Skip to main content
Erschienen in: Current Cardiology Reports 6/2014

01.06.2014 | Cardiovascular Genomics (R McPherson, Section Editor)

Genetics of Valvular Heart Disease

verfasst von: Stephanie LaHaye, Joy Lincoln, Vidu Garg

Erschienen in: Current Cardiology Reports | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Valvular heart disease is associated with significant morbidity and mortality and often the result of congenital malformations. However, the prevalence is increasing in adults not only because of the growing aging population, but also because of improvements in the medical and surgical care of children with congenital heart valve defects. The success of the Human Genome Project and major advances in genetic technologies, in combination with our increased understanding of heart valve development, has led to the discovery of numerous genetic contributors to heart valve disease. These have been uncovered using a variety of approaches including the examination of familial valve disease and genome-wide association studies to investigate sporadic cases. This review will discuss these findings and their implications in the treatment of valvular heart disease.
Literatur
1.
Zurück zum Zitat Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.PubMedCrossRef Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.PubMedCrossRef
2.
Zurück zum Zitat Hoffman JI, Kaplan S. The incidence of congenital heart disease. JACC. 2002;12:1890–900.CrossRef Hoffman JI, Kaplan S. The incidence of congenital heart disease. JACC. 2002;12:1890–900.CrossRef
4.
Zurück zum Zitat Garg V. Growth of the normal human heart. In: Preedy VR, editor. Handbook of growth and growth monitoring in health and disease. New York: Springer; 2011. Garg V. Growth of the normal human heart. In: Preedy VR, editor. Handbook of growth and growth monitoring in health and disease. New York: Springer; 2011.
5.
Zurück zum Zitat Garg V. Molecular basis of cardiac development and congenital heart disease. In: Patterson C, Willis M, editors. Translational Cardiology. New York: Humana Press; 2012. Garg V. Molecular basis of cardiac development and congenital heart disease. In: Patterson C, Willis M, editors. Translational Cardiology. New York: Humana Press; 2012.
6.
Zurück zum Zitat Garg V. Insights into the genetic basis of congenital heart disease. Cell Mol Life Sci. 2006;63:1141–8.PubMedCrossRef Garg V. Insights into the genetic basis of congenital heart disease. Cell Mol Life Sci. 2006;63:1141–8.PubMedCrossRef
8.
Zurück zum Zitat Fishman MC, Chien KR. Fashioning the vertebrate heart: earliest embryonic decisions. Development. 1997;124:2099–117.PubMed Fishman MC, Chien KR. Fashioning the vertebrate heart: earliest embryonic decisions. Development. 1997;124:2099–117.PubMed
9.
Zurück zum Zitat Brown CB, Boyer AS, Runyan RB, Barnett JV. Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science. 1999;283:2080–2.PubMedCrossRef Brown CB, Boyer AS, Runyan RB, Barnett JV. Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science. 1999;283:2080–2.PubMedCrossRef
10.
Zurück zum Zitat Nakajima Y, Yamagishi T, Hokari S, Nakamura H. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec. 2000;258:119–27.PubMedCrossRef Nakajima Y, Yamagishi T, Hokari S, Nakamura H. Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec. 2000;258:119–27.PubMedCrossRef
11.
Zurück zum Zitat Sugi Y, Yamamura H, Okagawa H, Markwald RR. Bone morphogenetic protein-2 can mediate myocardial regulation of atrioventricular cushion mesenchymal cell formation in mice. Dev Biol. 2004;269:505–18.PubMedCrossRef Sugi Y, Yamamura H, Okagawa H, Markwald RR. Bone morphogenetic protein-2 can mediate myocardial regulation of atrioventricular cushion mesenchymal cell formation in mice. Dev Biol. 2004;269:505–18.PubMedCrossRef
12.
Zurück zum Zitat Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18:99–115.PubMedCentralPubMedCrossRef Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004;18:99–115.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Yutzey KE, Colbert M, Robbins J. Ras-related signaling pathways in valve development: ebb and flow. Physiology. 2005;20:390–7.PubMedCrossRef Yutzey KE, Colbert M, Robbins J. Ras-related signaling pathways in valve development: ebb and flow. Physiology. 2005;20:390–7.PubMedCrossRef
14.
Zurück zum Zitat Wessels A, van den Hoff MJ, Adamo RF, Phelps AL, Lockhart MM, Sauls K, et al. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol. 2012;366:111–24.PubMedCentralPubMedCrossRef Wessels A, van den Hoff MJ, Adamo RF, Phelps AL, Lockhart MM, Sauls K, et al. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol. 2012;366:111–24.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998;82:1043–52.PubMedCrossRef Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998;82:1043–52.PubMedCrossRef
16.
Zurück zum Zitat Briggs LE, Phelps AL, Brown E, Kakarla J, Anderson RH, van den Hoff MJ, et al. Expression of the BMP receptor Alk3 in the second heart field is essential for development of the dorsal mesenchyme protrusion and atrioventricular septation. Circ Res. 2013;112:1420–32.PubMedCrossRef Briggs LE, Phelps AL, Brown E, Kakarla J, Anderson RH, van den Hoff MJ, et al. Expression of the BMP receptor Alk3 in the second heart field is essential for development of the dorsal mesenchyme protrusion and atrioventricular septation. Circ Res. 2013;112:1420–32.PubMedCrossRef
17.
Zurück zum Zitat Chang CP, Neilson JR, Bayle JH, Gestwicki JE, Kuo A, Stankunas K, et al. A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Cell. 2004;118:649–63.PubMedCrossRef Chang CP, Neilson JR, Bayle JH, Gestwicki JE, Kuo A, Stankunas K, et al. A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis. Cell. 2004;118:649–63.PubMedCrossRef
18.
Zurück zum Zitat Wu B, Wang Y, Lui W, Langworthy M, Tompkins KL, Hatzopoulos AK, et al. Nfatc1 coordinates valve endocardial cell lineage development required for heart valve formation. Circ Res. 2011;109:183–92.PubMedCentralPubMedCrossRef Wu B, Wang Y, Lui W, Langworthy M, Tompkins KL, Hatzopoulos AK, et al. Nfatc1 coordinates valve endocardial cell lineage development required for heart valve formation. Circ Res. 2011;109:183–92.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Wirrig EE, Yutzey KE. Transcriptional regulation of heart valve development and disease. Cardiovas Pathol. 2011;20:162–7.CrossRef Wirrig EE, Yutzey KE. Transcriptional regulation of heart valve development and disease. Cardiovas Pathol. 2011;20:162–7.CrossRef
21.
Zurück zum Zitat Hinton RB, Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW, et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006;98:1431–8.PubMedCrossRef Hinton RB, Lincoln J, Deutsch GH, Osinska H, Manning PB, Benson DW, et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006;98:1431–8.PubMedCrossRef
23.
Zurück zum Zitat Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437:270–4.PubMedCrossRef Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437:270–4.PubMedCrossRef
24.
Zurück zum Zitat Vallely MP, Semsarian C, Bannon PG. Management of the ascending aorta in patients with bicuspid aortic valve disease. Heart Lung Circ. 2008;17:357–63.PubMedCrossRef Vallely MP, Semsarian C, Bannon PG. Management of the ascending aorta in patients with bicuspid aortic valve disease. Heart Lung Circ. 2008;17:357–63.PubMedCrossRef
25.
Zurück zum Zitat Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55:2789–800.PubMedCrossRef Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55:2789–800.PubMedCrossRef
26.
Zurück zum Zitat Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106:900–4.PubMedCrossRef Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106:900–4.PubMedCrossRef
27.
Zurück zum Zitat Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44:138–43.PubMedCrossRef Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44:138–43.PubMedCrossRef
28.
Zurück zum Zitat McBride KL, Garg V. Heredity of bicuspid aortic valve: is family screening indicated? Heart. 2011;97:1193–5.PubMedCrossRef McBride KL, Garg V. Heredity of bicuspid aortic valve: is family screening indicated? Heart. 2011;97:1193–5.PubMedCrossRef
29.
30.
Zurück zum Zitat High FA, Epstein JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet. 2008;9:49–61.PubMedCrossRef High FA, Epstein JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet. 2008;9:49–61.PubMedCrossRef
31.
Zurück zum Zitat Foffa I, Ait Ali L, Panesi P, Mariani M, Festa P, Botto N, et al. Sequencing of NOTCH1, GATA5, TGFBR1 and TGFBR2 genes in familial cases of bicuspid aortic valve. BMC Med Genet. 2013;14:44.PubMedCentralPubMedCrossRef Foffa I, Ait Ali L, Panesi P, Mariani M, Festa P, Botto N, et al. Sequencing of NOTCH1, GATA5, TGFBR1 and TGFBR2 genes in familial cases of bicuspid aortic valve. BMC Med Genet. 2013;14:44.PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2007;134:290–6.PubMedCrossRef McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2007;134:290–6.PubMedCrossRef
33.
Zurück zum Zitat Mohamed SA, Aherrahrou Z, Liptau H, Erasmi AW, Hagemann C, Wrobel S, et al. Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun. 2006;345:1460–5.PubMedCrossRef Mohamed SA, Aherrahrou Z, Liptau H, Erasmi AW, Hagemann C, Wrobel S, et al. Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun. 2006;345:1460–5.PubMedCrossRef
35.•
Zurück zum Zitat Padang R, Bagnall RD, Richmond DR, Bannon PG, Semsarian C. Rare non-synonymous variations in the transcriptional activation domains of GATA5 in bicuspid aortic valve disease. J Mol Cell Cardiol. 2012;53:277–81. This study is the first to identify rare sequence variants in the gene, GATA5, in humans with BAV.PubMedCrossRef Padang R, Bagnall RD, Richmond DR, Bannon PG, Semsarian C. Rare non-synonymous variations in the transcriptional activation domains of GATA5 in bicuspid aortic valve disease. J Mol Cell Cardiol. 2012;53:277–81. This study is the first to identify rare sequence variants in the gene, GATA5, in humans with BAV.PubMedCrossRef
36.
Zurück zum Zitat Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, et al. A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet. 2000;24:171–4.PubMedCrossRef Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, et al. A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet. 2000;24:171–4.PubMedCrossRef
37.•
Zurück zum Zitat Tan HL, Glen E, Topf A, Hall D, O'Sullivan JJ, Sneddon L, et al. Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation. Hum Mutat. 2012;33:720–7. This study is the first to report an association between rare sequence variants with functional deficits in the gene, SMAD6, in humans with bicuspid aortic valve.PubMedCentralPubMedCrossRef Tan HL, Glen E, Topf A, Hall D, O'Sullivan JJ, Sneddon L, et al. Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation. Hum Mutat. 2012;33:720–7. This study is the first to report an association between rare sequence variants with functional deficits in the gene, SMAD6, in humans with bicuspid aortic valve.PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Sans-Coma V, Cardo M, Thiene G, Fernandez B, Arque JM, Duran AC. Bicuspid aortic and pulmonary valves in the Syrian hamster. Int J Cardiol. 1992;34:249–54.PubMedCrossRef Sans-Coma V, Cardo M, Thiene G, Fernandez B, Arque JM, Duran AC. Bicuspid aortic and pulmonary valves in the Syrian hamster. Int J Cardiol. 1992;34:249–54.PubMedCrossRef
39.
Zurück zum Zitat Sans-Coma V, Carmen Fernandez M, Fernandez B, Duran AC, Anderson RH, Arque JM. Genetically alike Syrian hamsters display both bifoliate and trifoliate aortic valves. J Anat. 2012;220:92–101.PubMedCentralPubMedCrossRef Sans-Coma V, Carmen Fernandez M, Fernandez B, Duran AC, Anderson RH, Arque JM. Genetically alike Syrian hamsters display both bifoliate and trifoliate aortic valves. J Anat. 2012;220:92–101.PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Lee TC, Zhao YD, Courtman DW, Stewart DJ. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation. 2000;101:2345–8.PubMedCrossRef Lee TC, Zhao YD, Courtman DW, Stewart DJ. Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation. 2000;101:2345–8.PubMedCrossRef
41.•
Zurück zum Zitat Bosse K, Hans CP, Zhao N, Koenig SN, Huang N, Guggilam A, et al. Endothelial nitric oxide signaling regulates NOTCH1 in aortic valve disease. J Mol Cell Cardiol. 2013;60:27–35. The authors describe the first highly penetrant mouse model for bicuspid aortic valve by generating mice, which are haploinsufficient for NOTCH1 in a endothelial nitric oxide synthase (Nos3)-null background.PubMedCentralPubMedCrossRef Bosse K, Hans CP, Zhao N, Koenig SN, Huang N, Guggilam A, et al. Endothelial nitric oxide signaling regulates NOTCH1 in aortic valve disease. J Mol Cell Cardiol. 2013;60:27–35. The authors describe the first highly penetrant mouse model for bicuspid aortic valve by generating mice, which are haploinsufficient for NOTCH1 in a endothelial nitric oxide synthase (Nos3)-null background.PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat Dupuis LE, Osinska H, Weinstein MB, Hinton RB, Kern CB. Insufficient versican cleavage and Smad2 phosphorylation results in bicuspid aortic and pulmonary valves. J Mol Cell Cardiol. 2013;60:50–9.PubMedCrossRef Dupuis LE, Osinska H, Weinstein MB, Hinton RB, Kern CB. Insufficient versican cleavage and Smad2 phosphorylation results in bicuspid aortic and pulmonary valves. J Mol Cell Cardiol. 2013;60:50–9.PubMedCrossRef
43.
Zurück zum Zitat Thomas PS, Sridurongrit S, Ruiz-Lozano P, Kaartinen V. Deficient signaling via Alk2 (Acvr1) leads to bicuspid aortic valve development. PloS ONE. 2012;7:e35539.PubMedCentralPubMedCrossRef Thomas PS, Sridurongrit S, Ruiz-Lozano P, Kaartinen V. Deficient signaling via Alk2 (Acvr1) leads to bicuspid aortic valve development. PloS ONE. 2012;7:e35539.PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Kolibash AJ, Kilman JW, Bush CA, Ryan JM, Fontana ME, Wooley CF. Evidence for progression from mild to severe mitral regurgitation in mitral valve prolapse. Am J Cardiol. 1986;58:762–7.PubMedCrossRef Kolibash AJ, Kilman JW, Bush CA, Ryan JM, Fontana ME, Wooley CF. Evidence for progression from mild to severe mitral regurgitation in mitral valve prolapse. Am J Cardiol. 1986;58:762–7.PubMedCrossRef
45.
Zurück zum Zitat Freed LA, Levy D, Levine RA, Larson MG, Evans JC, Fuller DL, et al. Prevalence and clinical outcome of mitral-valve prolapse. N Engl J Med. 1999;341:1–7.PubMedCrossRef Freed LA, Levy D, Levine RA, Larson MG, Evans JC, Fuller DL, et al. Prevalence and clinical outcome of mitral-valve prolapse. N Engl J Med. 1999;341:1–7.PubMedCrossRef
46.
Zurück zum Zitat Baddour LM, Bisno AL. Mitral valve prolapse: multifactorial etiologies and variable prognosis. Am Heart J. 1986;112:1359–62.PubMedCrossRef Baddour LM, Bisno AL. Mitral valve prolapse: multifactorial etiologies and variable prognosis. Am Heart J. 1986;112:1359–62.PubMedCrossRef
47.
Zurück zum Zitat Baddour LM, Phillips TN, Bisno AL. Coagulase-negative staphylococcal endocarditis. Occurrence in patients with mitral valve prolapse. Arch Intern Med. 1986;146:119–21.PubMedCrossRef Baddour LM, Phillips TN, Bisno AL. Coagulase-negative staphylococcal endocarditis. Occurrence in patients with mitral valve prolapse. Arch Intern Med. 1986;146:119–21.PubMedCrossRef
48.
Zurück zum Zitat Levine RA, Slaugenhaupt SA. Molecular genetics of mitral valve prolapse. Curr Opin Cardiol. 2007;22:171–5.PubMedCrossRef Levine RA, Slaugenhaupt SA. Molecular genetics of mitral valve prolapse. Curr Opin Cardiol. 2007;22:171–5.PubMedCrossRef
49.
Zurück zum Zitat Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001;104:2525–32.PubMedCrossRef Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001;104:2525–32.PubMedCrossRef
50.
Zurück zum Zitat Gupta V, Barzilla JE, Mendez JS, Stephens EH, Lee EL, Collard CD, et al. Abundance and location of proteoglycans and hyaluronan within normal and myxomatous mitral valves. Cardiovasc Pathol. 2009;18:191–7.PubMedCentralPubMedCrossRef Gupta V, Barzilla JE, Mendez JS, Stephens EH, Lee EL, Collard CD, et al. Abundance and location of proteoglycans and hyaluronan within normal and myxomatous mitral valves. Cardiovasc Pathol. 2009;18:191–7.PubMedCentralPubMedCrossRef
51.
Zurück zum Zitat Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1994;352:337–9.CrossRef Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1994;352:337–9.CrossRef
52.
Zurück zum Zitat Maslen CL, Corson GM, Maddox BK, Glanville RW, Sakai LY. Partial sequence of a candidate gene for the Marfan syndrome. Nature. 1991;352:334–7.PubMedCrossRef Maslen CL, Corson GM, Maddox BK, Glanville RW, Sakai LY. Partial sequence of a candidate gene for the Marfan syndrome. Nature. 1991;352:334–7.PubMedCrossRef
53.
Zurück zum Zitat Lee B, Godfrey M, Vitale E, Hori H, Mattei MG, Sarfarazi M, et al. Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature. 1991;352:330–4.PubMedCrossRef Lee B, Godfrey M, Vitale E, Hori H, Mattei MG, Sarfarazi M, et al. Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature. 1991;352:330–4.PubMedCrossRef
54.
Zurück zum Zitat Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33:407–11.PubMedCrossRef Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33:407–11.PubMedCrossRef
55.
Zurück zum Zitat Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 2004;114:1586–92.PubMedCentralPubMedCrossRef Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 2004;114:1586–92.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312:117–21.PubMedCentralPubMedCrossRef Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312:117–21.PubMedCentralPubMedCrossRef
57.
Zurück zum Zitat Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37:275–81.PubMedCrossRef Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37:275–81.PubMedCrossRef
58.
Zurück zum Zitat Liberfarb RM, Goldblatt A. Prevalence of mitral-valve prolapse in the Stickler syndrome. Am J Med Genet. 1986;24:387–92.PubMedCrossRef Liberfarb RM, Goldblatt A. Prevalence of mitral-valve prolapse in the Stickler syndrome. Am J Med Genet. 1986;24:387–92.PubMedCrossRef
59.
Zurück zum Zitat Najib MQ, Schaff HV, Ganji J, Lee HR, Click RL, Miller DC, et al. Valvular heart disease in patients with osteogenesis imperfecta. J Card Surg. 2013;28:139–43.PubMedCrossRef Najib MQ, Schaff HV, Ganji J, Lee HR, Click RL, Miller DC, et al. Valvular heart disease in patients with osteogenesis imperfecta. J Card Surg. 2013;28:139–43.PubMedCrossRef
60.
Zurück zum Zitat Malfait F, Wenstrup RJ, De Paepe A. Clinical and genetic aspects of Ehlers-Danlos syndrome, classic type. Genet Med. 2010;12:597–605. Malfait F, Wenstrup RJ, De Paepe A. Clinical and genetic aspects of Ehlers-Danlos syndrome, classic type. Genet Med. 2010;12:597–605.
61.
Zurück zum Zitat Lincoln J, Lange AW, Yutzey KE. Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol. 2006;294:292–302.PubMedCrossRef Lincoln J, Lange AW, Yutzey KE. Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol. 2006;294:292–302.PubMedCrossRef
62.
Zurück zum Zitat Ritelli M, Dordoni C, Venturini M, Chiarelli N, Quinzani S, Traversa M, et al. Clinical and molecular characterization of 40 patients with classic Ehlers-Danlos syndrome: identification of 18 COL5A1 and 2 COL5A2 novel mutations. Orphanet J Rare. 2013;8:58.CrossRef Ritelli M, Dordoni C, Venturini M, Chiarelli N, Quinzani S, Traversa M, et al. Clinical and molecular characterization of 40 patients with classic Ehlers-Danlos syndrome: identification of 18 COL5A1 and 2 COL5A2 novel mutations. Orphanet J Rare. 2013;8:58.CrossRef
63.
Zurück zum Zitat Lincoln J, Florer JB, Deutsch GH, Wenstrup RJ, Yutzey KE. ColVa1 and ColXIa1 are required for myocardial morphogenesis and heart valve development. Dev Dyn. 2006;235:3295–305.PubMedCrossRef Lincoln J, Florer JB, Deutsch GH, Wenstrup RJ, Yutzey KE. ColVa1 and ColXIa1 are required for myocardial morphogenesis and heart valve development. Dev Dyn. 2006;235:3295–305.PubMedCrossRef
64.
Zurück zum Zitat Henney AM, Tsipouras P, Schwartz RC, Child AH, Devereux RB, Leech GJ. Genetic evidence that mutations in the COL1A1, COL1A2, COL3A1, or COL5A2 collagen genes are not responsible for mitral valve prolapse. Br Heart J. 1989;61:292–9.PubMedCentralPubMedCrossRef Henney AM, Tsipouras P, Schwartz RC, Child AH, Devereux RB, Leech GJ. Genetic evidence that mutations in the COL1A1, COL1A2, COL3A1, or COL5A2 collagen genes are not responsible for mitral valve prolapse. Br Heart J. 1989;61:292–9.PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Wordsworth P, Ogilvie D, Akhras F, Jackson G, Sykes B. Genetic segregation analysis of familial mitral valve prolapse shows no linkage to fibrillar collagen genes. Br Heart J. 1989;61:300–6.PubMedCentralPubMedCrossRef Wordsworth P, Ogilvie D, Akhras F, Jackson G, Sykes B. Genetic segregation analysis of familial mitral valve prolapse shows no linkage to fibrillar collagen genes. Br Heart J. 1989;61:300–6.PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat Disse S, Abergel E, Berrebi A, Houot AM, Le Heuzey JY, Diebold B, et al. Mapping of a first locus for autosomal dominant myxomatous mitral-valve prolapse to chromosome 16p11.2-p12.1. Am J Hum Genet. 1999;65:1242–51.PubMedCentralPubMedCrossRef Disse S, Abergel E, Berrebi A, Houot AM, Le Heuzey JY, Diebold B, et al. Mapping of a first locus for autosomal dominant myxomatous mitral-valve prolapse to chromosome 16p11.2-p12.1. Am J Hum Genet. 1999;65:1242–51.PubMedCentralPubMedCrossRef
67.
Zurück zum Zitat Lardeux A, Kyndt F, Lecointe S, Marec HL, Merot J, Schott JJ, et al. Filamin-a-related myxomatous mitral valve dystrophy: genetic, echocardiographic and functional aspects. J Cardiovasc Transl Res. 2011;4:748–56.PubMedCrossRef Lardeux A, Kyndt F, Lecointe S, Marec HL, Merot J, Schott JJ, et al. Filamin-a-related myxomatous mitral valve dystrophy: genetic, echocardiographic and functional aspects. J Cardiovasc Transl Res. 2011;4:748–56.PubMedCrossRef
68.
Zurück zum Zitat Kyndt F, Gueffet JP, Probst V, Jaafar P, Legendre A, Le Bouffant F, et al. Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation. 2007;115:40–9.PubMedCrossRef Kyndt F, Gueffet JP, Probst V, Jaafar P, Legendre A, Le Bouffant F, et al. Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation. 2007;115:40–9.PubMedCrossRef
69.•
Zurück zum Zitat Sauls K, de Vlaming A, Harris BS, Williams K, Wessels A, Levine RA, et al. Developmental basis for filamin-A-associated myxomatous mitral valve disease. Cardiovasc Res. 2012;96:109–19. The authors describe the first mouse model of myxomatous mitral valve disease associated with mutation of Filamin A.PubMedCentralPubMedCrossRef Sauls K, de Vlaming A, Harris BS, Williams K, Wessels A, Levine RA, et al. Developmental basis for filamin-A-associated myxomatous mitral valve disease. Cardiovasc Res. 2012;96:109–19. The authors describe the first mouse model of myxomatous mitral valve disease associated with mutation of Filamin A.PubMedCentralPubMedCrossRef
70.
Zurück zum Zitat Sasaki A, Masuda Y, Ohta Y, Ikeda K, Watanabe K. Filamin associates with Smads and regulates transforming growth factor-beta signaling. J Biol Chem. 2001;276:17871–7.PubMedCrossRef Sasaki A, Masuda Y, Ohta Y, Ikeda K, Watanabe K. Filamin associates with Smads and regulates transforming growth factor-beta signaling. J Biol Chem. 2001;276:17871–7.PubMedCrossRef
71.
Zurück zum Zitat Feng Y, Chen MH, Moskowitz IP, Mendonza AM, Vidali L, Nakamura F, et al. Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci U S A. 2006;103:19836–41.PubMedCentralPubMedCrossRef Feng Y, Chen MH, Moskowitz IP, Mendonza AM, Vidali L, Nakamura F, et al. Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci U S A. 2006;103:19836–41.PubMedCentralPubMedCrossRef
72.
Zurück zum Zitat Hart AW, Morgan JE, Schneider J, West K, McKie L, Bhattacharya S, et al. Cardiac malformations and midline skeletal defects in mice lacking filamin A. Hum Mol Genet. 2006;15:2457–67.PubMedCrossRef Hart AW, Morgan JE, Schneider J, West K, McKie L, Bhattacharya S, et al. Cardiac malformations and midline skeletal defects in mice lacking filamin A. Hum Mol Genet. 2006;15:2457–67.PubMedCrossRef
73.
Zurück zum Zitat Kern CB, Wessels A, McGarity J, Dixon LJ, Alston E, Argraves WS, et al. Reduced versican cleavage due to Adamts9 haploinsufficiency is associated with cardiac and aortic anomalies. Matrix Biol. 2010;29:304–16.PubMedCentralPubMedCrossRef Kern CB, Wessels A, McGarity J, Dixon LJ, Alston E, Argraves WS, et al. Reduced versican cleavage due to Adamts9 haploinsufficiency is associated with cardiac and aortic anomalies. Matrix Biol. 2010;29:304–16.PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Mahimkar R, Nguyen A, Mann M, Yeh CC, Zhu BQ, Karliner JS, et al. Cardiac transgenic matrix metalloproteinase-2 expression induces myxomatous valve degeneration: a potential model of mitral valve prolapse disease. Cardiovasc Pathol. 2009;18:253–61.PubMedCentralPubMedCrossRef Mahimkar R, Nguyen A, Mann M, Yeh CC, Zhu BQ, Karliner JS, et al. Cardiac transgenic matrix metalloproteinase-2 expression induces myxomatous valve degeneration: a potential model of mitral valve prolapse disease. Cardiovasc Pathol. 2009;18:253–61.PubMedCentralPubMedCrossRef
75.
Zurück zum Zitat Barnette DN, Hulin A, Ahmed AS, Colige AC, Azhar M, Lincoln J. Tgfbeta-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. J Mol Cell Cardiol. 2013;65:137146.CrossRef Barnette DN, Hulin A, Ahmed AS, Colige AC, Azhar M, Lincoln J. Tgfbeta-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. J Mol Cell Cardiol. 2013;65:137146.CrossRef
76.
Zurück zum Zitat Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.PubMedCrossRef Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.PubMedCrossRef
77.
Zurück zum Zitat Hatemi AC, Gursoy M, Tongut A, Bicakhan B, Guzeltas A, Cetin G, et al. Pulmonary stenosis as a predisposing factor for infective endocarditis in a patient with Noonan syndrome. Tex Heart Inst J. 2010;37:99–101.PubMedCentralPubMed Hatemi AC, Gursoy M, Tongut A, Bicakhan B, Guzeltas A, Cetin G, et al. Pulmonary stenosis as a predisposing factor for infective endocarditis in a patient with Noonan syndrome. Tex Heart Inst J. 2010;37:99–101.PubMedCentralPubMed
78.
Zurück zum Zitat Tartaglia M, Gelb BD. Noonan syndrome and related disorders: genetics and pathogenesis. Annu Rev Genomics Hum Genet. 2005;6:45–68.PubMedCrossRef Tartaglia M, Gelb BD. Noonan syndrome and related disorders: genetics and pathogenesis. Annu Rev Genomics Hum Genet. 2005;6:45–68.PubMedCrossRef
79.
Zurück zum Zitat Sznajer Y, Keren B, Baumann C, Pereira S, Alberti C, Elion J, et al. The spectrum of cardiac anomalies in Noonan syndrome as a result of mutations in the PTPN11 gene. Pediatrics. 2007;119:e1325–31.PubMedCrossRef Sznajer Y, Keren B, Baumann C, Pereira S, Alberti C, Elion J, et al. The spectrum of cardiac anomalies in Noonan syndrome as a result of mutations in the PTPN11 gene. Pediatrics. 2007;119:e1325–31.PubMedCrossRef
80.
Zurück zum Zitat Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL, et al. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med. 2004;10:849–57.PubMedCrossRef Araki T, Mohi MG, Ismat FA, Bronson RT, Williams IR, Kutok JL, et al. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nat Med. 2004;10:849–57.PubMedCrossRef
81.
Zurück zum Zitat Araki T, Chan G, Newbigging S, Morikawa L, Bronson RT, Neel BG. Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proc Natl Acad Sci U S A. 2009;106:4736–41.PubMedCentralPubMedCrossRef Araki T, Chan G, Newbigging S, Morikawa L, Bronson RT, Neel BG. Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proc Natl Acad Sci U S A. 2009;106:4736–41.PubMedCentralPubMedCrossRef
82.
Zurück zum Zitat Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat. 2008;29:992–1006.PubMedCrossRef Aoki Y, Niihori T, Narumi Y, Kure S, Matsubara Y. The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat. 2008;29:992–1006.PubMedCrossRef
83.
Zurück zum Zitat Schubbert S, Bollag G, Shannon K. Deregulated Ras signaling in developmental disorders: new tricks for an old dog. Curr Opin Genet Dev. 2007;17:15–22.PubMedCrossRef Schubbert S, Bollag G, Shannon K. Deregulated Ras signaling in developmental disorders: new tricks for an old dog. Curr Opin Genet Dev. 2007;17:15–22.PubMedCrossRef
84.
85.
Zurück zum Zitat Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.PubMedCrossRef Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.PubMedCrossRef
86.
Zurück zum Zitat Okubo A, Miyoshi O, Baba K, Takagi M, Tsukamoto K, Kinoshita A, et al. A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet. 2004;41:e97.PubMedCentralPubMedCrossRef Okubo A, Miyoshi O, Baba K, Takagi M, Tsukamoto K, Kinoshita A, et al. A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet. 2004;41:e97.PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat Xiang R, Fan LL, Huang H, Cao BB, Li XP, Peng DQ, et al. A novel mutation of GATA4 (K319E) is responsible for familial atrial septal defect and pulmonary valve stenosis. Gene. 2014;534:320–3.PubMedCrossRef Xiang R, Fan LL, Huang H, Cao BB, Li XP, Peng DQ, et al. A novel mutation of GATA4 (K319E) is responsible for familial atrial septal defect and pulmonary valve stenosis. Gene. 2014;534:320–3.PubMedCrossRef
88.
Zurück zum Zitat Misra C, Sachan N, McNally CR, Koenig SN, Nichols HA, Guggilam A, et al. Congenital heart disease-causing Gata4 mutation displays functional deficits in vivo. PLoS Genet. 2012;8:e1002690.PubMedCentralPubMedCrossRef Misra C, Sachan N, McNally CR, Koenig SN, Nichols HA, Guggilam A, et al. Congenital heart disease-causing Gata4 mutation displays functional deficits in vivo. PLoS Genet. 2012;8:e1002690.PubMedCentralPubMedCrossRef
89.
Zurück zum Zitat Maragh S, Miller RA, Bessling SL, McGaughey DM, Wessels MW, de Graaf B, et al. Identification of RNA binding motif proteins essential for cardiovascular development. BMC Dev Biol. 2011;11:62.PubMedCentralPubMedCrossRef Maragh S, Miller RA, Bessling SL, McGaughey DM, Wessels MW, de Graaf B, et al. Identification of RNA binding motif proteins essential for cardiovascular development. BMC Dev Biol. 2011;11:62.PubMedCentralPubMedCrossRef
90.•
Zurück zum Zitat Postma AV, van Engelen K, van de Meerakker J, Rahman T, Probst S, Baars MJ, et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ Cardiovasc Genet. 2011;4:43–50. This study is the first to report mutations in MYH7 in individuals with Ebstein anomaly of the tricuspid valve.PubMedCrossRef Postma AV, van Engelen K, van de Meerakker J, Rahman T, Probst S, Baars MJ, et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ Cardiovasc Genet. 2011;4:43–50. This study is the first to report mutations in MYH7 in individuals with Ebstein anomaly of the tricuspid valve.PubMedCrossRef
91.
Zurück zum Zitat Bettinelli AL, Mulder TJ, Funke BH, Lafferty KA, Longo SA, Niyazov DM. Familial Ebstein anomaly, left ventricular hypertrabeculation, and ventricular septal defect associated with a MYH7 mutation. Am J Med Genet A. 2013;161:3187–90.CrossRef Bettinelli AL, Mulder TJ, Funke BH, Lafferty KA, Longo SA, Niyazov DM. Familial Ebstein anomaly, left ventricular hypertrabeculation, and ventricular septal defect associated with a MYH7 mutation. Am J Med Genet A. 2013;161:3187–90.CrossRef
92.
Zurück zum Zitat Horne BD, Camp NJ, Muhlestein JB, Cannon-Albright LA. Evidence for a heritable component in death resulting from aortic and mitral valve diseases. Circulation. 2004;110:3143–8.PubMedCrossRef Horne BD, Camp NJ, Muhlestein JB, Cannon-Albright LA. Evidence for a heritable component in death resulting from aortic and mitral valve diseases. Circulation. 2004;110:3143–8.PubMedCrossRef
93.
Zurück zum Zitat Lewin MB, Otto CM. The bicuspid aortic valve: adverse outcomes from infancy to old age. Circulation. 2005;111:832–4.PubMedCrossRef Lewin MB, Otto CM. The bicuspid aortic valve: adverse outcomes from infancy to old age. Circulation. 2005;111:832–4.PubMedCrossRef
95.
Zurück zum Zitat Lincoln J, Kist R, Scherer G, Yutzey KE. Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Dev Biol. 2007;305:120–32.PubMedCentralPubMedCrossRef Lincoln J, Kist R, Scherer G, Yutzey KE. Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Dev Biol. 2007;305:120–32.PubMedCentralPubMedCrossRef
96.
Zurück zum Zitat Acharya A, Hans CP, Koenig SN, Nichols HA, Galindo CL, Garner HR, et al. Inhibitory role of NOTCH1 in calcific aortic valve disease. PloS ONE. 2011;6:e27743.PubMedCentralPubMedCrossRef Acharya A, Hans CP, Koenig SN, Nichols HA, Galindo CL, Garner HR, et al. Inhibitory role of NOTCH1 in calcific aortic valve disease. PloS ONE. 2011;6:e27743.PubMedCentralPubMedCrossRef
97.
Zurück zum Zitat Probst V, Le Scouarnec S, Legendre A, Jousseaume V, Jaafar P, Nguyen JM, et al. Familial aggregation of calcific aortic valve stenosis in the western part of France. Circulation. 2006;113:856–60.PubMedCrossRef Probst V, Le Scouarnec S, Legendre A, Jousseaume V, Jaafar P, Nguyen JM, et al. Familial aggregation of calcific aortic valve stenosis in the western part of France. Circulation. 2006;113:856–60.PubMedCrossRef
98.
Zurück zum Zitat Bella JN, Tang W, Kraja A, Rao DC, Hunt SC, Miller MB, et al. Genome-wide linkage mapping for valve calcification susceptibility loci in hypertensive sibships: the Hypertension Genetic Epidemiology Network Study. Hypertension. 2007;49:453–60.PubMedCrossRef Bella JN, Tang W, Kraja A, Rao DC, Hunt SC, Miller MB, et al. Genome-wide linkage mapping for valve calcification susceptibility loci in hypertensive sibships: the Hypertension Genetic Epidemiology Network Study. Hypertension. 2007;49:453–60.PubMedCrossRef
99.••
Zurück zum Zitat Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368:503–12. First large-scale genome-wide association study linking genetic variation in LPA (which encodes for lipoprotein A) locus with aortic valve calcification and aortic stenosis.PubMedCentralPubMedCrossRef Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368:503–12. First large-scale genome-wide association study linking genetic variation in LPA (which encodes for lipoprotein A) locus with aortic valve calcification and aortic stenosis.PubMedCentralPubMedCrossRef
Metadaten
Titel
Genetics of Valvular Heart Disease
verfasst von
Stephanie LaHaye
Joy Lincoln
Vidu Garg
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Current Cardiology Reports / Ausgabe 6/2014
Print ISSN: 1523-3782
Elektronische ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-014-0487-2

Weitere Artikel der Ausgabe 6/2014

Current Cardiology Reports 6/2014 Zur Ausgabe

New Therapies for Cardiovascular Disease (KW Mahaffey, Section Editor)

Overview of the US FDA Medical Device Approval Process

New Therapies for Cardiovascular Disease (KW Mahaffey, Section Editor)

Universal MI Definition Update for Cardiovascular Disease

Invasive Electrophysiology and Pacing (EK Heist, Section Editor)

Pathophysiology, Prevention, and Treatment of Commotio Cordis

Cardiovascular Genomics (R McPherson, Section Editor)

Towards a Molecular Systems Model of Coronary Artery Disease

Valvular Heart Disease (VT Nkomo, Section Editor)

Aortic Valve Repair: Indications and Outcomes

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.