Skip to main content
Erschienen in: BMC Medicine 1/2011

Open Access 01.12.2011 | Commentary

Optimizing functional imaging protocols for assessing the outcome of fetal cell transplantation in Parkinson's disease

verfasst von: Marios Politis

Erschienen in: BMC Medicine | Ausgabe 1/2011

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Clinical trials aiming to assess the safety and efficacy of fetal cell transplantation in Parkinson's disease rely on the hypothesis that the grafted tissue will survive and grow, restore striatal dopaminergic neurotransmission, improve the connectivity between striatum, thalamus and cortex and, thereby, produce long-lasting clinical improvement while avoiding the development of adverse effects. Although transplantation of human fetal ventral mesencephalic tissue has been reported as one of the most effective reparative therapies in Parkinson's disease patients to date, different studies have shown inconsistent results causing a paucity of new trials over the last decade. However, during this period, functional imaging alongside other scientific developments from clinical observations and animal work has significantly aided in understanding the mechanisms responsible for the success or failure of grafting human fetal tissue. Recent advances in functional imaging including both positron emission tomography and functional magnetic resonance imaging could be proven useful in vivo tools for the development and assessment of new clinically competitive trials. In this commentary we discuss how an optimized functional imaging protocol could assist new clinical trials using fetal cell transplantation in Parkinson's disease.
Hinweise

Competing interests

The author declares that they have no competing interests.

Authors' contributions

MP is entirely responsible for the content of this article.
Abkürzungen
5-HT
serotonin
11C-DTBZ
11C-dihydrotetrabenazine
DA
dopamine
DAT
dopamine transporter
DTI
Diffusion Tensor Imaging
fMRI
functional magnetic resonance imaging
GIDs
graft-induced dyskinesias
ME
motor execution
PD
Parkinson's disease
PET
positron emission tomography
RSNs
resting state networks
SERT
serotonin transporter
SPECT
single photon emission computed tomography
TSPO
translocator protein
VM
ventral mesencephalic
VMAT2
vesicular monoamine transporter 2
WM
white matter.

Introduction

In previous trials, functional imaging using mainly positron emission tomography (PET) has provided objective in vivo evidence that human dopamine (DA) -rich fetal ventral mesencephalic (VM) tissue implanted in the striatum of Parkinson's disease (PD) patients can survive, grow, release DA, normalize brain metabolism and restore striatal-cortical connections, clinically corresponding to significant symptomatic relief in some cases [13].
PET with 18F-DOPA (see Table 1 for explanation of PET ligands) has been consistently used since the early open-label [48] up to the more recent double-blind sham-surgery controlled [9, 10] clinical trials to objectively monitor survival and growth of human fetal DA neurons grafted in the striatum of PD patients. PET imaging using 11C-raclopride after placebo or methamphetamine administration has shown that graft-derived DA cells were able to restore the release of endogenous DA in the striatum of PD patients to almost normal levels [11]. Longitudinal assessments with H2 15O PET following transplantation have shown a gradual restoration of movement-related activation in motor cortical areas indicating that grafted cells can form connections and are able to restore striato-cortical networks in the host brain [12].
Table 1
Positron emission tomography techniques
Technique
Target
Use
18F-DOPA PET
Aromatic amino acid decarboxylase (AADC)
Provides measures of AADC activity and allows an indirect measure of DA storage within the DA terminals.
11C-raclopride PET
Post-synaptic DA D2 receptors
Is a subject to competitive displacement by endogenous DA. Acute administration of substances such as amphetamine, methylphenidate, or L-DOPA, which are known to increase the levels of extracellular DA result in a reduction of 11C-raclopride binding.
H2 15O PET
Regional cerebral blood flow (rCBF)
Brain activation and regional cerebral metabolism.
76Br-FE-CBT PET
Dopamine transporter (DAT)
Marker of presynaptic DA terminals integrity and DAT availability
123I-IPT SPECT
DAT
Marker of presynaptic DA terminals integrity and DAT availability
123I-FP-CIT SPECT
DAT
Marker of presynaptic DA terminals integrity and DAT availability
11C-PK11195 PET
Translocator protein (TSPO)
Is an 18 kDa protein of the outer mitochondrial membrane that is upregulated with activation of microglia
11C-DASB PET
5-HT transporter (SERT)
Marker of presynaptic 5-HT terminals integrity and SERT availability
11C-dihydrotetrabenazine (DTBZ) PET
Vesicular monoamine transporter (VMAT2)
Marker of presynaptic monoaminergic terminals integrity
Advances in imaging techniques including both PET and magnetic resonance imaging (MRI) could further assist in the development and monitoring of new clinically competitive trials.

Discussion

Despite the lack of new clinical trials since the beginning of the previous decade, retrospective analysis of data, studies in animal models and long-term clinical and imaging observations in the earlier transplanted PD patients have allowed us to understand a number of ways that functional imaging could help in understanding and monitoring outcomes of fetal cell transplantation trials in PD.
There are now up to 16 years of post-transplantation 18F-DOPA PET follow-up data showing graft viability and continuous clinical benefit in several transplanted PD patients with fetal VM tissue [11, 1315]. As the degree of motor impairment has been shown to correlate with 18F-DOPA uptake in the striata of PD patients [16], clinical outcomes following fetal cell transplantation could be associated with the number of viable DA cells innervating the striatum as assessed by 18F-DOPA PET. This notion could explain the differences in the outcomes between open-label trials reporting an average of 50 to 85% increase in 18F-DOPA uptake associated with good clinical improvement of PD motor symptoms and reductions in medication requirements [48], and the two double-blind sham-surgery controlled clinical trials reporting an average of 20 to 40% increases in 18F-DOPA uptake associated with poor clinical outcomes during the first periods post-transplantation [9, 10].
18F-DOPA PET can also help facilitate patient selection and screening as patients with baseline reductions in 18F-DOPA uptake extending to the ventral part of the striatum and patients with reductions in 18F-DOPA uptake consistent with atypical or secondary Parkinsonism should be excluded from these trials [13, 17]. This knowledge, which derived from post-hoc analysis, raises the possibility of a time window for optimal transplantation outcomes as preoperative preservation of DA innervation in ventral striatal areas seems to be predictive of a better outcome.
During past years, a small number of studies have been undertaken in order to demonstrate imaging of DA transporters (DAT) in the grafted striatum. Imaging of DAT with PET or single photon emission computed tomography (SPECT) could be used as an alternative technique to 18F-DOPA PET. However, in line with the inconsistent results observed in post-mortem studies with regard to DAT expression in the grafted neurons [18, 19], 76Br-FE-CBT PET failed to visualize DAT in grafted striata enhancing 18F-DOPA [20], whereas 123I-IPT [21] and 123I-FP-CIT [15] SPECT showed robust DAT availability and compatible uptake to 18F-DOPA.
Up to 10 years post-transplantation follow-up data using 11C-raclopride PET have shown several cases where graft-derived DA cells were able to restore the release of endogenous DA in the striatum of PD patients [11, 14, 17]. The results of these studies suggested that it is very likely that the efficient restoration of DA release in large parts of the grafted striatum underlies patients' clinical improvement of motor symptoms. Moreover, from PET studies using H2 15O we learned that despite an early stabilization of DA reinnervation in the striatum, graft function and integration continue and symptomatic relief may also require the functional reafferentation of striato-thalamo-cortical circuitries in the host brain [12].
Immunosuppression could be another factor related to the outcomes of clinical trials, although the role of neuroinflammation in influencing the outcome of transplantation procedures in PD is not known. There is evidence showing that long-term immunosuppresion can be withdrawn without interfering with graft survival or the motor recovery induced by transplantation [17]. Additional evidence indicated that the occurrence of graft-induced dyskinesias (GIDs), one of the most disabling side effects of cell therapy in PD, could be induced by inflammatory and immune responses around the graft. In one study GIDs developed after discontinuation of immunosuppressive therapy, with signs of an inflammatory reaction around the grafts in autopsied cases [10]. Although imaging studies have never been employed, PET imaging can be used to explore the possible role of host inflammatory reaction in relation to fetal cell transplantation outcomes in PD using markers of microglial activation such as 11C-PK11195 PET or any of the other recently developed translocator protein (TSPO) PET ligands.
GIDs are a severe adverse effect of fetal cell transplantation in PD hindering the further development of cell transplantation trials [9, 10, 14, 15, 2225]. Notwithstanding the several theories proposed [25], recent data imply that the development of GIDs could be related to the composition of grafted tissue [14], as human fetal VM tissue contains a varied proportion of non-DA neurons [26], including serotonin (5-HT) neurons. 11C-DASB PET and a clinical trial with an agent dampening transmitter release from 5-HT neurons was used to show a causal relationship between mishandling of DA release from the graft-derived 5-HT hyperinnervation in the striatum of PD patients and the occurrence of GIDs [14, 15]. Furthermore, it was suggested that the high ratios between 5-HT and DA neurons and between 5-HT transporters (SERT) and DAT could be the driving factor for the development of GIDs [14, 15, 25]. Therefore, these results suggest that achieving normal striatal 5-HT/DA and SERT/DAT ratios following transplantation of fetal tissue or stem cells should be necessary to avoid the development of GIDs.
Recent advances in MRI techniques allow us to examine the brain in a way that was not previously possible. The examination of functional connectivity between brain regions is now possible using resting-state functional MRI (fMRI). These resting state networks (RSNs) are believed to reflect functional communication between brain regions and could be very informative in providing insights of large-scale neuronal communication during restorative therapies such as fetal cell transplantation in PD [2729]. FMRI paradigms with motor execution (ME) tasks are now widely employed to understand brain activation in the corresponding regions. Diffusion Tensor Imaging (DTI) offers a method to assess white matter (WM) structural connectivity and thereby, alterations underlying neurodegenerative diseases such as PD and the potential effects of restorative therapies [28, 30].

Conclusions

A new European Commission-funded multicenter trial under the name Transeuro was recently launched for a new round of fetal cell transplantation trials http://​www.​transeuro.​org.​uk. Functional imaging protocols for this or any other future trials employing fetal or stem cells will undoubtedly benefit from the lessons learned from over two decades of research.
An optimized functional imaging protocol (Table 2) using PET should search for a ligand tagging a specific to DA presynaptic terminal location in order to assess the DA-rich graft survival and growth. A good candidate is DAT; however, post-mortem and in vivo imaging results with PET and SPECT have been inconsistent. 11C-dihydrotetrabenazine (DTBZ) PET measuring the density of the vesicular monoamine transporter (VMAT2) could serve as an alternative, but to date there are no 11C-DTBZ PET data on the expression and survival of VMAT2 in VM tissue grafts and VMAT2 is also present in other monoaminergic systems. Therefore, 18F-DOPA PET remains today the standard for monitoring survival and growth of grafted DA cells. According to data from open-label and double blind trials it appears that a short-term increase in 18F-DOPA uptake of more than 50% from baseline is necessary to achieve clinically valuable antiparkinsonian effects. Measures of 18F-DOPA uptake at baseline can also provide valuable information to assist in the selection of patients for trials of cell-based DA therapies in PD by excluding those showing reduced uptake in the ventral striatum. 11C-raclopride PET together with a competitive displacement challenge (for example, amphetamine, methylphenidate, or L-DOPA) could be used to visualize a graft's ability to release DA. 11C-DASB PET together with 18F-DOPA PET and markers of DAT availability can be used to calculate binding ratios reflecting proportions of 5-HT to DA neurons and SERT to DAT binding sites and, therefore, assist in the preparation of grafts during preoperational screening and, hence, prevent and monitor the development of GIDs postoperational. Inflammatory and immune responses around the graft alongside the effect of immunosuppressive therapy on transplantation outcomes could be assessed with 11C-PK11195 or one of the other recently developed TSPO PET ligands. Moreover, the new MRI techniques such as RSNs fMRI and DTI could assist in the assessment of functional and WM structural connectivity between the graft and the host brain while ME tasks could be employed replacing previous paradigms with H2 15O PET.
Table 2
Examples of imaging techniques used in the past and that can be used in the future
Assessments
Previous functional
imaging protocols
Optimized functional
imaging protocols
DA-rich graft survival and growth
18F-DOPA PET
18F-DOPA PET
Patient selection
-
18F-DOPA PET
DA release from the graft
11C-raclopride with challenge
11C-raclopride with challenge
Graft-derived 5-HT innervation and growth
-
11C-DASB
Graft-induced dyskinesias
-
11C-DASB PET/18F-DOPA PET ratio
11C-DASB PET/123I-FP-CIT SPECT ratio
Inflammatory and immune responses around the graft
-
11C-PK11195
Brain activation during movement
H2 15O PET with motor execution tasks
fMRI with motor execution tasks
Functional connectivity between brain regions
-
Resting-state fMRI
White matter structural connectivity
-
Diffusion Tensor Imaging
Although functional imaging cannot currently be used as a primary endpoint in clinical transplantation trials, if used appropriately, it can provide researchers with an additional valuable in vivo tool alongside clinical observations. It is worth noting, however, that previous knowledge has shown that in order to efficiently monitor cell replacement therapies in PD with functional imaging, long period follow-up assessments are needed and conclusions cannot be ultimately achieved with short follow-up periods.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The author declares that they have no competing interests.

Authors' contributions

MP is entirely responsible for the content of this article.
Literatur
1.
Zurück zum Zitat Lindvall O, Hagell P: Clinical observations after neural transplantation in Parkinson's disease. Prog Brain Res. 2000, 127: 299-320.CrossRefPubMed Lindvall O, Hagell P: Clinical observations after neural transplantation in Parkinson's disease. Prog Brain Res. 2000, 127: 299-320.CrossRefPubMed
4.
Zurück zum Zitat Freeman TB, Olanow CW, Hauser RA, Nauert GM, Smith DA, Borlongan CV, Sanberg PR, Holt DA, Kordower JH, Vingerhoets FJ, Snow BJ, Calne D, Gauger LL: Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson's disease. Ann Neurol. 1995, 38: 379-388. 10.1002/ana.410380307.CrossRefPubMed Freeman TB, Olanow CW, Hauser RA, Nauert GM, Smith DA, Borlongan CV, Sanberg PR, Holt DA, Kordower JH, Vingerhoets FJ, Snow BJ, Calne D, Gauger LL: Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson's disease. Ann Neurol. 1995, 38: 379-388. 10.1002/ana.410380307.CrossRefPubMed
5.
Zurück zum Zitat Remy P, Samson Y, Hantraye P, Fontaine A, Defer G, Mangin JF, Fénelon G, Gény C, Ricolfi F, Frouin V, N'Guyen JP, Jeny R, Degos JD, Peschanski M, Cesaro P: Clinical correlates of [18F]fluorodopa uptake in five grafted parkinsonian patients. Ann Neurol. 1995, 38: 580-588. 10.1002/ana.410380406.CrossRefPubMed Remy P, Samson Y, Hantraye P, Fontaine A, Defer G, Mangin JF, Fénelon G, Gény C, Ricolfi F, Frouin V, N'Guyen JP, Jeny R, Degos JD, Peschanski M, Cesaro P: Clinical correlates of [18F]fluorodopa uptake in five grafted parkinsonian patients. Ann Neurol. 1995, 38: 580-588. 10.1002/ana.410380406.CrossRefPubMed
6.
Zurück zum Zitat Wenning GK, Odin P, Morrish P, Rehncrona S, Widner H, Brundin P, Rothwell JC, Brown R, Gustavii B, Hagell P, Jahanshahi M, Sawle G, Björklund A, Brooks DJ, Marsden CD, Quinn NP, Lindvall O: Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. Ann Neurol. 1997, 42: 95-107. 10.1002/ana.410420115.CrossRefPubMed Wenning GK, Odin P, Morrish P, Rehncrona S, Widner H, Brundin P, Rothwell JC, Brown R, Gustavii B, Hagell P, Jahanshahi M, Sawle G, Björklund A, Brooks DJ, Marsden CD, Quinn NP, Lindvall O: Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. Ann Neurol. 1997, 42: 95-107. 10.1002/ana.410420115.CrossRefPubMed
7.
Zurück zum Zitat Hagell P, Schrag A, Piccini P, Jahanshahi M, Brown R, Rehncrona S, Widner H, Brundin P, Rothwell JC, Odin P, Wenning GK, Morrish P, Gustavii B, Björklund A, Brooks DJ, Marsden CD, Quinn NP, Lindvall O: Sequential bilateral transplantation in Parkinson's disease: effects of the second graft. Brain. 1999, 122: 1121-1132. 10.1093/brain/122.6.1121.CrossRefPubMed Hagell P, Schrag A, Piccini P, Jahanshahi M, Brown R, Rehncrona S, Widner H, Brundin P, Rothwell JC, Odin P, Wenning GK, Morrish P, Gustavii B, Björklund A, Brooks DJ, Marsden CD, Quinn NP, Lindvall O: Sequential bilateral transplantation in Parkinson's disease: effects of the second graft. Brain. 1999, 122: 1121-1132. 10.1093/brain/122.6.1121.CrossRefPubMed
8.
Zurück zum Zitat Brundin P, Pogarell O, Hagell P, Piccini P, Widner H, Schrag A, Kupsch A, Crabb L, Odin P, Gustavii B, Björklund A, Brooks DJ, Marsden CD, Oertel WH, Quinn NP, Rehncrona S, Lindvall O: Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson's disease. Brain. 2000, 123: 1380-1390. 10.1093/brain/123.7.1380.CrossRefPubMed Brundin P, Pogarell O, Hagell P, Piccini P, Widner H, Schrag A, Kupsch A, Crabb L, Odin P, Gustavii B, Björklund A, Brooks DJ, Marsden CD, Oertel WH, Quinn NP, Rehncrona S, Lindvall O: Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson's disease. Brain. 2000, 123: 1380-1390. 10.1093/brain/123.7.1380.CrossRefPubMed
9.
Zurück zum Zitat Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S: Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001, 344: 710-719. 10.1056/NEJM200103083441002.CrossRefPubMed Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S: Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001, 344: 710-719. 10.1056/NEJM200103083441002.CrossRefPubMed
10.
Zurück zum Zitat Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB: A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol. 2003, 54: 403-414. 10.1002/ana.10720.CrossRefPubMed Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB: A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol. 2003, 54: 403-414. 10.1002/ana.10720.CrossRefPubMed
11.
Zurück zum Zitat Piccini P, Brooks DJ, Björklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H, Lindvall O: Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat Neurosci. 1999, 2: 1137-1140. 10.1038/16060.CrossRefPubMed Piccini P, Brooks DJ, Björklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H, Lindvall O: Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat Neurosci. 1999, 2: 1137-1140. 10.1038/16060.CrossRefPubMed
12.
Zurück zum Zitat Piccini P, Lindvall O, Björklund A, Brundin P, Hagell P, Ceravolo R, Oertel W, Quinn N, Samuel M, Rehncrona S, Widner H, Brooks DJ: Delayed recovery of movement-related cortical function in Parkinson's disease after striatal dopaminergic grafts. Ann Neurol. 2000, 48: 689-695. 10.1002/1531-8249(200011)48:5<689::AID-ANA1>3.0.CO;2-N.CrossRefPubMed Piccini P, Lindvall O, Björklund A, Brundin P, Hagell P, Ceravolo R, Oertel W, Quinn N, Samuel M, Rehncrona S, Widner H, Brooks DJ: Delayed recovery of movement-related cortical function in Parkinson's disease after striatal dopaminergic grafts. Ann Neurol. 2000, 48: 689-695. 10.1002/1531-8249(200011)48:5<689::AID-ANA1>3.0.CO;2-N.CrossRefPubMed
13.
Zurück zum Zitat Ma Y, Tang C, Chaly T, Greene P, Breeze R, Fahn S, Freed C, Dhawan V, Eidelberg D: Dopamine cell implantation in Parkinson's disease: long-term clinical and (18)F-FDOPA PET outcomes. J Nucl Med. 2010, 51: 7-15. 10.2967/jnumed.109.066811.CrossRefPubMed Ma Y, Tang C, Chaly T, Greene P, Breeze R, Fahn S, Freed C, Dhawan V, Eidelberg D: Dopamine cell implantation in Parkinson's disease: long-term clinical and (18)F-FDOPA PET outcomes. J Nucl Med. 2010, 51: 7-15. 10.2967/jnumed.109.066811.CrossRefPubMed
14.
Zurück zum Zitat Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, Bjorklund A, Lindvall O, Piccini P: Serotonergic neurons mediate dyskinesia side effects in Parkinson's patients with neural transplants. Sci Transl Med. 2010, 2: 38ra46-10.1126/scitranslmed.3000976.CrossRefPubMed Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, Bjorklund A, Lindvall O, Piccini P: Serotonergic neurons mediate dyskinesia side effects in Parkinson's patients with neural transplants. Sci Transl Med. 2010, 2: 38ra46-10.1126/scitranslmed.3000976.CrossRefPubMed
15.
Zurück zum Zitat Politis M, Oertel WH, Wu K, Quinn NP, Pogarell O, Brooks DJ, Bjorklund A, Lindvall O, Piccini P: Graft-induced dyskinesias in Parkinson's disease: high striatal serotonin/dopamine transporter ratio. Mov Disord. Politis M, Oertel WH, Wu K, Quinn NP, Pogarell O, Brooks DJ, Bjorklund A, Lindvall O, Piccini P: Graft-induced dyskinesias in Parkinson's disease: high striatal serotonin/dopamine transporter ratio. Mov Disord.
16.
Zurück zum Zitat Morrish PK, Sawle GV, Brooks DJ: An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease. Brain. 1996, 119: 585-591. 10.1093/brain/119.2.585.CrossRefPubMed Morrish PK, Sawle GV, Brooks DJ: An [18F]dopa-PET and clinical study of the rate of progression in Parkinson's disease. Brain. 1996, 119: 585-591. 10.1093/brain/119.2.585.CrossRefPubMed
17.
Zurück zum Zitat Piccini P, Pavese N, Hagell P, Reimer J, Björklund A, Oertel WH, Quinn NP, Brooks DJ, Lindvall O: Factors affecting the clinical outcome after neural transplantation in Parkinson's disease. Brain. 2005, 128: 2977-2986. 10.1093/brain/awh649.CrossRefPubMed Piccini P, Pavese N, Hagell P, Reimer J, Björklund A, Oertel WH, Quinn NP, Brooks DJ, Lindvall O: Factors affecting the clinical outcome after neural transplantation in Parkinson's disease. Brain. 2005, 128: 2977-2986. 10.1093/brain/awh649.CrossRefPubMed
18.
Zurück zum Zitat Kordower JH, Rosenstein JM, Collier TJ, Burke MA, Chen EY, Li JM, Martel L, Levey AE, Mufson EJ, Freeman TB, Olanow CW: Functional fetal nigral grafts in a patient with Parkinson's disease: chemoanatomic, ultrastructural, and metabolic studies. J Comp Neurol. 1996, 370: 203-230. 10.1002/(SICI)1096-9861(19960624)370:2<203::AID-CNE6>3.0.CO;2-6.CrossRefPubMed Kordower JH, Rosenstein JM, Collier TJ, Burke MA, Chen EY, Li JM, Martel L, Levey AE, Mufson EJ, Freeman TB, Olanow CW: Functional fetal nigral grafts in a patient with Parkinson's disease: chemoanatomic, ultrastructural, and metabolic studies. J Comp Neurol. 1996, 370: 203-230. 10.1002/(SICI)1096-9861(19960624)370:2<203::AID-CNE6>3.0.CO;2-6.CrossRefPubMed
19.
Zurück zum Zitat Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW: Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat Med. 2008, 14: 504-506. 10.1038/nm1747.CrossRefPubMed Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW: Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat Med. 2008, 14: 504-506. 10.1038/nm1747.CrossRefPubMed
20.
Zurück zum Zitat Cochen V, Ribeiro MJ, Nguyen JP, Gurruchaga JM, Villafane G, Loc'h C, Defer G, Samson Y, Peschanski M, Hantraye P, Cesaro P, Remy P: Transplantation in Parkinson's disease: PET changes correlate with the amount of grafted tissue. Mov Disord. 2003, 18: 928-932. 10.1002/mds.10463.CrossRefPubMed Cochen V, Ribeiro MJ, Nguyen JP, Gurruchaga JM, Villafane G, Loc'h C, Defer G, Samson Y, Peschanski M, Hantraye P, Cesaro P, Remy P: Transplantation in Parkinson's disease: PET changes correlate with the amount of grafted tissue. Mov Disord. 2003, 18: 928-932. 10.1002/mds.10463.CrossRefPubMed
21.
Zurück zum Zitat Pogarell O, Koch W, Gildehaus FJ, Kupsch A, Lindvall O, Oertel WH, Tatsch K: Long-term assessment of striatal dopamine transporters in Parkinsonian patients with intrastriatal embryonic mesencephalic grafts. Eur J Nucl Med Mol Imaging. 2006, 33: 407-411. 10.1007/s00259-005-0032-z.CrossRefPubMed Pogarell O, Koch W, Gildehaus FJ, Kupsch A, Lindvall O, Oertel WH, Tatsch K: Long-term assessment of striatal dopamine transporters in Parkinsonian patients with intrastriatal embryonic mesencephalic grafts. Eur J Nucl Med Mol Imaging. 2006, 33: 407-411. 10.1007/s00259-005-0032-z.CrossRefPubMed
22.
Zurück zum Zitat Hagell P, Piccini P, Björklund A, Brundin P, Rehncrona S, Widner H, Crabb L, Pavese N, Oertel WH, Quinn N, Brooks DJ, Lindvall O: Dyskinesias following neural transplantation in Parkinson's disease. Nat Neurosci. 2002, 5: 627-628.PubMed Hagell P, Piccini P, Björklund A, Brundin P, Rehncrona S, Widner H, Crabb L, Pavese N, Oertel WH, Quinn N, Brooks DJ, Lindvall O: Dyskinesias following neural transplantation in Parkinson's disease. Nat Neurosci. 2002, 5: 627-628.PubMed
23.
Zurück zum Zitat Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, Breeze R, Fahn S, Freed C, Eidelberg D: Dyskinesia after fetal cell transplantation for Parkinsonism: a PET study. Ann Neurol. 2002, 52: 628-634. 10.1002/ana.10359.CrossRefPubMed Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, Breeze R, Fahn S, Freed C, Eidelberg D: Dyskinesia after fetal cell transplantation for Parkinsonism: a PET study. Ann Neurol. 2002, 52: 628-634. 10.1002/ana.10359.CrossRefPubMed
24.
Zurück zum Zitat Olanow CW, Gracies JM, Goetz CG, Stoessl AJ, Freeman T, Kordower JH, Godbold J, Obeso JA: Clinical pattern and risk factors for dyskinesias following fetal nigral transplantation in Parkinson's disease: a double blind video-based analysis. Mov Disord. 2009, 24: 336-343. 10.1002/mds.22208.CrossRefPubMed Olanow CW, Gracies JM, Goetz CG, Stoessl AJ, Freeman T, Kordower JH, Godbold J, Obeso JA: Clinical pattern and risk factors for dyskinesias following fetal nigral transplantation in Parkinson's disease: a double blind video-based analysis. Mov Disord. 2009, 24: 336-343. 10.1002/mds.22208.CrossRefPubMed
26.
Zurück zum Zitat Isacson O, Bjorklund LM, Schumacher JM: Toward full restoration of synaptic and terminal function of the dopaminergic system in Parkinson's disease by stem cells. Ann Neurol. 2003, 53 (Suppl 3): 135-148.CrossRef Isacson O, Bjorklund LM, Schumacher JM: Toward full restoration of synaptic and terminal function of the dopaminergic system in Parkinson's disease by stem cells. Ann Neurol. 2003, 53 (Suppl 3): 135-148.CrossRef
27.
Zurück zum Zitat Greicius M: Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008, 21: 424-430.CrossRefPubMed Greicius M: Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008, 21: 424-430.CrossRefPubMed
28.
Zurück zum Zitat Guye M, Bartolomei F, Ranjeva JP: Imaging structural and functional connectivity: towards a unified definition of human brain organization?. Curr Opin Neurol. 2008, 21: 393-403.CrossRefPubMed Guye M, Bartolomei F, Ranjeva JP: Imaging structural and functional connectivity: towards a unified definition of human brain organization?. Curr Opin Neurol. 2008, 21: 393-403.CrossRefPubMed
29.
Zurück zum Zitat Bullmore E, Sporns O: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009, 10: 186-198. 10.1038/nrn2575.CrossRefPubMed Bullmore E, Sporns O: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009, 10: 186-198. 10.1038/nrn2575.CrossRefPubMed
30.
Zurück zum Zitat Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol. 2008, 7: 715-727. 10.1016/S1474-4422(08)70163-7.CrossRefPubMed Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson A: Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol. 2008, 7: 715-727. 10.1016/S1474-4422(08)70163-7.CrossRefPubMed
Metadaten
Titel
Optimizing functional imaging protocols for assessing the outcome of fetal cell transplantation in Parkinson's disease
verfasst von
Marios Politis
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2011
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-9-50

Weitere Artikel der Ausgabe 1/2011

BMC Medicine 1/2011 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Auf Antibiotika verzichten? Was bei unkomplizierter Zystitis hilft

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Intervallfasten zur Regeneration des Herzmuskels?

14.05.2024 Herzinfarkt Nachrichten

Die Nahrungsaufnahme auf wenige Stunden am Tag zu beschränken, hat möglicherweise einen günstigen Einfluss auf die Prognose nach akutem ST-Hebungsinfarkt. Darauf deutet eine Studie an der Uniklinik in Halle an der Saale hin.

Klimaschutz beginnt bei der Wahl des Inhalators

14.05.2024 Klimawandel Podcast

Auch kleine Entscheidungen im Alltag einer Praxis können einen großen Beitrag zum Klimaschutz leisten. Die neue Leitlinie zur "klimabewussten Verordnung von Inhalativa" geht mit gutem Beispiel voran, denn der Wechsel vom klimaschädlichen Dosieraerosol zum Pulverinhalator spart viele Tonnen CO2. Leitlinienautor PD Dr. Guido Schmiemann erklärt, warum nicht nur die Umwelt, sondern auch Patientinnen und Patienten davon profitieren.

Zeitschrift für Allgemeinmedizin, DEGAM

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.