Skip to main content

Advertisement

Log in

Time-Dependent Entropy Estimation of EEG Rhythm Changes Following Brain Ischemia

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Our approach is motivated by the need to generate a rigorous measure of the degree of disorder (or complexity) of the EEG signal in brain injury. Entropy is a method to quantify the order/disorder of a time series. It is the first time that a time-dependent entropy (TDE) is used in the quantification of brain injury level. The TDE was sensitive enough to monitor the significant changes in the subject's brain rhythms during recovery from global ischemic brain injury. Among the different entropy measures, we used Tsallis entropy. This entropy is parametrized and is able to match with the particular properties of EEG, like long-range rhythms, spikes, and bursts. The method was tested in a signal composed of segments of synthetic signals (Gaussian and uniform distributions) and segments of real signals. The real signal segments were extracted from normal EEG, EEG recordings from early recovery, and normal EEG corrupted by simulated spikes and bursts. Adult Wistar rats were subjected to asphyxia-cardiac arrest for 3 and 5 min. The TDE detected the pattern of ischemia-induced EEG alterations and was able to discriminate the different injury levels. Two parameters seem to be good descriptors of the recovery process; the mean entropy and the variance of the estimate followed opposite trends, with the mean entropy decreasing and its variance increasing with injury. © 2003 Biomedical Engineering Society.

PAC2003: 8719Nn, 8780-y, 8710+e, 8719La

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abe, S., and A. K. Rajagopal. Nonadditive conditional entropy and its significance for local realism. Physica A289:157–164, 2001.

    Google Scholar 

  2. Abe, S.. Axioms and uniqueness theorem for Tsallis entropy. Phys. Lett. A271:74–79, 2000.

    Google Scholar 

  3. Abe, S.. Correlation induced by Tsallis' nonextensivity. Physica A269:403–409, 1999.

    Google Scholar 

  4. Abarbanel, H. D. I. Analysis of Observed Chaotic Data. New York: Springer, 1996.

    Google Scholar 

  5. Basar, E. Brain Function and Oscillations (I): Brain Oscillations, Principles and Approaches. Berlin: Springer, 1998.

    Google Scholar 

  6. Bassetti, C., F. Bomio, J. Mathis, and C. Hess. Early prognosis in coma after cardiac arrest: A prospective clinical, electrophysiological, and biochemical study of 60 patients. J. Neurol., Neurosurg. Psychiatry61:610–615, 1996.

    Google Scholar 

  7. Bercher, J. F., and C. Vignat. Estimating the entropy of a signal with applications. IEEE Trans. Biomed. Eng.48:1687–1694, 2000.

    Google Scholar 

  8. Buchner, T., and A. Zebrowski. Local entropies as a measure of ordering in distinct maps. Chaos, Solitons Fractals9:19–28, 1998.

    Google Scholar 

  9. Capurro, A., L. Diambra, D. Lorenzo, O. Macadar, M. T. Martin, C. Mostaccio, A. Plastino, J. Pérez, E. Rofman, M. E. Torres, and J. Vellutti. Human brain dynamics: The analysis of EEG signals with Tsallis information measure. Physica A265:235–254, 1999.

    Google Scholar 

  10. Casdagli, M. C., L. D. Iasemedis, R. S. Savit, R. L. Gilmore, and S. N. Roper. Nonlinearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol.102:98–105, 1997.

    Google Scholar 

  11. Cover, T., and J. Thomas. Elements of Information Theory. New York: Wiley, 1991, pp. 12 and 224.

    Google Scholar 

  12. Feller, W. An Introduction to Probability Theory and Its Application. New York: Wiley, 1968, Vol. I.

    Google Scholar 

  13. Gamero, L. G., A. Plastino, and M. E. Torres. Wavelet analysis and nonlinear dynamics in a nonextensive setting. Physica A246:487–509, 1997.

    Google Scholar 

  14. Geocadin, R., J. Muthuswamy, D. Sherman, N. Thakor, and D. Hanley. Early electrophysiological and histologic changes after global cerebral ischemia in rats. Mov Disord.15:14–21, 2000.

    Google Scholar 

  15. Geocadin, R., R. Ghodadra, K. Kimura, H. Lei, D. Sherman, D. Hanley, and N. Thakor. A novel quantitative EEG injury measure of global cerebral ischemia. J. Clin. Neurophysiol.111:1779–1787, 2000.

    Google Scholar 

  16. Goel, V., A. Brambrink, A. Baykal, R. Koehler, D. Hanley, and N. Thakor. Dominant frequency analysis of EEG reveals brain's response during injury and recovery. IEEE Trans. Biomed. Eng.43:1083–1092, 1996.

    Google Scholar 

  17. Gray, R. Entropy and Information Theory. New York: Springer, 1990.

    Google Scholar 

  18. Hossmann, K. A., and B. Grosse-Ophoff. Recovery of monkey brain after prolonged ischemia. 1. Electrophysiology and brain electrolytes. J. Cereb. Blood Flow Metab.6:15–21, 1986.

    Google Scholar 

  19. Hotta, M., and I. Joichi. Composability and generalized entropy. Phys. Lett. A262:302–309, 1999.

    Google Scholar 

  20. Inouye, T., K. Shinosaki, H. Sakamoto, S. Toi, S. Ukai, A. Iyama, Y. Katzuda, and M. Hirano. Quantification of EEG irregularity by use of the entropy of power spectrum. Electroencephalogr. Clin. Neurophysiol.79:204–210, 1991.

    Google Scholar 

  21. Jordan, K. G.. Continuous EEG and evoked potential monitoring in the neuroscience intensive care unit. J. Clin. Neurophysiol.10:445–475, 1993.

    Google Scholar 

  22. Jumarie, G. Maximum Entropy, Information without Probability and Complex Fractals. Dordrecht: Kluwer Academic, 2000.

    Google Scholar 

  23. Katz, L., U. Ebmeyer, P. Safar, and A. Radovsky. Outcome model of asphyxial cardiac arrest in rats. J. Cereb. Blood Flow Metab.15:1032–1039, 1995.

    Google Scholar 

  24. Khinchin, A. I. Mathematical Foundations of Information Theory. New York: Dover, 1957.

    Google Scholar 

  25. Kong, X., A. Brambrink, D. Hanley, and N. Thakor. Quantification of injury-related EEG signal changes using distance measures. IEEE Trans. Biomed. Eng.46:899–901, 1999.

    Google Scholar 

  26. Kontoyannis, I.. Nonparametric entropy estimation for stationary processes and random fields, with applications to english text. IEEE Trans. Inf. Theory44:1319–1327, 1998.

    Google Scholar 

  27. Lehnertz, K., and C. E. Elger. Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Phys. Rev. Lett.80:5019–5022, 1998.

    Google Scholar 

  28. Levy, W. J., H. M. Shapiro, G. Maruchak, and E. Meathe. Automated EEG processing for intraoperative monitoring. Anesthesiology53:223–236, 1980.

    Google Scholar 

  29. Lukatch, H. S., and M. B. MacIver. Synaptic mechanisms of thiopental-induced alterations in synchronized cortical activity. Anesthesiology84:1425–1434, 1996.

    Google Scholar 

  30. Martin, M. T., A. R. Plastino, and A. Plastino. Tsallis-like information measures and the analysis of complex signals. Physica A275:262–271, 2000.

    Google Scholar 

  31. Moddemeijer, R.. On estimation of entropy and mutual information of continuous distribution. Signal Process.16:233–246, 1989.

    Google Scholar 

  32. Muthusswamy, J., D. Sherman, and N. Thakor. Higher-order spectral analysis of burst patterns in EEG. IEEE Trans. Biomed. Eng.46:92–99, 1999.

    Google Scholar 

  33. Nuwer, M.. Assessment of digital EEG, quantitative EEG, and EEG brain mapping: Report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology49:277–292, 1997.

    Google Scholar 

  34. Panzeri, S., and A. Treves. Analytical estimates of limited sampling biases in different information measures. Network7:87–107, 1996.

    Google Scholar 

  35. Powell, C. E., and I. C. Percival. A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian. J. Phys. A12:2053–2071, 1979.

    Google Scholar 

  36. Rothstein, T., E. Thomas, and S. Sumi. Predicting outcome in hypoxic-ischemic coma. A prospective clinical and electrophysiological study. Electroencephalogr. Clin. Neurophysiol.79:101–107, 1991.

    Google Scholar 

  37. Roulston, M..Estimating the errors on measured entropy and mutual information. Physica D125:285–294, 1999.

    Google Scholar 

  38. Santos, R. J. V. da.. Generalization of Shannon's theorem for Tsallis entropy. J. Math. Phys.38:4104–4107, 1997.

    Google Scholar 

  39. Shannon, C. E.. A mathematical theory of communication. Bell Syst. Tech. J.27:623–656, 1948.

    Google Scholar 

  40. Sherman, D. L., A. M. Brambrink, R. N. Ichord, V. K. Dasika, R. C. Koehler, R. J. Traystman, D. F. Hanley, and N. V. Thakor. Quantitative EEG during early recovery from hypoxic-ischemic injury in immature piglets: Burst occurrence and duration. Clin. Electroencephalogr.30:175–183, 1999.

    Google Scholar 

  41. Stam, C. J., J. P. M. Pijn, P. Suffczynsky, and F. H. Lopes-da-Silva. Dynamics of the human alpha rhythm: Evidence for nonlinearity. J. Clin. Neurophysiol.110:1801–1813, 1999.

    Google Scholar 

  42. Tong, S., A. Bezerianos, J. Paul, Y. Zhu, and N. Thakor. Removal of ECG interference from the EEG recordings in small animals using independent component analysis. J. Neurosci. Methods108:11–17, 2001.

    Google Scholar 

  43. Torres, M., and L. Gamero. Relative complexity changes in times series using information measures. Physica A286:457–473, 2000.

    Google Scholar 

  44. Tsallis, C., R. S. Mendes, and A. R. Plastino. The role of constrains within generalized nonextensive statistics. Physica A261:534–554, 1998.

    Google Scholar 

  45. Tsallis, C.. Possible generalization of Boltmannn-Gibs statistics. J. Stat. Phys.52:479–487, 1988.

    Google Scholar 

  46. Tsallis, C.. Generalized entropy-based criterion for consistent testing. Phys. Rev. E58:1442–1445, 1998.

    Google Scholar 

  47. Viola, P., N. N. Schraudolph, and T. J. Sejnowski. Empirical entropy manipulation for real-world problems. In: Advances in Neural Information Processing Systems, edited by D. S. Touretzky, M. C. Mozer, and M. E. Hasselino. Cambridge, MA: 1996, pp.-

  48. Visser, G. H., G. H. Wieneke, and A. C. van-Huffelen. Carotid endarterectomy monitoring: Patterns of spectral EEG changes due to carotid artery clamping. J. Clin. Neurophysiol.110:286–294, 1999.

    Google Scholar 

  49. Williams, G. W., H. O. Luders, A. Brickner, M. Goormastic, and D. W. Klass. Interobserver variability in EEG interpretation. Neurology35:1714–1719, 1985.

    Google Scholar 

  50. Zhao, W., and R. M. Rao, On modeling of self-similar random processes in discrete-time. IEEE–SP International Symposium on Time-Frequency and Time-Scales Analysis, Conference, pp. 333–336, Pittsburgh, PA, 6–9 October 1998.-

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezerianos, A., Tong, S. & Thakor, N. Time-Dependent Entropy Estimation of EEG Rhythm Changes Following Brain Ischemia. Annals of Biomedical Engineering 31, 221–232 (2003). https://doi.org/10.1114/1.1541013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1541013

Navigation