Skip to main content

Advertisement

Log in

Targeting Cancer Stem Cells in Cancer Prevention and Therapy

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

The cancer stem cell hypothesis is an attractive framework within which one may think about cancer initiation, recurrence, and metastasis, and methods to devise treatment strategies for cancers. Although all cancers do not appear to sustain themselves with cancer stem cells, but also through a dominant cell population, creating strategies for cancer treatment which include cancer stem cells as targets seems reasonable. In this perspective we discuss possible strategies for controlling the viability and tumorigenecity of cancer stem cells, and extend our discussion to strategies approaching the prevention of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, J. M., & Strasser, A. (2008). Is tumor growth sustained by rare cancer stem cells or dominant clones? Cancer Research, 68(11), 4018–4021.

    Article  PubMed  CAS  Google Scholar 

  2. Joseph, N. M., Mosher, J. T., Buchstaller, J., et al. (2008). The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cells, 13(2), 129–140.

    Article  CAS  Google Scholar 

  3. Zheng, H., Chang, L., Patel, N., et al. (2008). Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cells, 13(2), 117–128.

    Article  CAS  Google Scholar 

  4. Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: two faces of eve. Cell, 124(6), 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  5. Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. New England Journal of Medicine, 355(12), 1253–1261.

    Article  PubMed  CAS  Google Scholar 

  6. Goldstein, N. S., Vicini, F. A., Hunter, S., Odish, E., Forbes, S., & Kestin, L. L. (2005). Molecular clonality relationships in initial carcinomas, ipsilateral breast failures, and distant metastases in patients treated with breast-conserving therapy: evidence suggesting that some distant metastases are derived from ipsilateral breast failures and that metastases can metastasize. American Journal of Clinical Pathology, 124(1), 49–57.

    Article  PubMed  CAS  Google Scholar 

  7. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  8. Dalerba, P., Dylla, S. J., Park, I. K., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.

    Article  PubMed  CAS  Google Scholar 

  9. Hermann, P. C., Huber, S. L., Herrler, T., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.

    Article  PubMed  CAS  Google Scholar 

  10. Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.

    Article  PubMed  CAS  Google Scholar 

  11. Li, C., Heidt, D. G., Dalerba, P., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030–1037.

    Article  PubMed  CAS  Google Scholar 

  12. O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.

    Article  PubMed  CAS  Google Scholar 

  13. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.

    Article  PubMed  CAS  Google Scholar 

  14. Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.

    Article  PubMed  CAS  Google Scholar 

  15. Beier, D., Hau, P., Proescholdt, M., et al. (2007). CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Research, 67(9), 4010–4015.

    Article  PubMed  CAS  Google Scholar 

  16. Shmelkov, S. V., Butler, J. M., Hooper, A. T., et al. (2008). CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. Journal of Clinical Investigation, 118(6), 2111–2120.

    PubMed  CAS  Google Scholar 

  17. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Natural Medicine, 3(7), 730–737.

    Article  CAS  Google Scholar 

  18. Cho, R. W., & Clarke, M. F. (2008). Recent advances in cancer stem cells. Current Opinion in Genetics & Development, 18(1), 48–53.

    Article  CAS  Google Scholar 

  19. Vermeulen, L., Sprick, M. R., Kemper, K., Stassi, G., & Medema, J. P. (2008). Cancer stem cells—old concepts, new insights. Cell Death and Differentiation, 15(6), 947–958.

    Article  PubMed  CAS  Google Scholar 

  20. Dalerba, P., & Clarke, M. F. (2007). Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell, 1(3), 241–242.

    Article  PubMed  CAS  Google Scholar 

  21. Kaplan, R. N., Psaila, B., & Lyden, D. (2007). Niche-to-niche migration of bone-marrow-derived cells. Trends in Molecular Medicine, 13(2), 72–81.

    Article  PubMed  CAS  Google Scholar 

  22. Jordan, C. T. (2007). The leukemic stem cell. Best Pract Res Clin Haematol, 20(1), 13–18.

    Article  PubMed  CAS  Google Scholar 

  23. Adams, G. B., & Scadden, D. T. (2008). A niche opportunity for stem cell therapeutics. Gene Theraphy, 15(2), 96–99.

    Article  CAS  Google Scholar 

  24. Lim, D. A., Huang, Y. C., & Alvarez-Buylla, A. (2007). The adult neural stem cell niche: lessons for future neural cell replacement strategies. Neurosurgery Clinic of North America, 18(1), 81–92, ix.

    Article  Google Scholar 

  25. Sneddon, J. B., & Werb, Z. (2007). Location, location, location: the cancer stem cell niche. Cell Stem Cell, 1(6), 607–611.

    Article  PubMed  CAS  Google Scholar 

  26. Yilmaz, O. H., Valdez, R., Theisen, B. K., et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441(7092), 475–482.

    Article  PubMed  CAS  Google Scholar 

  27. Rajan, P., Panchision, D. M., Newell, L. F., & McKay, R. D. (2003). BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells. Journal of Cell Biology, 161(5), 911–921.

    Article  PubMed  CAS  Google Scholar 

  28. Piccirillo, S. G., Reynolds, B. A., Zanetti, N., et al. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 444(7120), 761–765.

    Article  PubMed  CAS  Google Scholar 

  29. Cloughesy, T. F., Yoshimoto, K., Nghiemphu, P., et al. (2008). Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med, 5(1), 8.

    Article  CAS  Google Scholar 

  30. Bild, A. H., Potti, A., & Nevins, J. R. (2006). Linking oncogenic pathways with therapeutic opportunities. Nature Reviews Cancer, 6(9), 735–741.

    Article  PubMed  CAS  Google Scholar 

  31. Roukos, D. H., Murray, S., & Briasoulis, E. (2007). Molecular genetic tools shape a roadmap towards a more accurate prognostic prediction and personalized management of cancer. Cancer Biol Ther, 6(3), 308–312.

    Article  PubMed  CAS  Google Scholar 

  32. Spisek, R., Kukreja, A., Chen, L. C., et al. (2007). Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. Journal of Experimental Medicine, 204(4), 831–840.

    Article  PubMed  CAS  Google Scholar 

  33. Friedenson, B. (2007). The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers. BMC Cancer, 7, 152.

    Article  PubMed  CAS  Google Scholar 

  34. King, M. C., Marks, J. H., & Mandell, J. B. (2003). Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science, 302(5645), 643–646.

    Article  PubMed  CAS  Google Scholar 

  35. Levy, D. B., Smith, K. J., Beazer-Barclay, Y., Hamilton, S. R., Vogelstein, B., & Kinzler, K. W. (1994). Inactivation of both APC alleles in human and mouse tumors. Cancer Research, 54(22), 5953–5958.

    PubMed  CAS  Google Scholar 

  36. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology, 3(11), 991–998.

    Article  PubMed  CAS  Google Scholar 

  37. Srinivasan, R., & Wolchok, J. D. (2004). Tumor antigens for cancer immunotherapy: therapeutic potential of xenogeneic DNA vaccines. Journal of Translational Medicine, 2(1), 12.

    Article  PubMed  Google Scholar 

  38. Finn, O. J. (2003). Premalignant lesions as targets for cancer vaccines. Journal of Experimental Medicine, 198(11), 1623–1626.

    Article  PubMed  CAS  Google Scholar 

  39. Hollingsworth, M. A., & Swanson, B. J. (2004). Mucins in cancer: protection and control of the cell surface. Nature Reviews Cancer, 4(1), 45–60.

    Article  PubMed  CAS  Google Scholar 

  40. Reis, C. A., David, L., Seixas, M., Burchell, J., & Sobrinho-Simoes, M. (1998). Expression of fully and under-glycosylated forms of MUC1 mucin in gastric carcinoma. International Journal of Cancer, 79(4), 402–410.

    Article  CAS  Google Scholar 

  41. Yu, M., Zhan, Q., & Finn, O. J. (2002). Immune recognition of cyclin B1 as a tumor antigen is a result of its overexpression in human tumors that is caused by non-functional p53. Molecular Immunology, 38(12–13), 981–987.

    Article  PubMed  CAS  Google Scholar 

  42. Dhodapkar, M. V., Krasovsky, J., Osman, K., & Geller, M. D. (2003). Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. Journal of Experimental Medicine, 198(11), 1753–1757.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prithi Rajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajan, P., Srinivasan, R. Targeting Cancer Stem Cells in Cancer Prevention and Therapy. Stem Cell Rev 4, 211–216 (2008). https://doi.org/10.1007/s12015-008-9037-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9037-x

Keywords

Navigation