Skip to main content
Log in

Taurine and Skeletal Muscle Disorders

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Taurine is abundantly present in skeletal muscle. We give evidence that this amino acid exerts both short-term and long-term actions in the control of ion channel function and calcium homeostasis in striated fibers. Short-term actions can be estimated as the ability of this amino acid to acutely modulate both ion channel gating and the function of the structures involved in calcium handling. Long-term effects can be disclosed in situations of tissue taurine depletion and are likely related to the ability of the intracellular taurine to control transducing pathways as well as homeostatic and osmotic equilibrium in the tissue. The two activities are strictly linked because the intracellular level of taurine modulates the sensitivity of skeletal muscle to the exogenous application of taurine. Myopathies in which ion channels are directly or indirectly involved, as well as inherited or acquired pathologies characterized by metabolic alterations and change in calcium homeostasis, are often correlated with change in muscle taurine concentration and consequently with an enhanced therapeutic activity of this amino acid. We discuss both in vivo and in vitro evidence that taurine, through its ability to control sarcolemmal excitability and muscle contractility, can prove beneficial effects in many muscle dysfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Huxtable, R. J., 1992. The physiological actions of taurine. Physiol. Rev. 72:101–163.

    Google Scholar 

  2. Schaffer, S., Takahashi, K., and Azuma, J. 2000. Role of osmoregulation in the action of taurine. Amino Acids 19:527–546.

    Google Scholar 

  3. Pesantes-Morales, H., Quesada, O., and Morán, J. 1998. Taurine: An osmolyte in mammalian tissues. Adv. Exp. Med. Biol. 442:209–217.

    Google Scholar 

  4. Satoh, H. and Sperelakis, N. 1998. Review of some actions of taurine on ion channels of cardiac muscle cells and others. Gen. Pharmacol. 30:451–463.

    Google Scholar 

  5. De Luca, A., Pierno, S., Tricarico, D., Desaphy, J. F., Liantonio, A., Barbieri, M., Camerino, C., Montanari, L., and Conte Camerino, D. 2000. Taurine and skeletal muscle ion channels. Adv. Exp. Med. Biol. 483:45–56.

    Google Scholar 

  6. Jurkat-Rott, K., Lerche, H., and Lehmann-Horn, F. 2002. Skeletal muscle channelopathies. J. Neurol. 249:1493–1502.

    Google Scholar 

  7. Jentsch, T. J., Stein, V., Weinreich, F., and Zdebik, A. A. 2002. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82:503–568.

    Google Scholar 

  8. Lehmann-Horn, F., Jurkat-Rott, K., and Rudel, R. 2002. Periodic paralysis: Understanding channelopathies. Curr. Neurol. Neurosci. Rep. 2:61–69.

    Google Scholar 

  9. Conte Camerino, D., Franconi, F., Mambrini, M., Bennardini, F., Failli, P., Bryant, S. H., and Giotti, A. 1987. The action of taurine on chloride conductance and excitability characteristics of rat striated fibers. Pharmacol. Res. Commun. 19:685–701.

    Google Scholar 

  10. Conte Camerino, D., De Luca, A., Mambrini, M., Ferrannini, E., Franconi, F., Giotti, S. H., and Bryant, S. H. 1989. The effects of taurine on pharmacologically induced myotonia. Muscle Nerve 12:898–904.

    Google Scholar 

  11. Pierno, S., Tricarico, D., De Luca, A., Campagna, F., Carotti, A., Casini, G., and Conte Camerino, D. 1994. Effects of taurine analogues on chloride channel conductance of rat skeletal muscle fibers: A structure-activity relationship investigation. Naunyn-Schmiedebergs Arch. Pharmacol. 349:416–421.

    Google Scholar 

  12. Liantonio, A., Accardi, A., Carbonara, G., Fracchiolla, G., Loiodice, F., Tortorella, P., Traverso, S., Guida, P., Pierno, S., De Luca, A., Conte Camerino, D., and Pusch, M. 2002. Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid. Mol. Pharmacol. 62:265–271.

    Google Scholar 

  13. Ptacek, L. 1998. The familial periodic paralyses and nondystrophic myotonias. Am. J. Med. 104:58–70.

    Google Scholar 

  14. Satoh, H. 1998. Inhibition of the fast Na+ current by taurine in guinea pig ventricula myocytes. Gen. Pharmacol. 31:155–157.

    Google Scholar 

  15. Schanne, O. F. and Dumaine, R. 1992. Interaction of taurine with the fast Na-current in isolated rabbit myocytes. J. Pharmacol. Exp. Ther. 263:1233–1240.

    Google Scholar 

  16. De Luca, A., Natuzzi, F., Desaphy, J. F., Loni, G., Lentini, G., Franchini, C., Tortorella, V., and Conte Camerino, D. 2000. Molecular determinants of mexiletine structure for potent and use-dependent block of skeletal muscle sodium channels. Mol. Pharmacol. 57:268–277.

    Google Scholar 

  17. Durelli, L., Mutani, R., and Fassio, F. 1983. The treatment of myotonia: Evaluation of chronic oral taurine therapy. Neurology 33:599–603.

    Google Scholar 

  18. Regensteiner, J. G., Wolfel, E. E., Brass, E. P., Carry, M. R., Ringel, S. P., Hargarten, M. E., Stamm, E. R., and Hiatt, W. R. 1993. Chronic changes in skeletal muscle histology and function in peripheral arterial disease. Circulation 87:413–421.

    Google Scholar 

  19. Cruz, C. A. T., Massuda, C. A., Cherri, J., and Piccinato, C. E. 1997. Metabolic alterations of skeletal muscle during ischaemia and reperfusion. J. Cardiovasc. Surg. 38:473–477.

    Google Scholar 

  20. Ischida, T., Yarimizu, K., Gute, D. C., and Korthuis, R. J. 1997. Mechanisms of ischemic preconditioning. Shock 8:86–94.

    Google Scholar 

  21. Tricarico, D. and Conte Camerino, D. 1994. Effects of ischaemia and post-ischaemic reperfusion on the passive and active electrical parameters of rat skeletal muscle fibres. Pflügers Arch. 426: 44–50.

    Google Scholar 

  22. Tricarico, D., Casini, G., and Conte Camerino, D. 1995. Effects of high energy phosphates and L-arginine on the electrical parameters of ischaemic reperfused rat skeletal muscle fibers. Eur. J. Pharmacol. 287:17–25.

    Google Scholar 

  23. Tricarico, D., Capriulo, R., and Conte Camerino, D. 2002. Involvement of K(Ca2+) channels in the local abnormalities and hyperkalemia following the ischemia-reperfusion injury of rat skeletal muscle. Neuromuscul. Disord. 12:258–265.

    Google Scholar 

  24. Allo, S. N., Bagby, L., and Schaffer, S. W. 1997. Taurine depletion, a novel mechanism for cardioprotection from regional ischemia. Am. J. Physiol. 273:H1956–H1961.

    Google Scholar 

  25. Suleiman, M. S., Moffatt, A. C., Dihmis, W. C., Caputo, M., Hutter, J. A., Angelini, G. D., and Bryan, A. J. 1997. Effect of ischaemia and reperfusion on the intracellular concentration of taurine and glutamine in the hearth of patients undergoing artery surgery. Biochim. Biophys. Acta 1324:223–231.

    Google Scholar 

  26. Saransari, P. and Oja, S. S. 1998. Mechanism of ischemia-induced taurine release in mouse hippocampal slices. Brain Res. 807: 118–124.

    Google Scholar 

  27. Nanobashvili, J., Neumayer, C., Fugl, A., Punz, A., Blumer, R., Prager, M., Mittlbock, M., Gruber, H., Polterauer, P., Roth, E., Malinski, T., and Huk, I. 2003. Ischemia/reperfusion injury of skeletal muscle: Plasma taurine as a measure of tissue damage. Surgery 133:91–100.

    Google Scholar 

  28. Takahashi, K., Ohyabu, Y., Takahashi, K., Solodushko, V., Takatani, T., Itoh, T., Schaffer, S. W., and Azuma, J. 2003. Taurine renders the cell resistant to ischemia-induced injury in cultured neonatal rat cardiomyocytes. J. Cardiovasc. Pharmacol. 41:726–733.

    Google Scholar 

  29. Tricarico, D., Barbieri, M., and Conte Camerino, D. 2000. Taurine blocks ATP-sensitive potassium channels of rat skeletal muscle fibres interfering with the sulphonylurea receptor. Br. J. Pharmacol. 130:827–834.

    Google Scholar 

  30. Tricarico, D., Barbieri, M., and Conte Camerino, D. 2001. Voltage-dependent antagonist/agonist actions of taurine on Ca2+-activated potassium channels of rat skeletal muscle fibers. J. Pharmacol. Exp. Ther. 298:1167–1171.

    Google Scholar 

  31. De Luca, A., Pierno, S., and Conte Camerino, D. 1996. Effect of taurine depletion on excitation-contraction coupling and Cl conductance of rat skeletal muscle. Eur. J. Pharmacol. 296: 215–222.

    Google Scholar 

  32. De Luca, A., Conte Camerino, D., Failli, P., Franconi, F., and Giotti, A. 1990. Effects of taurine on mammalian skeletal muscle fiber during development. Prog. Clin. Biol. Res. 351:163–173.

    Google Scholar 

  33. Pierno, S., De Luca, A., Camerino, C., Huxtable, R. J., and Conte Camerino, D. 1998. Chronic administration of taurine to aged rats improves the electrical and contractile properties of skeletal muscle fibers. J. Pharmacol. Exp. Ther. 286:1183–1190.

    Google Scholar 

  34. Pierno, S., De Luca, A., Beck, C. L., George, A. L., and Conte Camerino, D. 1999. Aging-associated down-regulation of ClC-1 expression in skeletal muscle: Phenotypic-independent relation to the decrease of chloride conductance. FEBS Lett. 449:12–16.

    Google Scholar 

  35. De Luca, A., Pierno, S., and Conte Camerino, D. 1994. Pharmacological interventions for the changes of chloride channel conductance of aging rat skeletal muscle. Ann. NY Acad. Sci. 717: 180–188.

    Google Scholar 

  36. De Luca, A., Tricarico, D., Pierno, S., and Conte Camerino, D. 1994. Aging and chloride channel regulation in rat fast-twitch muscle fibers. Pflügers Arch. 427:80–85.

    Google Scholar 

  37. Li, Y.-P. and Lombardini, J. B. 1991. Inhibition by taurine of the phosphorylation of specific synaptosomal proteins in the rat cortex: Effects of taurine on the stimulation of calcium uptake in mitochondria and inhibition of phosphoinositide turnover. Brain Res. 553:89–96.

    Google Scholar 

  38. Huxtable, R. J. and Bressler, R. 1973. Effect of taurine on a muscle intracellular membrane. Biochim. Biophys. Acta 323: 573–583.

    Google Scholar 

  39. Bakker, A. J. and Berg, H. M. 2002. Effect of taurine on sarcoplasmic reticulum function and force in skinned fast-twitch skeletal muscle fibres of the rat. J. Physiol. 538:185–194.

    Google Scholar 

  40. Turinski, J. and Long, C. L. 1990. Free amino acids in muscle: Effect of muscle fiber population and denervation. Am. J. Physiol. 258:E485–E491.

    Google Scholar 

  41. Pierno, S., Desaphy, J. F., Liantonio, A., De Bellis, M., Bianco, G., De Luca, A., Frigeri, A., Nicchia, G. P., Svelto, M., Leoty, C., George, A. L., Jr, and Conte Camerino, D. 2002. Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Brain 125:1510–1521.

    Google Scholar 

  42. Frigeri, A., Nicchia, G. P., Verbavatz, J. M., Valenti, G., and Svelto, M. 1998. Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle. J. Clin. Invest. 102:695–703.

    Google Scholar 

  43. Frigeri, A., Nicchia, G. P., Desaphy, J. F., Pierno, S., De Luca, A., Conte Camerino, D., and Svelto, M. 2001. Muscle loading modulates aquaporin-4 expression in skeletal muscle. FASEB J. 15: 1282–1284.

    Google Scholar 

  44. Schaffer, S. W., Punna, S., Duan, J., Harada, H., Hamaguchi, T., and Azuma, J. 1992. Mechanisms underlying physiological modulation of myocardial contraction by taurine. Adv. Exp. Biol. Med. 315:193–198.

    Google Scholar 

  45. Hoffman, E. P. and Dressman, D. 2001. Molecular pathophysiology and targeted therapeutics for muscular dystrophy. Trends Pharmacol. Sci. 22:465–470.

    Google Scholar 

  46. Vandebrouck, C., Martin, D., Colson-Van Schoor, M., Debaix, H., and Gailly, P. 2002. Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J. Cell Biol. 158:1089–1096.

    Google Scholar 

  47. Engel, A. G., Yamamoto, M., and Fischbeck, K. H. 1994. Dystrophinopathies. Pages 1133–1187, in Engel, A. G. and Franzini-Armstrong, G. (eds.), Myology. New York: McGraw-Hill.

    Google Scholar 

  48. McIntosch, L., Granberg, K.-E., Brière, K. M., and Anderson, J. E. 1998. Nuclear magnetic resonance spectroscopy study of muscle growth, mdx dystrophy and glucocorticoid treatments: correlation with repair. NMR Biomed. 11:1–10.

    Google Scholar 

  49. De Luca, A., Pierno, S., Camerino, C., Huxtable, R. J., and Conte Camerino, D. 1998. Effect of taurine on excitation-contraction coupling of extensor digitorum longus muscle of dystrophic mdx mouse. Adv. Exp. Med. Biol. 442:115–119.

    Google Scholar 

  50. De Luca, A., Pierno, S., Liantonio, A., Cetrone, M., Camerino, C., Simonetti, S., Papadia, F., and Conte Camerino, D. 2001. Alteration of excitation-contraction coupling mechanism in extensor digitorum longus muscle fibres of dystrophic mdx mouse and potential efficacy of taurine. Br. J. Pharmacol. 132:1047–1054.

    Google Scholar 

  51. De Luca, A., Pierno, S., Liantonio, A., Cetrone, M., Camerino, C., Fraysse, B., Mirabella, M., Servidei, S., Ruegg, U. T., and Conte Camerino, D. 2003. Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1. J. Pharmacol. Exp. Ther. 304:453–463.

    Google Scholar 

  52. Porter, J. D., Khanna, S., Kaminski, H. J., Roa, J. S., Merriam, A. P., Richmonds, C. R., Leahy, P., Li, J., Guo, W., and Andrade, F. H. 2002. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Human Mol. Genet. 11:263–272.

    Google Scholar 

  53. Kontny, E., Szczepanska, K., Kowalczewski, J., Kurowska, M., Janicka, I., Marcinkiewicz, J., and Maslinski, W. 2000. The mechanism of taurine chloramine inhibition of cytokine (interleukin-6, interleukin-8) production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum. 43:2169–2177.

    Google Scholar 

  54. Matsuzaki, Y., Miyazaki, T., Miyakawa, S., Bouscarel, B., Ikegami, T., and Tanaka, N. 2002. Decreased taurine concentration in skeletal muscles after exercise for various durations. Med. Sci. Sports Exerc. 34:793–797.

    Google Scholar 

  55. Dawson, R., Jr., Biasetti, M., Messina, S., and Dominy., J. 2002. The cytoprotective role of taurine in exercise-induced muscle injury. Amino Acids 22:309–324.

    Google Scholar 

  56. Yatabe, Y., Miyakawa, S., Miyazaki, T., Matsuzaki, Y., and Ochiai, N. 2003. Effects of taurine administration in rat skeletal muscles on exercise. J. Orthop. Sci. 8:415–419.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Conte Camerino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camerino, D.C., Tricarico, D., Pierno, S. et al. Taurine and Skeletal Muscle Disorders. Neurochem Res 29, 135–142 (2004). https://doi.org/10.1023/B:NERE.0000010442.89826.9c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000010442.89826.9c

Navigation