Skip to main content
Log in

Maternal Micronutrient Status and Preterm Versus Term Birth for Black and White US Women

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

Micronutrient deficiencies are hypothesized to play a role in spontaneous preterm birth (PTB; <37 weeks of gestation) and possibly the racial disparity in rates of PTB between black and white women. Yet relatively few studies have addressed the role of micronutrient deficiencies in spontaneous PTB among black and white women in the United States. The purpose of this study was to investigate whether 25-hydroxy vitamin D (25-OH-D), folate, and omega-6/omega-3 fatty acid status are associated with spontaneous PTB among black and white women in the United States.

Methods

Biospecimens and medical record data for this study were derived from a subsample of the 1547 women enrolled into the Nashville Birth Cohort during 2003-2006. We randomly selected 80 nulliparous and primiparous women for whom stored plasma samples from the delivery admission were available and analyzed the stored plasma for 25-OH-D, folate, and total omega-6/omega-3 fatty acids. We used multivariate logistic regression to assess the odds of spontaneous PTB among women with 25-OH-D <20 ng/mL, folate <5 ug/L, and omega-6/omega-3 >15.

Results

An omega-6/omega-3 ratio >15 was significantly associated with spontaneous PTB for white (adjusted odds ratio [aOR] 4.25, 95% confidence interval [CI] 1.25-14.49) but not black women (aOR 1.90, 95% CI: 0.69-5.40), whereas no significant relationships were observed for folate and 25-OH-D status and PTB for black or white women.

Conclusion

Maternal plasma total omega-6/omega-3 fatty acid ratio >15 at delivery was significantly associated with spontaneous PTB for white, but not black, women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev. 2007;65(12 pt 2): S194–S202.

    Article  PubMed  Google Scholar 

  2. Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel L. The role of inflammation and infection in preterm birth. Semin Reprod Med. 2007;25(1):21–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Behrman RE, Butler AS. (Eds). Preterm birth: causes, consequences, and prevention. Washington, DC: National Academies Press; 2006.

    Google Scholar 

  5. Yang QH, Carter HK, Mulinare J, Berry RJ, Friedman JM, Erickson JD. Race-ethnicity differences in folic acid intake in women of childbearing age in the United States after folic acid fortification: findings from the National Health and Nutrition Examination Survey, 2001–2002. Am J Clin Nutr. 2007;85(5):1409–1416.

    Article  CAS  PubMed  Google Scholar 

  6. Nesby-O’Dell S, Scanlon KS, Cogswell ME, et al. Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr. 2002;76(1):187–192.

    Article  PubMed  Google Scholar 

  7. Jen KL, Brogan K, Washington OG, Flack JM, Artinian NT. Poor nutrient intake and high obese rate in an urban African American population with hypertension. J Am Coll Nutr. 2007;26(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  8. Dunlop AL, Kramer M, Hogue CJ, Menon R, Ramakrishnan U. Racial disparities in preterm birth: an overview of the potential role of nutrient deficiencies. Acta Obstetricia et Gynecologica Scandinavica 2011; 90(12): 1332–41. doi: 10.1111/j.1600-0412. 2011.01274.x. [Epub ahead of print] PMID: 21910693.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bodnar LM, Simhan HN. The prevalence of preterm birth and season of conception. Paed Perinatal Epidemiol. 2008;22(6):538–545.

    Article  Google Scholar 

  10. Hewison M, Burke F, Evans KN, et al. Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease. J Steroid Biochem Mol Biol. 2007;103(3–5):16–21.

    Article  CAS  Google Scholar 

  11. Fischer D, Schroer A, Ludders D, et al. Metabolism of vitamin D3 in the placental tissue of normal and preeclampsia complicated pregnancies and premature births. Clin Exp Obstet Gynecol. 2007;34(2):80–84.

    CAS  PubMed  Google Scholar 

  12. DeLuca H. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6):1689S–1696S.

    Article  CAS  PubMed  Google Scholar 

  13. Bodnar LM, Simhan HN. Vitamin D may be a link to black-white disparities in adverse birth outcomes. Obstet Gynecol Surv. 2010; 65(4):273–284.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hollis BW, Johnson D, Hulsey TC, Ebeling M, Wagner CL. Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res. 2011;26(10):2341–2457.

    Article  CAS  PubMed  Google Scholar 

  15. Scholl TO, Hediger ML, Schall JI, Khoo CS, Fischer RL. Dietary and serum folate: their influence on the outcome of pregnancy. Am J Clin Nutr. 1996;63(4):520–525.

    Article  CAS  PubMed  Google Scholar 

  16. Siega-Riz AM, Savitz DA, Zeisel SH, Thorp JM, Herring A. Second trimester folate status and preterm birth. Am J Ob Gyn. 2004; 191(6):1851–1857.

    Article  CAS  Google Scholar 

  17. Bukowski R, Malone FD, Porter FT, et al. Preconceptional folate supplementation and the risk of spontaneous preterm birth: A cohort study. PLoS Med. 2009;6:e1000061. doi:10.1371/journal. pmed.1000061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Baumslag N, Edelstein T, Metz J. Reduction of incidence of prematurity by folic acid supplementation in pregnancy. Br Med J. 1970;1:16–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blot I, Papiernik E, Kaltwasser JP, Werner E, Tchernia G. Influence of routine administration of folic acid and iron during pregnancy. Gynecol Obstet Invest. 1981;12(6):294–304.

    Article  CAS  PubMed  Google Scholar 

  20. Tchernia G, Blot I, Rey A. Maternal folate status, birth weight and gestational age. Dev Pharmacol Ther. 1982;4(supp 1): 58–65.

    Article  PubMed  Google Scholar 

  21. Fleming AF, Martin JD, Hahnel R, Westlake AJ. Effects of iron and folic acid antenatal supplements on maternal haematology and fetal wellbeing. Med J Aust. 1974;2(12):429–436.

    Article  CAS  PubMed  Google Scholar 

  22. Fletcher J, Gurr A, Fellingham FR, Prankerd TA, Brant HA, Menzies DN. The value of folic acid supplements in pregnancy. J Obstet Gynaecol Br Commonw 1971;78(9):781–785.

    Article  CAS  PubMed  Google Scholar 

  23. Giles PF, Harcourt AG, Whiteside MG. The effect of prescribing folic acid during pregnancy on birth-weight and duration of pregnancy. A double-blind trial. Med J Aust. 1971;2(1): 17–21.

    Article  CAS  PubMed  Google Scholar 

  24. Christian P, Jiang T, Khatry SK, LeClerq SC, Shrestha SR, West KP. Antenatal supplementation with micronutrients and biocehcmical indicators of status and subclinical infection in rural Nepal. Am J Clin Nutr. 2006;83(4):788–794.

    Article  CAS  PubMed  Google Scholar 

  25. Scholl TO, Johnson WG. Folic acid: influence on the outcome of pregnancy. Am J Clin Nutr. 2000;71(5 suppl):1295s–1303s.

    Article  CAS  PubMed  Google Scholar 

  26. Martin JD, Davis RE, Stenhouse N. Serum folate and vitamin B12 levels in pregnancy with particular reference to uterine bleeding and bacteriuria. J Obstet Gynaecol Br Commonw. 1967;74 (5 suppl):697–701.

    Article  CAS  PubMed  Google Scholar 

  27. Dhur A, Galan P, Hercberg S. Folate status and the immune system. Prog Food Nutr Sci. 1991;15(1–2):43–60.

    CAS  PubMed  Google Scholar 

  28. Courtemanche C, Elson-Schwab I, Mashiyama ST, Kerry N, Ames BN. Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro. J Immunol. 2004;173(5): 3186–3192.

    Article  CAS  PubMed  Google Scholar 

  29. Christian P, Jiang T, Khatry SK, LeClerq SC, Shrestha SR, West KP. Antenatal supplementation with micronutrients and biocehcmical indicators of status and subclinical infection in rural Nepal. Am J Clin Nutr. 2006;83(4):788–794.

    Article  CAS  PubMed  Google Scholar 

  30. Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST. Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci. 2003;100(4):1751–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Olsen SF, Secher NJ. Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study. Br Med J. 2002;324(7335):1–5.

    Article  Google Scholar 

  32. Olsen SF, Hansen HS, Secher NJ, Jensen B, Sandström B. Gestation length and birth weight in relation to intake of marine n-3 fatty acids. Br J Nutr. 1995;73(3):397–404.

    Article  CAS  PubMed  Google Scholar 

  33. Reece MS, McGregor JA, Allen KG, Harris MA. Maternal and perinatal long-chain fatty acids: possible roles in preterm birth. Am J Obstet Gynecol. 1997;176(4):907–914.

    Article  CAS  PubMed  Google Scholar 

  34. Chen X, Scholl T. Association of elevated, free fatty acids during late pregnancy with preterm delivery. Obstet Gynecol. 112(2 pt 1): 297–303.

    Article  CAS  Google Scholar 

  35. Makrides M, Duley L, Olsen SF. Marine oil, and other prostaglandin precursor, supplementation for pregnancy uncomplicated by pre-eclampsia or intrauterine growth restriction. Cochrane Database Syst Rev. 2006;3:CD003402.

    Google Scholar 

  36. Olsen SF, Secher NJ, Tabor A, Weber T, Walker JJ, Gluud C. Randomised clinical trials of fish oil supplementation in high risk pregnancies. Br J Obstet Gynaecol. 2000;107(3):382–395.

    Article  CAS  Google Scholar 

  37. Harper M, Thom E, Klebanoff MA, et al. for the Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Omega-3 fatty acid supplementation to prevent recurrent preterm birth: a randomized controlled trial. Obstet Gynecol. 2010;115(2 pt 1):234–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academy Press, 2010.

    Google Scholar 

  39. Menon R, Pearce B, Velez DR, et al. Racial disparity in pathophysiologic pathways of preterm birth based on genetic variants. Repro Biol Endocrinol. 2009;7:62. Doi: 10.1186/1477-7827-7-62.

    Article  CAS  Google Scholar 

  40. Chapuy MC, Preziosi P, Maamer M, et al. Prevalence of vitamin insufficiency in an adult normal population. Osteoporos Int. 1997; 7(5):439–443.

    Article  CAS  PubMed  Google Scholar 

  41. McNulty H. Folate requirements for health in different population groups. Br J Biomed Sci. 1995;52(2):110–119.

    CAS  PubMed  Google Scholar 

  42. Bodnar LM, Simhan HN, Powers RW, Frank MP, Cooperstein E, Roberts JM. High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern United States and their neonates. J Nutr. 2007;137(2):447–452.

    Article  CAS  PubMed  Google Scholar 

  43. Looker AC. Body fat and vitamin D status in black versus white women. J Clin Endocrinol Metab. 2005;90(2):2635–2640.

    Article  CAS  Google Scholar 

  44. King JC. The risk of maternal nutritional depletion and poor outcomes increases in early or closely spaced pregnancies. J Nutr. 2003;133(5 suppl 2):1732S–1736S.

    Article  CAS  PubMed  Google Scholar 

  45. Lu M, Halfon N. Racial and ethnic disparities in birth outcomes: a life-course perspective. Matern Child Health J. 2003;7(1):13–30.

    Article  PubMed  Google Scholar 

  46. Gardiner PP, Nelson L, Shellhass CS, Dunlop AL. The clinical content of preconception care: diet, supplements, and vitamins. Am J Ob Gyn. 2008;199;6(suppl 2):S345–S356.

    Article  Google Scholar 

  47. Dent CD, Gupta MM. Plasma 25-hydroxy vitamin-D levels during pregnancy in Caucasians and in vegetarian and non-vegetarian Asians. Lancet. 1975;306(7944):1057–1060.

    Article  Google Scholar 

  48. Ardawi MS, Nasrat HA, BA’Aqueel HS. Calcium-regulating hormones and parathyroid hormone-related peptide in normal human pregnancy and postpartum: a longitudinal study. Eur J Endocrinol. 1997;137(4):402–409.

    Article  CAS  PubMed  Google Scholar 

  49. Al MD, vanHouwelinsen AC, Hornstra G. Long-chain polyunsaturated fatty acids, pregnancy, and pregnancy outcome. Am J Clin Nutr. 2000;71(1 suppl):285S–291S.

    Article  CAS  PubMed  Google Scholar 

  50. Williams MA, Frederick IO, Qui C, et al. Maternal erythrocyte omega-3 and omega-6 fatty acids, and plasma lipid concentrations, are associated with habitual dietary fish consumption in early pregnancy. Clin Biochem. 2006;39(11):1063–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bikle DD, Gee E, Halloran B, Haddad JG. Free 1,25-dihydroxyvitamin D levels in serum from normal subjects, pregnant subjects, and subjects with liver disease. J Clin Invest. 1984; 74(6):1966–1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Willett W. Nutritional Epidemiology. 2nd ed. Oxford: Oxford University Press; 1998:415. ISBN 0-19-512297-6.

    Book  Google Scholar 

  53. Gibson RS. Principles of Nutritional Assessment. New York, NY: Oxford University Press; 1990.

    Google Scholar 

  54. Balin A, Kim MK, Donovan-Palmer A, et al. Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma. Am J Epidemiol. 2005;162(4):373–381.

    Article  Google Scholar 

  55. Weinstein SJ, Ziegler RG, Frongillo EA, et al. Low serum and red blood cell folate are moderate, but non-significantly, associated with invasive cervical cancer. J Nutr. 2001;131(7): 2040–2048.

    Article  CAS  PubMed  Google Scholar 

  56. Eaton SB, Eaton SB III, Sinclair AJ, Cordain L, Mann NJ. Dietary intake of long-chain polyunsaturated fatty acids during the Paleolithic. World Rev Nutr Diet. 1998;83:12–23.

    Article  CAS  PubMed  Google Scholar 

  57. Wathes DC, Robert D, Abayasekara E, Aitken RJ. Polyunsaturated fatty acids in male and female reproduction. Biol Reprod. 2007;77(2):190–201.

    Article  CAS  PubMed  Google Scholar 

  58. Ogburn PL Jr, Johnson SB, Williams PP, Holman RT. Levels of free fatty acids and arachidonic acid in pregnancy and labor. J Lab Clin Med. 1980;95(6):943–949.

    CAS  PubMed  Google Scholar 

  59. Smuts CM, Huang M, Mundy D, Plasse T, Major S, Carlson SE. A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy. Obstet Gynecol. 2003;101(3):469–479.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne L. Dunlop MD, MPH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunlop, A.L., Taylor, R.N., Tangpricha, V. et al. Maternal Micronutrient Status and Preterm Versus Term Birth for Black and White US Women. Reprod. Sci. 19, 939–948 (2012). https://doi.org/10.1177/1933719112438442

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719112438442

Keywords

Navigation