Skip to main content

Advertisement

Log in

Experimental evaluation of high intensity focused ultrasound for fat reduction of ex vivo porcine adipose tissue

  • Original Article
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Purpose

The present study was stimulated by the continuous growth of commercially available high intensity focused ultrasound (HIFU) systems for fat reduction. Herein, HIFU was utilised for fat ablation using a single-element ultrasonic transducer operating in thermal mode.

Methods

The custom-made concave transducer that operates at 1.1 MHz was assessed on excised porcine adipose tissue for its ability to reduce fat. Ultrasonic sonications were executed on the adipose tissue utilising acoustical power between 14 and 75 W and sonication time in the range of 1–10 min. The mass of the adipose tissue sample was weighed afore and after ultrasonic sonications and the effect of the sonication on the mass change was recorded.

Results

Mass change was linearly dependent with either increasing acoustical power or sonication time and was in the range of 0.46–1.9 g. High acoustical power of 62.5 W for a sonication time of 1 min and a power of 75 W for a sonication time of 5 min, respectively resulted in the formation of a lesion or possible cavitation on the piece of excised adipose tissue.

Conclusion

The study demonstrated the efficacy of the proposed transducer in achieving a reduction of excised fat tissue. The present findings indicate the potential use of the transducer in a HIFU system indicated for the reduction of subcutaneous adipose tissue where increased values of acoustical power can result in increased amounts of fat reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization (2021) Obesity and Overweight Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 25 Oct 2021

  2. Okura T, Nakata Y, Lee DJ, Ohkawara K, Tanaka K (2005) Effects of aerobic exercise and obesity phenotype on abdominal fat reduction in response to weight loss. Int J Obes 29(10):1259–1266. https://doi.org/10.1038/sj.ijo.0803013

    Article  CAS  Google Scholar 

  3. Schwartz RS, Shuman WP, Larson V et al (1991) The effect of intensive endurance exercise training on body fat distribution in young and older men. Metabolism 40(5):545–551. https://doi.org/10.1016/0026-0495(91)90239-S

    Article  CAS  PubMed  Google Scholar 

  4. Despres JP, Pouliot MC, Moorjani S et al (1991) Loss of abdominal fat and metabolic response to exercise training in obese women. Am J Physiol 261(2 Pt 1):E159–E167. https://doi.org/10.1152/ajpendo.1991.261.2.E159

    Article  CAS  PubMed  Google Scholar 

  5. Berry MG, Davies D (2011) Liposuction: a review of principles and techniques. J Plast Reconstr Aesthetic Surg 64(8):985–992. https://doi.org/10.1016/j.bjps.2010.11.018

    Article  CAS  Google Scholar 

  6. International Society of Aesthetic Plastic Surgery (2019) ISAPS Global Survey Results 2019. https://www.isaps.org/wp-content/uploads/2020/12/Global-Survey-2019.pdf. Accessed 25 Oct 2021

  7. Illouz YG (1983) Body contouring by lipolysis: a 5-year experience with over 3000 cases. Plast Reconstr Surg 72(5):591–597. https://doi.org/10.1097/00006534-198311000-00001

    Article  CAS  PubMed  Google Scholar 

  8. Venkataram J (2008) Tumescent liposuction: a review. J Cutan Aesthet Surg 1(2):49–57. https://doi.org/10.4103/0974-2077.44159

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cárdenas-Camarena L, Gerardo LPA, Durán H, Bayter-Marin JE (2017) Strategies for reducing fatal complications in liposuction. Plast Reconstr Surg Glob Open 5(10):1–5. https://doi.org/10.1097/GOX.0000000000001539

    Article  Google Scholar 

  10. Scuderi N, Tenna S, Spalvieri C, De Gado F (2005) Power-assisted lipoplasty versus traditional suction-assisted lipoplasty: comparative evaluation and analysis of output. Aesthet Plast Surg 29(1):49–52. https://doi.org/10.1007/s00266-004-0003-y

    Article  Google Scholar 

  11. Fodor PB, Vogt PA (1999) Power-assisted lipoplasty (PAL): a clinical pilot study comparing PAL to traditional lipoplasty (TL). Aesthet Plast Surg 23(6):379–385. https://doi.org/10.1007/s002669900305

    Article  CAS  Google Scholar 

  12. Hoyos AE, Prendergast PM (2014) High definition body sculpting: art and advanced lipoplasty techniques. Springer, Berlin

    Book  Google Scholar 

  13. Jewell ML, Fodor PB, De Souza Pinto EB, Al Shammari MA (2002) Clinical application of VASER-assisted lipoplasty: a pilot clinical study. Aesthet Surg J 22(2):131–146. https://doi.org/10.1067/maj.2002.123377

    Article  PubMed  Google Scholar 

  14. Nagy MW, Vanek PF (2012) A multicenter, prospective, randomized, single-blind, controlled clinical trial comparing vaser-assisted lipoplasty and suction-assisted lipoplasty. Plast Reconstr Surg 129(4):681–689. https://doi.org/10.1097/PRS.0b013e3182442274

    Article  CAS  Google Scholar 

  15. Roustaei N, Masoumi Lari SJ, Chalian M, Chalian H, Bakhshandeh H (2009) Safety of ultrasound-assisted liposuction: a survey of 660 operations. Aesthet Plast Surg 33(2):213–218. https://doi.org/10.1007/s00266-008-9293-9

    Article  Google Scholar 

  16. Zelickson BD, Dressel TD (2009) Discussion of laser-assisted liposuction. Lasers Surg Med 41(10):709–713. https://doi.org/10.1002/lsm.20842

    Article  PubMed  Google Scholar 

  17. Kim K, Geronemus R (2006) Laser lipolysis using a novel 1,064 nm Nd:YAG laser. Dermatol Surg 32(2):241–247

    CAS  PubMed  Google Scholar 

  18. Salzman MJ (2010) My experience with the sciton ProLipo PLUS for laser lipolysis. Am J Cosmet Surg 27(2):89–91. https://doi.org/10.1177/074880681002700209

    Article  Google Scholar 

  19. Regula CG, Lawrence N (2014) Update on liposuction: laser-assisted liposuction versus tumescent liposuction. Curr Dermatol Rep 3(2):127–134. https://doi.org/10.1007/s13671-014-0074-1

    Article  Google Scholar 

  20. Theodorou SJ, Del Vecchio D, Chia CT (2018) Soft tissue contraction in body contouring with radiofrequency-assisted liposuction: a treatment gap solution. Aesthet Surg J 38:S74–S83. https://doi.org/10.1093/asj/sjy037

    Article  PubMed  Google Scholar 

  21. Paul M, Mulholland RS (2009) A new approach for adipose tissue treatment and body contouring using radiofrequency-assisted liposuction. Aesthet Plast Surg 33(5):687–694. https://doi.org/10.1007/s00266-009-9342-z

    Article  Google Scholar 

  22. Theodorou SJ, Paresi RJ, Chia CT (2012) Radiofrequency-assisted liposuction device for body contouring: 97 patients under local anesthesia. Aesthet Plast Surg 36(4):767–779. https://doi.org/10.1007/s00266-011-9846-1

    Article  Google Scholar 

  23. Manstein D, Laubach H, Watanabe K, Farinelli W, Zurakowski D, Anderson RR (2008) Selective cryolysis: a novel method of non-invasive fat removal. Lasers Surg Med 40(9):595–604. https://doi.org/10.1002/lsm.20719

    Article  PubMed  Google Scholar 

  24. Bernstein EF, Bloom JD, Basilavecchio LD, Plugis JM (2014) Non-invasive fat reduction of the flanks using a new cryolipolysis applicator and overlapping, two-cycle treatments. Lasers Surg Med 46(10):731–735. https://doi.org/10.1002/lsm.22302

    Article  PubMed  PubMed Central  Google Scholar 

  25. Krueger N, Mai SV, Luebberding S, Sadick NS (2014) Cryolipolysis for noninvasive body contouring: clinical efficacy and patient satisfaction. Clin Cosmet Investig Dermatol 7:201–205. https://doi.org/10.2147/CCID.S44371

    Article  PubMed  PubMed Central  Google Scholar 

  26. Michon A (2021) A prospective study determining patient satisfaction with combined cryolipolysis and shockwave therapy treatment for noninvasive body contouring. Aesthet Plast Surg 45(5):2317–2325. https://doi.org/10.1007/s00266-021-02139-0

    Article  Google Scholar 

  27. Ferraro GA, De Francesco F, Cataldo C, Rossano F, Nicoletti G, D’Andrea F (2012) Synergistic effects of cryolipolysis and shock waves for noninvasive body contouring. Aesthet Plast Surg 36(3):666–679. https://doi.org/10.1007/s00266-011-9832-7

    Article  CAS  Google Scholar 

  28. Oh CH, Shim JS, Il Bae K, Chang JH (2020) Clinical application of cryolipolysis in Asian patients for subcutaneous fat reduction and body contouring. Arch Plast Surg 47(1):62–69. https://doi.org/10.5999/aps.2019.01305

    Article  PubMed  PubMed Central  Google Scholar 

  29. Alhaddad M, Boen M, Fabi S, Goldman MP (2020) Noninvasive body contouring by dermal fillers, radiofrequency, and focused ultrasound: a review. Dermatol Rev 1(3):84–90. https://doi.org/10.1002/der2.38

    Article  Google Scholar 

  30. Manuskiatti W, Wachirakaphan C, Lektrakul N, Varothai S (2009) Circumference reduction and cellulite treatment with a TriPollar radiofrequency device: a pilot study. J Eur Acad Dermatol Venereol 23(7):820–827. https://doi.org/10.1111/j.1468-3083.2009.03254.x

    Article  CAS  PubMed  Google Scholar 

  31. Weiss R, Weiss M, Beasley K, Vrba J, Bernardy J (2013) Operator independent focused high frequency ISM band for fat reduction: porcine model. Lasers Surg Med 45(4):235–239. https://doi.org/10.1002/lsm.22134

    Article  PubMed  PubMed Central  Google Scholar 

  32. Anolik R, Chapas AM, Brightman LA, Geronemus R (2009) Radiofrequency devices for body shaping: a review and study of 12 patients. Semin Cutan Med Surg 28(4):236–243. https://doi.org/10.1016/j.sder.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  33. Somenek MT, Ronan SJ, Pittman TA (2020) A multi-site, single-blinded, prospective pilot clinical trial for non-invasive fat reduction of the abdomen and flanks using a monopolar 2 MHz radiofrequency device. Lasers Surg Med 53(3):337–343. https://doi.org/10.1002/lsm.23295

    Article  PubMed  Google Scholar 

  34. Boisnic S, Divaris M, Nelson AA, Gharavi NM, Lask GP (2014) A clinical and biological evaluation of a novel, noninvasive radiofrequency device for the long-term reduction of adipose tissue. Lasers Surg Med 46(2):94–103. https://doi.org/10.1002/lsm.22223

    Article  PubMed  Google Scholar 

  35. Kapoor R, Shome D, Ranjan A (2017) Use of a novel combined radiofrequency and ultrasound device for lipolysis, skin tightening and cellulite treatment. J Cosmet Laser Ther 19(5):266–274. https://doi.org/10.1080/14764172.2017.1303169

    Article  PubMed  Google Scholar 

  36. Brightman L, Weiss E, Chapas AM, Karen J, Hale E, Bernstein L, Geronemus RG (2009) Improvement in arm and post-partum abdominal and flank subcutaneous fat deposits and skin laxity using a bipolar radiofrequency, infrared, vacuum and mechanical massage device. Lasers Surg Med 41(10):791–798. https://doi.org/10.1002/lsm.20872

    Article  PubMed  Google Scholar 

  37. Nestor MS, Newburger J, Zarraga MB (2013) Body contouring using 635-nm low level laser therapy. Semin Cutan Med Surg 32(1):35–40

    PubMed  Google Scholar 

  38. Neira R, Arroyave J, Ramirez H et al (2002) Fat liquefaction: effect of low-level laser energy on adipose tissue. Plast Reconstr Surg 110(3):912–922. https://doi.org/10.1097/00006534-200209010-00030

    Article  PubMed  Google Scholar 

  39. Jackson RF, Dedo DD, Roche GC, Turok DI, Maloney RJ (2009) Low-level laser therapy as a non-invasive approach for body contouring: a randomized, controlled study. Lasers Surg Med 41(10):799–809. https://doi.org/10.1002/lsm.20855

    Article  PubMed  Google Scholar 

  40. McRae E, Boris J (2013) Independent evaluation of low-level laser therapy at 635 nm for non-invasive body contouring of the waist, hips, and thighs. Lasers Surg Med 45(1):1–7. https://doi.org/10.1002/lsm.22113

    Article  PubMed  Google Scholar 

  41. Jackson RF, Stern FA, Neira R, Ortiz-Neira CL, Maloney J (2012) Application of low-level laser therapy for noninvasive body contouring. Lasers Surg Med 44(3):211–217. https://doi.org/10.1002/lsm.22007

    Article  PubMed  Google Scholar 

  42. Roche GC, Shanks S, Jackson RF, Holsey LJ (2017) Low-level laser therapy for reducing the hip, waist, and upper abdomen circumference of individuals with obesity. Photomed Laser Surg 35(3):142–149. https://doi.org/10.1089/pho.2016.4172

    Article  PubMed  Google Scholar 

  43. Bass LS, Doherty ST (2018) Safety and efficacy of a non-invasive 1060 nm diode laser for fat reduction of the abdomen. J Drugs Dermatol 17(1):106–112

    PubMed  Google Scholar 

  44. Kislevitz M, Wamsley C, Kang A, Kilmer S, Hoopman J, Barillas J, Kenkel JM (2021) Clinical evaluation of the safety and efficacy of a 1060-nm diode laser for non-invasive fat reduction of the abdomen. Aesthet Surg J 41(10):1–11. https://doi.org/10.1093/asj/sjaa418

    Article  Google Scholar 

  45. Jewell ML, Solish NJ, Desilets CS (2011) Noninvasive body sculpting technologies with an emphasis on high-intensity focused ultrasound. Aesthet Plast Surg 35(5):901–912. https://doi.org/10.1007/s00266-011-9700-5

    Article  Google Scholar 

  46. Gadsden E, Aguilar MT, Smoller BR, Jewell ML (2011) Evaluation of a novel high-intensity focused ultrasound device for ablating subcutaneous adipose tissue for noninvasive body contouring: safety studies in human volunteers. Aesthet Surg J 31(4):401–410. https://doi.org/10.1177/1090820X11405027

    Article  PubMed  Google Scholar 

  47. Fatemi A, Kane MAC (2010) High-intensity focused ultrasound effectively reduces waist circumference by ablating adipose tissue from the abdomen and flanks: a retrospective case series. Aesthet Plast Surg 34(5):577–582. https://doi.org/10.1007/s00266-010-9503-0

    Article  Google Scholar 

  48. Moreno-Moraga J, Valero-Altés T, Martínez Riquelme A, Isarria-Marcosy MI, Royo De La Torre J (2007) Body contouring by non-invasive transdermal focused ultrasound. Lasers Surg Med 39(4):315–323. https://doi.org/10.1002/lsm.20478

    Article  CAS  PubMed  Google Scholar 

  49. Fatemi A (2009) High-intensity focused ultrasound effectively reduces adipose tissue. Semin Cutan Med Surg 28(4):257–262. https://doi.org/10.1016/j.sder.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  50. Lee HJ, Lee MH, Lee SG, Yeo UC, Chang SE (2016) Evaluation of a novel device, high-intensity focused ultrasound with a contact cooling for subcutaneous fat reduction. Lasers Surg Med 48(9):878–886. https://doi.org/10.1002/lsm.22576

    Article  PubMed  Google Scholar 

  51. Hong JY, Ko JE, Choi SY, Kwon TR, Kim JH, Kim SY, Kim BJ (2020) Efficacy and safety of high-intensity focused ultrasound for noninvasive abdominal subcutaneous fat reduction. Dermatol Surg 46(2):213–219. https://doi.org/10.1097/DSS.0000000000002016

    Article  CAS  PubMed  Google Scholar 

  52. Ascher B (2010) Safety and efficacy of ultrashape contour I treatments to improve the appearance of body contours: multiple treatments in shorter intervals. Aesthet Surg J 30(2):217–224. https://doi.org/10.1177/1090820X09360692

    Article  PubMed  Google Scholar 

  53. Hoffmann K, Soemantri S, Hoffmann K, Hoffmann KKP (2020) Body shaping with high-intensity focused electromagnetic technology. J Asthet Chir 13(2):64–69. https://doi.org/10.1007/s12631-020-00220-2

    Article  Google Scholar 

  54. Kinney BM, Lozanova P (2019) High intensity focused electromagnetic therapy evaluated by magnetic resonance imaging: Safety and efficacy study of a dual tissue effect based non-invasive abdominal body shaping. Lasers Surg Med 51(1):40–46. https://doi.org/10.1002/lsm.23024

    Article  PubMed  Google Scholar 

  55. Guth F, Bitencourt S, Bedinot C, Sinigaglia G, Tassinary JAF (2018) Immediate effect and safety of HIFU single treatment for male subcutaneous fat reduction. J Cosmet Dermatol 17(3):385–389. https://doi.org/10.1111/jocd.12466

    Article  PubMed  Google Scholar 

  56. Cynosure StimSure. https://www.cynosureuk.com/product/stimsure/. Accessed 26 Oct 2021

  57. Jacob CI, Paskova K (2018) Safety and efficacy of a novel high-intensity focused electromagnetic technology device for noninvasive abdominal body shaping. J Cosmet Dermatol 17(5):783–787. https://doi.org/10.1111/jocd.12779

    Article  PubMed  Google Scholar 

  58. Houpt KA, Houpt TR, Pond WG (1979) The pig as a model for the study of obesity and of control of food intake: a review. Yale J Biol Med 52(3):307–329

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang Y, Iwata T, Nam K, Kimura T, Wu P, Nakamura N, Hashimoto Y, Kishida A (2018) Water absorption by decellularized dermis. Heliyon. https://doi.org/10.1016/j.heliyon.2018.e00600

    Article  PubMed  PubMed Central  Google Scholar 

  60. ter Haar G, Coussios C (2007) High intensity focused ultrasound: physical principles and devices. Int J Hyperth 23(2):89–104. https://doi.org/10.1080/02656730601186138

    Article  Google Scholar 

  61. Li C, Chen S, Wang Q, Li H, Xiao S, Li F (2020) Effects of thermal relaxation on temperature elevation in ex vivo tissues during high intensity focused ultrasound. IEEE Access 8:212013–212021. https://doi.org/10.1109/ACCESS.2020.3040102

    Article  Google Scholar 

  62. Kyriakou Z (2010) Use of High Intensity Focused Ultrasound to Destroy Subcutaneous Fat Tissue. Dissertation, University of Oxford

  63. Baldeweck T, Laugier P, Berger G (1995) In vitro study on porcine skin: attenuation profile estimation using auto-regressive modeling. Proc IEEE Ultrason Symp 2:1141–1144. https://doi.org/10.1109/ultsym.1995.495762

    Article  Google Scholar 

  64. Park JH, Lim SD, Oh SH, Lee JH, Yeo UC (2017) High-intensity focused ultrasound treatment for skin: ex vivo evaluation. Ski Res Technol 23(3):384–391. https://doi.org/10.1111/srt.12347

    Article  Google Scholar 

  65. Jewell ML, Desilets C, Smoller BR (2011) Evaluation of a novel high-intensity focused ultrasound device: preclinical studies in a porcine model. Aesthet Surg J 31(4):429–434. https://doi.org/10.1177/1090820X11405026

    Article  PubMed  Google Scholar 

  66. Brown SA, Greenbaum L, Shtukmaster S, Zadok Y, Ben-Ezra S, Kushkuley L (2009) Characterization of nonthermal focused ultrasound for noninvasive selective fat cell disruption (Lysis): technical and preclinical assessment. Plast Reconstr Surg 124(1):92–101. https://doi.org/10.1097/PRS.0b013e31819c59c7

    Article  CAS  PubMed  Google Scholar 

  67. Kwon TR, Im S, Jang YJ, Oh CT, Choi EJ, Jung SJ, Hong H, Choi YS, Choi SY, Kim YS, Kim BJ (2017) Improved methods for evaluating pre-clinical and histological effects of subcutaneous fat reduction using high-intensity focused ultrasound in a porcine model. Ski Res Technol 23(2):194–201. https://doi.org/10.1111/srt.12319

    Article  Google Scholar 

  68. Miyatake N, Matsumoto S, Miyachi M, Fujii M, Numata T (2007) Relationship between changes in body weight and waist circumference in Japanese. Environ Health Prev Med 12(5):220–223. https://doi.org/10.1265/ehpm.12.220

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hynynen K, Jones RM (2016) Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 61(17):R206-248. https://doi.org/10.1088/0031-9155/61/17/R206

    Article  PubMed  PubMed Central  Google Scholar 

  70. Akkus O, Oguz A, Uzunlulu M, Kizilgul M (2012) Evaluation of skin and subcutaneous adipose tissue thickness for optimal insulin injection. J Diabetes Metab. https://doi.org/10.4172/2155-6156.1000216

    Article  Google Scholar 

  71. Ludescher B, Rommel M, Willmer T, Fritsche A, Schick F, MacHann J (2011) Subcutaneous adipose tissue thickness in adults—correlation with BMI and recommendations for pen needle lengths for subcutaneous self-injection. Clin Endocrinol (Oxf) 75(6):786–790. https://doi.org/10.1111/j.1365-2265.2011.04132.x

    Article  PubMed  Google Scholar 

  72. De Lucia RE, Sleigh A, Finucane FM, Brage S, Stolk RP, Cooper C, Sharp SJ, Wareham SJ, Ong KK (2010) Ultrasound measurements of visceral and subcutaneous abdominal thickness to predict abdominal adiposity among older men and women. Obesity 18(3):625–631. https://doi.org/10.1038/oby.2009.309

    Article  Google Scholar 

Download references

Acknowledgements

The project has been funded by the Research and Innovation Foundation of Cyprus under the project ABLABREAST (EXPLOITATION-A/0918/0006).

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christakis Damianou.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Availability of data and material

All data generated or analysed in the present study are available from the authors upon request.

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippou, A., Damianou, C. Experimental evaluation of high intensity focused ultrasound for fat reduction of ex vivo porcine adipose tissue. J Ultrasound 25, 815–825 (2022). https://doi.org/10.1007/s40477-022-00663-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-022-00663-6

Keywords

Navigation