  Google Scholar 

  2. Jiranek WA, Hanssen AD, Greenwald AS. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg A. 2006;88:2487.

    Article  Google Scholar 

  3. Lewis G. Properties of antibiotic-loaded acrylic bone cements for use in cemented arthroplasties: a state-of-the-art review. J Biomed Mater Res B. 2009;89:558.

    Article  Google Scholar 

  4. Australian Orthopaedic Association (AOA). Cement in hip & knee arthroplasty; Supplementary Report 2013; National Joint Replacement Registry 2013. Adelaide: AOA; 2013.

    Google Scholar 

  5. Karande P, Gauri SK, Chakraborty S. Applications of utility concept and desirability function for materials selection. Mat Des. 2013;45:349.

    Article  Google Scholar 

  6. American Society for Testing and Materials (ASTM). Standard F 2118-10: Standard test method for constant amplitude of force controlled fatigue testing of acrylic bone cement materials. ASTM International, West Conshohocken, PA, USA; 2011.

  7. Lewis G, Madigan S, Towler MR. Influence of strontia on various properties of Surgical Simplex®P acrylic bone cement and experimental variants. Acta Biomater. 2007;3:970.

    Article  Google Scholar 

  8. Lewis G, Brooks JL, Courtney HS, Li Y, Haggard WO. An approach for determining antibiotic loading for a physician-directed antibiotic-loaded PMMA bone cement formulation. Clin Orthop Rel Res. 2010;468:2092.

    Article  Google Scholar 

  9. Kurtz SM, Villarraga ML, Zhao K, Edidin AA. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures. Biomaterials. 2005;26:3699–712.

    Article  Google Scholar 

  10. Krause W, Mathis RS, Grimes LW. Fatigue properties of acrylic bone cement: S-N, P-N, and P-S-N data. J Biomed Mater Res. 1988;22(A3):221.

    Article  Google Scholar 

  11. American Society for Testing and Materials (ASTM), Standard D5045-99 (Reapproved 2007): Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials. ASTM International, West Conshohocken; 2007.

  12. Lewis G, Janna S. Preheating acrylic bone cement powder is not recommended for all brands. J Arthop. 2007;22:428.

    Article  Google Scholar 

  13. Lewis G, Mishra SR. Influence of changes in the composition of an acrylic bone cement on its polymerization kinetics. J Biomed Mater Res. 2007;81B:524.

    Article  Google Scholar 

  14. Crank J. The mathematics of diffusion. 2nd ed. London: Oxford University Press; 1975. p. 44–68.

    Google Scholar 

  15. Callister Jr WD. Materials science and engineering: an introduction. 7th ed; pp. A3–A6. New York: John Wiley & Sons, Inc.; 2007.

  16. Thakker A, Jarvis J, Buggy M, Sahed A. A novel approach to materials selection strategy case study: wave energy extraction impulse turbine blade. Mat Des. 2008;29:1973.

    Article  Google Scholar 

  17. Lewis G. Fatigue testing and performance of acrylic bone cement: state-of-the-art review. J Biomed Mater Res Part B. 2003;66B:457.

    Article  Google Scholar 

  18. Dowling NE. Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. 3rd ed. Upper Saddle River: Pearson Prentice Hall; 2006. p. 5–6.

    Google Scholar 

  19. Morejon L, Delgado JA, Davidenko N, Mendizabal E, Barbosa EH. Kinetic effect of hydroxyapatite types on the polymerization of acrylic bone cements. Int J Polym Mater. 2003;52:637.

    Article  Google Scholar 

  20. Kusy KP, Whitley JQ, Kalachandra S. Mechanical properties and interrelationships of poly(methyl methacrylate) following hydration over saturated salts. Polymer. 2001;42:2585–95.

    Article  Google Scholar 

  21. Kuhn K-D, Ege W, Gopp U. Acrylic bone cements: mechanical and physical properties. Orthop Clin North Am. 2005;36:29–39.

    Article  Google Scholar 

  22. Lewis G, Xu J, Deb S, Lasa BV. San Roman J. Influence of the activator in an acrylic bone cement on an array of cement properties. J Biomed Mater Res. 2007;81A:544.

    Article  Google Scholar 

  23. Kuhn K-D. PMMA cements: are we aware what we are using?. Berlin: Springer-Verlag; 2014.

    Google Scholar 

  24. Milani AS, Shanian A, Madoliat R, Nemes JA. The effect of normalization norms in multiple attribute decision making methods: a case study in gear material selection. Struct Multidisc Optim. 2005;29:312.

    Article  Google Scholar 

  25. Shanian A, Savadogo O. A material selection model based on the concept of multiple attribute decision making. Mater Des. 2006;27:329.

    Article  Google Scholar 

  26. Rao RV, Patel BK. A subjective and objective integrated multiple attribute decision making method for material selection. Mater Des. 2010;31:4738–47.

    Article  Google Scholar 

  27. Chatterjee P, Athawale VM, Chakroborty S. Materials selection using complex proportional assessment and evaluation of mixed data methods. Mater Des. 2011;32:851–60.

    Article  Google Scholar 

  28. Karande P, Chakroborty S. Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection. Mater Des. 2012;37:317.

    Article  Google Scholar 

  29. Chatterjee P, Chakraborty S. Material selection using preferential ranking methods. Mater Des. 2012;35:384.

    Article  Google Scholar 

  30. Saaty TL. Fundamentals of decision making and priority theory with AHP. Pittsburg: RWS Publications; 2000.

    Google Scholar 

  31. Jee DH, Kang KJ. A method for optimal material selection aided with decision making theory. Mater Des. 2000;21:199–206.

    Article  Google Scholar 

  32. Rao RV, Patel BK. A subjective and objective integrated multiple decision making method for material selection. Mater Des. 2010;31:4738–47.

    Article  Google Scholar 

  33. Dunne NJ, Hill J, McAfee P, Kirkpatrick R, Patrick S, Tunney M. Incorporation of large amounts of gentamicin sulphate into acrylic bone cement: effect on handling and mechanical properties, antibiotic release, and biofilm formation. Proc IMechE Part H: J Engineering in Med. 2008;222:355–65.

    Article  Google Scholar 

  34. Al Mohajer M, Darouiche RO. The expanding horizon of prosthetic joint infections. J Appl Biomater Funct Mater. 2014;12:1–12.

  35. Scott CP, Higham PA. Antibiotic bone cement for the treatment of pseudomonas aeruginosa in joint arthroplasty; comparison of tobramycin and gentamicin-loaded cements. J Biomed Mater Res Part B. 2003;64B:94.

    Article  Google Scholar 

  36. Neut D, van de belt H, van Horn JR, van der Mei HC, Busscher HJ. The effect of mixing on gentamicin on gentamicin release from poly-methylmethacrylate bone cements. Acta Orthop Scand. 2003;74:670.

  37. Langdown AJ, Tsai N, Auld J, Walsh WR, Walker P, Bruce WJM. The influence of ambient theater temperature on cement setting time. J Arthrop. 2006;21:381.

    Article  Google Scholar 

  38. Squire MW, Ludwig BJ, Thompson JR, Jagodzinski J, Hall D, Andes D. Premixed antibiotic bone cement: an in vitro comparison of antimicrobial efficacy. J Arthop. 2008;23(6, Suppl 1):110.

    Article  Google Scholar 

  39. Ensing GT, van Horn JR, van der Mei HC, Busscher HJ, Neut D. Copal bone cement is more effective in preventing biofilm formation than Palacos R-G. Clin Orthop Rel Res. 2008;466:1492.

    Article  Google Scholar 

  40. Kock HJ, Huber FX, Hillmeier J, Jager R, Volkmann R, Hanschin AE, Letsch R, Meeder PJ. In vitro studies on various PMMA bone cements: a first comparison of new materials for arthroplasty. Z Orthop Unfall. 2008;146:108.

    Google Scholar 

  41. van de Belt H, Neut D, Uges DRA, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials. 2000;21:1981.

    Article  Google Scholar 

  42. Brock HS, Moodle PG, Hendricks KJ, McIff TE. Compression strength and porosity of single-antibiotic cement vacuum-mixed with vancomycin. J Arthop. 2010;25:990.

    Article  Google Scholar 

  43. Miola M, Bistolfi A, Valsania MC, Biano C, Fucale G, Verne E. Antibiotic-loaded acrylic bone cements: an in vitro study on the release mechanism and its efficacy. Mater Sci Eng C. 2013;33:3025.

    Article  Google Scholar 

  44. Armstrong MS, Spencer RF, Cunningham JL, Gheduzzi S, Miles AW, Learmoth ID. Mechanical characteristics of antibiotic-laden bone cement. Acta Orthop Scand. 2002;73:688.

    Article  Google Scholar 

  45. Postak PD, Greenwald AS. The influence of antibiotics on the fatigue life of acrylic bone cement. J Bone Joint Surg A. 2006;88(Suppl 1):148.

    Article  Google Scholar 

  46. Gravius S, Wirz DC, Mars R, Maus U, Andereya S, Muller-Rath R, Mumme T. Mechanical in vitro testing of fifteen commercial bone cements based on poly(methylmethacrylate). Z Orthop Unfall. 2007;145:579.

    Google Scholar 

  47. Barletta A, Schonning A, Cotton R, Armitage M, Wlundyka P, Patney M. Testing and comparison of mechanical properties of commercial bone cements. Exp Tech. 2008;32:48.

    Article  Google Scholar 

  48. Bridgens J, Davies S, Tiley L, Norman P, Stockley L. Orthopaedic bone cement: do we know what we are using? J Bone Joint Surg. 2008;90B:643.

    Article  Google Scholar 

  49. Meyer J, Piller G, Spiegel CA, Hetzel S, Squire M. Vacuum-mixing significantly changes antibiotic elution characteristics of commercially-available antibiotic-impregnated bone cements. J Bone Joint Surg. 2011;93A:2049.

    Google Scholar 

  50. Koster U, Jaeger R, Bardts M, Wahnes C, Buchner H, Kuhn K-D, Vogt S. Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements. J Mater Sci Mater Med. 2013;24:1395.

    Article  Google Scholar 

  51. Nottrott M. Acrylic bone cements: influence of time and environment on physical properties. Acta Orthop. 2010;81(341):1–27.

    Google Scholar 

  52. Dall GF, Simpson PMS, Breusch S. In vitro comparison of Refobacin-Palacos R with Refobacin bone cement and Palacos R+G. Acta Orthop Scand. 2007;78:404.

    Article  Google Scholar 

  53. Dall GF, Simpson PMS, Mackenzie SP, Breusch SJ. Inter- and intra-batch variability in the handling characteristics and viscosity of commonly used antibiotic-loaded bone cements. Acta Orthop Scand. 2007;78:412.

    Article  Google Scholar 

  54. Davies JP, O’Connor DO, Burke DW, Harris WH. Influence of antibiotic impregnation on the fatigue life of Simplex P and Palacos R acrylic bone cements, with and without centrifugation. J Biomed Mater Res. 1989;23:379.

    Article  Google Scholar 

  55. Tanner KE, Wang J-S, Kjellson F, Lidgren L. Comparison of two methods of fatigue testing bone cement. Acta Biomater. 2010;6:943.

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Biomet (Warsaw, IN, USA), DePuy Ltd (Blackpool, UK), Stryker Orthopaedics (Limerick, Ireland), and Zimmer Surgical (Dover, OH, USA), for donating generous amounts of the cement brands; Si Janna, PhD, Yuan Li, PhD, Phil Simek, MS, Jie Gao, PhD, and Aubrey Mills, BS, for contributions to the experimental work; and Rick Kowalski, PhD, for insighful comments on a draft of the discussion section of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladius Lewis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewis, G. Not all approved antibiotic-loaded PMMA bone cement brands are the same: ranking using the utility materials selection concept. J Mater Sci: Mater Med 26, 48 (2015). https://doi.org/10.1007/s10856-015-5388-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5388-4

Keywords

Navigation