Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New conduction abnormalities after TAVI—frequency and causes

Abstract

Transcatheter aortic valve implantation (TAVI) is increasingly used to treat patients with aortic stenosis who are considered to be too high-risk for surgical replacement of the aortic valve. Although the procedural risks are decreasing, the occurrence of new conduction abnormalities remains a vexing issue. Both left bundle branch block and atrioventricular dissociation can affect prognosis after TAVI. Understanding the intimate relationship between the atrioventricular conduction axis and the aortic root, in addition to elucidation of factors related specifically to the procedure, devices, and patients, might help to reduce these conduction abnormalities. The purpose of this Review is to assess, and offer insights into, the available information on the frequency of new conduction abnormalities associated with TAVI, their anatomical and procedural causes, and their clinical consequences.

Key Points

  • Transcatheter aortic valve implantation (TAVI) is increasingly used to treat patients with aortic stenosis who are considered to be too high-risk for surgical replacement of the aortic valve

  • Although the procedural risks are decreasing, the occurrence of new conduction abnormalities after TAVI remains a major issue

  • The aggregate of information concerning potential predictors is growing, but a comprehensive overview of these factors is still lacking

  • Knowledge of the intimate relationship and proximity of the atrioventricular conduction axis with the aortic root allows us to understand the pathological mechanisms underlying new conduction abnormalities after TAVI

  • Appreciation of factors related specifically to the devices, procedure, and patients makes it possible to predict the occurrence of new conduction abnormalities, and might change the procedure and devices

  • Information concerning the effects of new conduction abnormalities and new implantation of permanent pacemakers on long-term follow-up is scarce and should be further elucidated

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4: Anatomy and relationship between the aortic valvular complex and the atrioventricular conduction system.
Figure 5: Commercially available prosthetic aortic valves.
Figure 6: Relationship between the implanted prosthesis and the atrioventricular conduction system.

Similar content being viewed by others

References

  1. Andersen, H. R., Knudsen, L. L. & Hasenkam, J. M. Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs. Eur. Heart J. 13, 704–708 (1992).

    CAS  PubMed  Google Scholar 

  2. Cribier, A. et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106, 3006–3008 (2002).

    PubMed  Google Scholar 

  3. Rodés-Cabau, J. et al. Transcatheter aortic valve implantation for the treatment of severe symptomatic aortic stenosis in patients at very high or prohibitive surgical risk: acute and late outcomes of the multicenter Canadian experience. J. Am. Coll. Cardiol. 55, 1080–1090 (2010).

    PubMed  Google Scholar 

  4. Piazza, N. et al. Procedural and 30-day outcomes following transcatheter aortic valve implantation using the third generation (18 Fr) CoreValve revalving system: results from the multicentre, expanded evaluation registry 1-year following CE mark approval. EuroIntervention 4, 242–249 (2008).

    PubMed  Google Scholar 

  5. Tamburino, C. et al. Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis. Circulation 123, 299–308 (2011).

    Article  PubMed  Google Scholar 

  6. Eltchaninoff, H. et al. Transcatheter aortic valve implantation: early results of the FRANCE (FRench Aortic National CoreValve and Edwards) registry. Eur. Heart J. 32, 191–197 (2011).

    Article  PubMed  Google Scholar 

  7. Zahn, R. et al. Transcatheter aortic valve implantation: first results from a multi-centre real-world registry. Eur. Heart J. 32, 198–204 (2011).

    PubMed  Google Scholar 

  8. Lefèvre, T. et al. One year follow-up of the multi-centre European PARTNER transcatheter heart valve study. Eur. Heart J. 32, 148–157 (2011).

    PubMed  Google Scholar 

  9. Bosmans, J. M. et al. Procedural, 30-day and one year outcome following CoreValve or Edwards transcatheter aortic valve implantation: results of the Belgian national registry. Interact. Cardiovasc. Thorac. Surg. 12, 762–767 (2011).

    PubMed  Google Scholar 

  10. Moat, N. E. et al. Long-term outcomes after transcatheter aortic valve implantation in high-risk patients with severe aortic stenosis: the U. K. TAVI (United Kingdom Transcatheter Aortic Valve Implantation) Registry. J. Am. Coll. Cardiol. 58, 2130–2138 (2011).

    PubMed  Google Scholar 

  11. Thomas, M. et al. One-year outcomes of cohort 1 in the Edwards SAPIEN Aortic Bioprosthesis European Outcome (SOURCE) registry: the European registry of transcatheter aortic valve implantation using the Edwards SAPIEN valve. Circulation 124, 425–433 (2011).

    PubMed  Google Scholar 

  12. Leon, M. B. et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363, 1597–1607 (2010).

    CAS  PubMed  Google Scholar 

  13. Smith, C. R. et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364, 2187–2198 (2011).

    CAS  PubMed  Google Scholar 

  14. de Jaegere, P. P. T. et al. Transcatheter aortic valve implantation. Where are we? EuroIntervention 5, 169–171 (2009).

    PubMed  Google Scholar 

  15. Rodés-Cabau, J. Transcatheter aortic valve implantation: current and future approaches. Nat. Rev. Cardiol. 9, 15–29 (2011).

    PubMed  Google Scholar 

  16. Grines, C. L. et al. Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation 79, 845–853 (1989).

    CAS  PubMed  Google Scholar 

  17. Lee, S.-J. et al. Isolated bundle branch block and left ventricular dysfunction. J. Card. Fail. 9, 87–92 (2003).

    PubMed  Google Scholar 

  18. Vernooy, K. et al. Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur. Heart J. 26, 91–98 (2005).

    PubMed  Google Scholar 

  19. Zannad, F. et al. Left bundle branch block as a risk factor for progression to heart failure. Eur. J. Heart Fail. 9, 7–14 (2007).

    PubMed  Google Scholar 

  20. El-Khally, Z. et al. Prognostic significance of newly acquired bundle branch block after aortic valve replacement. Am. J. Cardiol. 94, 1008–1011 (2004).

    PubMed  Google Scholar 

  21. Dawkins, S. et al. Permanent pacemaker implantation after isolated aortic valve replacement: incidence, indications, and predictors. Ann. Thorac. Surg. 85, 108–112 (2008).

    PubMed  Google Scholar 

  22. Dimarakis, I. et al. Conventional aortic valve replacement for high-risk aortic stenosis patients not suitable for trans-catheter aortic valve implantation: feasibility and outcome. Eur. J. Cardiothorac. Surg. 40, 743–748 (2011).

    PubMed  Google Scholar 

  23. Erdogan, H. B. et al. Risk factors for requirement of permanent pacemaker implantation after aortic valve replacement. J. Card. Surg. 21, 211–215 (2006).

    PubMed  Google Scholar 

  24. Gordon, R. S., Ivanov, J., Cohen, G. & Ralph-Edwards, A. L. Permanent cardiac pacing after a cardiac operation: predicting the use of permanent pacemakers. Ann. Thorac. Surg. 66, 1698–1704 (1998).

    CAS  PubMed  Google Scholar 

  25. Huynh, H. et al. Permanent pacemaker implantation following aortic valve replacement: current prevalence and clinical predictors. Pacing Clin. Electrophysiol. 32, 1520–1525 (2009).

    PubMed  Google Scholar 

  26. Limongelli, G. et al. Risk factors for pacemaker implantation following aortic valve replacement: a single centre experience. Heart 89, 901–904 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nardi, P. et al. Permanent pacemaker implantation after isolated aortic valve replacement: incidence, risk factors and surgical technical aspects. J. Cardiovasc. Med. (Hagerstown) 11, 14–19 (2010).

    Google Scholar 

  28. Schurr, U. P. et al. Incidence and risk factors for pacemaker implantation following aortic valve replacement. Interact. Cardiovasc. Thorac. Surg. 11, 556–560 (2010).

    PubMed  Google Scholar 

  29. Bates, M. G. D., Matthews, I. G., Fazal, I. A. & Turley, A. J. Postoperative permanent pacemaker implantation in patients undergoing trans-catheter aortic valve implantation: what is the incidence and are there any predicting factors? Interact. Cardiovasc. Thorac. Surg. 12, 243–253 (2011).

    PubMed  Google Scholar 

  30. Bagur, R. et al. Permanent pacemaker implantation following isolated aortic valve replacement in a large cohort of elderly patients with severe aortic stenosis. Heart 97, 1687–1694 (2011).

    PubMed  Google Scholar 

  31. Reynolds, M. R. et al. Health-related quality of life after transcatheter aortic valve replacement in inoperable patients with severe aortic stenosis. Circulation 124, 1964–1972 (2011).

    PubMed  Google Scholar 

  32. Georgiadou, P. et al. Long-term quality of life improvement after transcatheter aortic valve implantation. Am. Heart J. 162, 232–237 (2011).

    PubMed  Google Scholar 

  33. Ussia, G. P. et al. Quality-of-life in elderly patients one year after transcatheter aortic valve implantation for severe aortic stenosis. EuroIntervention 7, 573–579 (2011).

    PubMed  Google Scholar 

  34. Ussia, G. P. et al. Quality of life assessment after percutaneous aortic valve implantation. Eur. Heart J. 30, 1790–1796 (2009).

    PubMed  Google Scholar 

  35. Gonçalves, A. et al. Quality of life improvement at midterm follow-up after transcatheter aortic valve implantation. Int. J. Cardiol. http://dx.doi.org/10.1016/j.ijcard.2011.05.050.

  36. Bekeredjian, R. et al. Usefulness of percutaneous aortic valve implantation to improve quality of life in patients >80 years of age. Am. J. Cardiol. 106, 1777–1781 (2010).

    PubMed  Google Scholar 

  37. Melek, M. et al. Tissue Doppler evaluation of intraventricular asynchrony in isolated left bundle branch block. Echocardiography 23, 120–126 (2006).

    PubMed  Google Scholar 

  38. Abe, H. et al. Effects of aortic valve replacement on left ventricular dyssynchrony in aortic stenosis with narrow QRS complex. J. Am. Soc. Echocardiogr. 24, 1358–1364 (2011).

    PubMed  Google Scholar 

  39. Heyndrickx, G. R., Vilaine, J. P., Knight, D. R. & Vatner, S. F. Effects of altered site of electrical activation on myocardial performance during inotropic stimulation. Circulation 71, 1010–1016 (1985).

    CAS  PubMed  Google Scholar 

  40. Tzikas, A. et al. Frequency of conduction abnormalities after transcatheter aortic valve implantation with the Medtronic-CoreValve and the effect on left ventricular ejection fraction. Am. J. Cardiol. 107, 285–289 (2011).

    PubMed  Google Scholar 

  41. Thomas, J. L. et al. Prognostic significance of the development of left bundle conduction defects following aortic valve replacement. J. Thorac. Cardiovasc. Surg. 84, 382–386 (1982).

    CAS  PubMed  Google Scholar 

  42. Moreno, R. et al. Cause of complete atrioventricular block after percutaneous aortic valve implantation: insights from a necropsy study. Circulation 120, e29–e30 (2009).

    PubMed  Google Scholar 

  43. Anderson, R. H., Razavi, R. & Taylor, A. M. Cardiac anatomy revisited. J. Anat. 205, 159–177 (2004).

    PubMed  PubMed Central  Google Scholar 

  44. Abuin, G. & Nieponice, A. The first septal artery supplies the atrioventricular node. Tex. Heart Inst. J. 25, 318–319 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Abuin, G. & Nieponice, A. New findings on the origin of the blood supply to the atrioventricular node. Clinical and surgical significance. Tex. Heart Inst. J. 25, 113–117 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. von Lüdinghausen, M. & Ohmachi, N. Right superior septal artery with 'normal' right coronary and ectopic 'early' aortic origin: a contribution to the vascular supply of the interventricular septum of the human heart. Clin. Anat. 14, 312–319 (2001).

    PubMed  Google Scholar 

  47. Taylor, J. R. The descending septal artery. Its relation to the conduction system of the heart. Arch. Pathol. Lab. Med. 104, 599–602 (1980).

    CAS  PubMed  Google Scholar 

  48. Nuis, R.-J. et al. Timing and potential mechanisms of new conduction abnormalities during the implantation of the Medtronic CoreValve System in patients with aortic stenosis. Eur. Heart J. 32, 2067–2074 (2011).

    PubMed  Google Scholar 

  49. Piazza, N. et al. Early and persistent intraventricular conduction abnormalities and requirements for pacemaking after percutaneous replacement of the aortic valve. JACC Cardiovasc. Interv. 1, 310–316 (2008).

    PubMed  Google Scholar 

  50. Baan, J. Jr et al. Factors associated with cardiac conduction disorders and permanent pacemaker implantation after percutaneous aortic valve implantation with the CoreValve prosthesis. Am. Heart J. 159, 497–503 (2010).

    PubMed  Google Scholar 

  51. Piazza, N. et al. Persistent conduction abnormalities and requirements for pacemaking six months after transcatheter aortic valve implantation. EuroIntervention 6, 475–484 (2010).

    PubMed  Google Scholar 

  52. Aktug, O. et al. Incidence and predictors of left bundle branch block after transcatheter aortic valve implantation. Int. J. Cardiol. http://dx.doi.org/10.1016/j.ijcard.2011.03.004.

  53. Ferreira, N. D. et al. Incidence and predictors of permanent pacemaker requirement after transcatheter aortic valve implantation with a self-expanding bioprosthesis. Pacing Clin. Electrophysiol. 33, 1364–1372 (2010).

    PubMed  Google Scholar 

  54. Fraccaro, C. et al. Incidence, predictors, and outcome of conduction disorders after transcatheter self-expandable aortic valve implantation. Am. J. Cardiol. 107, 747–754 (2011).

    PubMed  Google Scholar 

  55. Guetta, V. et al. Predictors and course of high-degree atrioventricular block after transcatheter aortic valve implantation using the CoreValve revalving system. Am. J. Cardiol. 108, 1600–1605 (2011).

    PubMed  Google Scholar 

  56. Saia, F. et al. Transcatheter aortic valve implantation with a self-expanding nitinol bioprosthesis: Prediction of the need for permanent pacemaker using simple baseline and procedural characteristics. Catheter. Cardiovasc. Interv. 79, 712–719 (2012).

    PubMed  Google Scholar 

  57. Gutiérrez, M. et al. Electrocardiographic changes and clinical outcomes after transapical aortic valve implantation. Am. Heart J. 158, 302–308 (2009).

    PubMed  Google Scholar 

  58. Onalan, O. et al. Determinants of pacemaker dependency after coronary and/or mitral or aortic valve surgery with long-term follow-up. Am. J. Cardiol. 101, 203–208 (2008).

    PubMed  Google Scholar 

  59. Merin, O. et al. Permanent pacemaker implantation following cardiac surgery: indications and long-term follow-up. Pacing Clin. Electrophysiol. 32, 7–12 (2009).

    PubMed  Google Scholar 

  60. Erkapic, D. et al. Electrocardiographic and further predictors for permanent pacemaker requirement after transcatheter aortic valve implantation. Europace 12, 1188–1190 (2010).

    PubMed  Google Scholar 

  61. Koos, R. et al. Electrocardiographic and imaging predictors for permanent pacemaker requirement after transcatheter aortic valve implantation. J. Heart Valve Dis. 20, 83–90 (2011).

    PubMed  Google Scholar 

  62. Roten, L. et al. Incidence and predictors of atrioventricular conduction impairment after transcatheter aortic valve implantation. Am. J. Cardiol. 106, 1473–1480 (2010).

    PubMed  Google Scholar 

  63. Calvi, V. et al. Incidence rate and predictors of permanent pacemaker implantation after transcatheter aortic valve implantation with self-expanding CoreValve prosthesis. J. Interv. Card. Electrophysiol. http://dx.doi.org/10.1007/s10840-011-9634-5.

  64. Mack, M. Fool me once, shame on you; fool me twice, shame on me! A perspective on the emerging world of percutaneous heart valve therapy. J. Thorac. Cardiovasc. Surg. 136, 816–819 (2008).

    PubMed  Google Scholar 

  65. Lange, R. et al. Improvements in transcatheter aortic valve implantation outcomes in lower surgical risk patients: a glimpse into the future. J. Am. Coll. Cardiol. 59, 280–287 (2012).

    CAS  PubMed  Google Scholar 

  66. Tamburino, C. et al. Early- and mid-term outcomes of transcatheter aortic valve implantation in patients with logistic EuroSCORE less than 20%: a comparative analysis between different risk strata. Cathet. Cardiovasc. Interv. 79, 132–140 (2012).

    Google Scholar 

  67. Taylor, J. The time has come for a SYNTAX-like trial for transcatheter aortic valve implantation. Eur. Heart J. 32, 128–129 (2011).

    PubMed  Google Scholar 

  68. Grube, E. et al. Feasibility of transcatheter aortic valve implantation without balloon pre-dilation: a pilot study. JACC Cardiovasc. Interv. 4, 751–757 (2011).

    PubMed  Google Scholar 

  69. Tzikas, A., Schultz, C., Van Mieghem, N. M., de Jaegere, P. P. T. & Serruys, P. W. Optimal projection estimation for transcatheter aortic valve implantation based on contrast-aortography: validation of a prototype software. Catheter. Cardiovasc. Interv. 76, 602–607 (2010).

    PubMed  Google Scholar 

  70. Dvir, D. & Kornowski, R. Percutaneous aortic valve implantation using novel imaging guidance. Catheter. Cardiovasc. Interv. 76, 450–454 (2010).

    PubMed  Google Scholar 

  71. Sarkar, K., Ussia, G. P. & Tamburino, C. Transcatheter aortic valve implantation for severe aortic regurgitation in a stentless bioprosthetic valve with the CoreValve revalving system—technical tips and role of the Accutrak system. Catheter. Cardiovasc. Interv. 78, 485–490 (2011).

    PubMed  Google Scholar 

  72. Schofer, J. et al. Retrograde transarterial implantation of a nonmetallic aortic valve prosthesis in high-surgical-risk patients with severe aortic stenosis: a first-in-man feasibility and safety study. Circ. Cardiovasc. Interv. 1, 126–133 (2008).

    PubMed  Google Scholar 

  73. Treede, H. et al. Six-month results of a repositionable and retrievable pericardial valve for transcatheter aortic valve replacement: the Direct Flow Medical aortic valve. J. Thorac. Cardiovasc. Surg. 140, 897–903 (2010).

    PubMed  Google Scholar 

  74. Gaia, D. F. et al. Transapical aortic valve implantation: results of a Brazilian prosthesis. Rev. Bras. Cir. Cardiovasc. 25, 293–302 (2010).

    PubMed  Google Scholar 

  75. Gaia, D. F. et al. Off-pump transapical balloon-expandable aortic valve endoprosthesis implantation. Rev. Bras. Cir. Cardiovasc. 24, 233–238 (2009).

    PubMed  Google Scholar 

  76. Kempfert, J. et al. Trans-apical aortic valve implantation using a new self-expandable bioprosthesis: initial outcomes. Eur. J. Cardiothorac. Surg. 40, 1114–1119 (2011).

    PubMed  Google Scholar 

  77. Kempfert, J., Rastan, A. J., Mohr, F.-W. & Walther, T. A new self-expanding transcatheter aortic valve for transapical implantation—first in man implantation of the JenaValve. Eur. J. Cardiothorac. Surg. 40, 761–763 (2011).

    PubMed  Google Scholar 

  78. Buellesfeld, L., Gerckens, U. & Grube, E. Percutaneous implantation of the first repositionable aortic valve prosthesis in a patient with severe aortic stenosis. Catheter. Cardiovasc. Interv. 71, 579–584 (2008).

    PubMed  Google Scholar 

  79. Falk, V. et al. New anatomically oriented transapical aortic valve implantation. Ann. Thorac. Surg. 87, 925–926 (2009).

    PubMed  Google Scholar 

  80. Falk, V. et al. Transapical aortic valve implantation with a self-expanding anatomically oriented valve. Eur. Heart J. 32, 878–887 (2011).

    CAS  PubMed  Google Scholar 

  81. Cribier, A. et al. Treatment of calcific aortic stenosis with the percutaneous heart valve: mid-term follow-up from the initial feasibility studies: the French experience. J. Am. Coll. Cardiol. 47, 1214–1223 (2006).

    PubMed  Google Scholar 

  82. Walther, T. et al. Transapical minimally invasive aortic valve implantation; the initial 50 patients. Eur. J. Cardiothorac. Surg. 33, 983–988 (2008).

    PubMed  Google Scholar 

  83. Sinhal, A. et al. Atrioventricular block after transcatheter balloon expandable aortic valve implantation. JACC Cardiovasc. Interv. 1, 305–309 (2008).

    PubMed  Google Scholar 

  84. Webb, J. G. et al. Transcatheter aortic valve implantation: impact on clinical and valve-related outcomes. Circulation 119, 3009–3016 (2009).

    PubMed  Google Scholar 

  85. Godin, M. et al. Frequency of conduction disturbances after transcatheter implantation of an Edwards Sapien aortic valve prosthesis. Am. J. Cardiol. 106, 707–712 (2010).

    PubMed  Google Scholar 

  86. D'Ancona, G., Pasic, M., Unbehaun, A. & Hetzer, R. Permanent pacemaker implantation after transapical transcatheter aortic valve implantation. Interact. Cardiovasc. Thorac. Surg. 13, 373–376 (2011).

    PubMed  Google Scholar 

  87. Bleiziffer, S. et al. Predictors for new-onset complete heart block after transcatheter aortic valve implantation. JACC Cardiovasc. Interv. 3, 524–530 (2010).

    PubMed  Google Scholar 

  88. Berry, C. et al. Novel therapeutic aspects of percutaneous aortic valve replacement with the 21F CoreValve revalving system. Catheter. Cardiovasc. Interv. 70, 610–616 (2007).

    PubMed  Google Scholar 

  89. Calvi, V. et al. Early conduction disorders following percutaneous aortic valve replacement. Pacing Clin. Electrophysiol. 32 (Suppl. 1), S126–S130 (2009).

    PubMed  Google Scholar 

  90. Jilaihawi, H. et al. Predictors for permanent pacemaker requirement after transcatheter aortic valve implantation with the CoreValve bioprosthesis. Am. Heart J. 157, 860–866 (2009).

    PubMed  Google Scholar 

  91. Latsios, G. et al. 'Device landing zone' calcification, assessed by MSCT, as a predictive factor for pacemaker implantation after TAVI. Catheter. Cardiovasc. Interv. 76, 431–439 (2010).

    PubMed  Google Scholar 

  92. Haworth, P. et al. Predictors for permanent pacing after transcatheter aortic valve implantation. Catheter. Cardiovasc. Interv. 76, 751–756 (2010).

    PubMed  Google Scholar 

  93. Rubín, J. M. et al. Atrioventricular conduction disturbance characterization in transcatheter aortic valve implantation with the CoreValve prosthesis. Circ. Cardiovasc. Interv. 4, 280–286 (2011).

    PubMed  Google Scholar 

  94. Khawaja, M. Z. et al. Permanent pacemaker insertion after CoreValve transcatheter aortic valve implantation: incidence and contributing factors (the UK CoreValve Collaborative). Circulation 123, 951–960 (2011).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. M. van der Boon and R.-J. Nuis researched the data for the article, and all the authors contributed substantially to discussion of its content. R. M. van der Boon, R.-J. Nuis, R. H. Anderson, and P. P. T. de Jaegere wrote the article, and all the authors reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Peter P. T. de Jaegere.

Ethics declarations

Competing interests

J. Rodés Cabau is, or has been, a consultant for Edwards Lifesciences and St Jude Medical. P. P. T. de Jaegere is, or has been, a consultant for Medtronic. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Boon, R., Nuis, RJ., Van Mieghem, N. et al. New conduction abnormalities after TAVI—frequency and causes. Nat Rev Cardiol 9, 454–463 (2012). https://doi.org/10.1038/nrcardio.2012.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing