Skip to main content
Erschienen in: Journal of Cardiothoracic Surgery 1/2013

Open Access 01.12.2013 | Research article

Hydroxyethyl starch 6%, 130/0.4 vs. a balanced crystalloid solution in cardiopulmonary bypass priming: a randomized, prospective study

verfasst von: Hasan Alper Gurbuz, Ahmet Baris Durukan, Nevriye Salman, Murat Tavlasoglu, Elif Durukan, Halil İbrahim Ucar, Cem Yorgancioglu

Erschienen in: Journal of Cardiothoracic Surgery | Ausgabe 1/2013

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Since the advent of cardiopulmonary bypass, many efforts have been made to avoid the complications related with it. Any component of the pump participates in occurrence of these adverse events, one of which is the type of prime solution. In this study, we aimed to compare the effects of 6% hydroxyethyl starch 130/0.4 with a commonly used balanced electrolyte solution on postoperative outcomes following coronary bypass surgery.

Methods

Two hundred patients undergoing elective coronary bypass surgery were prospectively studied. The patients were randomized in to two groups. First group received a balanced electrolyte solution and the second group received 6% hydoxyethyl starch 130/0.4 as prime solution. The postoperative outcomes of the patients were studied.

Results

The mean age of the patients was 61.81 ± 10.12 in the crystalloid group whereas 61.52 ± 9.29 in the HES group. There were 77 male patients in crystalloid group and 74 in HES group. 6% hydroxyethyl starch 130/0.4 did not have any detrimental effects on renal and pulmonary functions. The intensive care unit stay and postoperative hospital length of stay were shorter in hydroxyethyl starch group (p < 0.05 for each). Hydroxyethyl starch did not increase postoperative blood loss, amount of blood and fresh frozen plasma used, but it decreased platelet concentrate requirement. It did not have any effect on occurrence of post-coronary bypass atrial fibrillation (p > 0.05).

Conclusions

6% hydroxyethyl starch 130/0.4 when used as a prime solution did not adversely affect postoperative outcomes including renal functions and postoperative blood transfusion following coronary bypass surgery.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

GHA: study concepts, study design, definition of intellectual content, literature research, data acquisition, data analysis, manuscript preparation, manuscript editing; DAB: study concepts, study design, definition of intellectual content, literature research, data acquisition, data analysis, manuscript preparation, manuscript editing SN: definition of intellectual content, literature research, data acquisition, manuscript preparation, manuscript editing; DE: data analysis, statistical analysis, manuscript editing; TM: definition of intellectual content, data acquisition, data analysis, manuscript editing; UHI: study concepts, study design, definition of intellectual content, data acquisition, data analysis, manuscript editing; YC: study concepts, study design, definition of intellectual content manuscript preparation, manuscript editing, supervision. All authors read and approved the final manuscript.
Abkürzungen
CABG
Coronary artery bypass grafting
CPB
Cardiopulmonary bypass
SIRS
Systemic inflammatory response syndrome
HES
Hydroxyethyl starch
AF
Atrial fibrillation
ICU
Intensive care unit

Background

Increased number of patients are undergoing coronary artery bypass grafting (CABG) and efforts to prevent adverse events and improve outcomes are done. One of the most important problems following cardiac surgery is renal failure. Use of cardiopulmonary bypass (CPB), blood and constituents, various drugs and infusion of large volumes of fluids influence the renal functions. Occurrence of perioperative renal impairment causes increased mortality and morbidity [1]. Modifications on every component of CPB are studied to decrease the risk of renal failure particularly related with CPB use.
Cardiopulmonary bypass priming solution and volume are of special importance since it directly affects renal functions. Hemodilution due priming volume, continuous flow pattern of CPB, use of various drugs during CPB and occurrence of systemic inflammatory response syndrome (SIRS) adversely affect renal functions [2].
Hydroxyethyl starch (HES) is commonly used in current practice as a volume expander in trauma, shock, cardiac and other major surgeries and vast numbers of reports are being published with conflicting results. Still there is no consensus on the renal effects of HES solutions.
In this randomized prospective study, we aimed to document the effects of 6% hydroxyethyl starch 130/0.4 on postoperative outcomes and occurrence of atrial fibrillation (AF) in patients undergoing on-pump CABG surgery.

Methods

A prospective and randomized study has been carried out. The study was approved by the “Medicana International Ankara Hospital Ethics Committee” and written informed consent was taken from every patient. The only inclusion criteria were isolated on-pump CABG procedure. Both genders were accepted. There were no age or weight restrictions. Exclusion criteria were; repeat cardiac surgery, emergent surgery, preoperative coagulation disorder, preoperative clopidogrel use, preoperative congestive heart failure, preoperative renal dysfunction (serum creatinine > 1.3 mg/dl), preoperative hepatic dysfunction (serum aspartate/alanine amino transferase > 40U/l), preoperative electrolyte imbalance, history of pancreatitis and known hypersensitivity to HES. Between October 2011 and April 2012, after the inclusion and exclusion criteria were employed 200 isolated CABG cases were studied. The patients were then randomized as follows: each patient was given a number according to chronological order beginning from 1. The odd numbered patients (n:100) were administered 6% HES 130/0.4 in 0.9% sodium chloride (Voluven® %, Fresenius Kabi, Bad Homburg, Germany) as CPB prime solution and even numbered patients (n:100) were administered a balanced multielectrolyte solution (Isolyte-M®, Eczacıbaşı-Baxter, İstanbul: dextrose monohydrate, 40 mEq/l sodium, 40 mEq/l chloride, 35 mEq/l potassium, 15 mEq/l phosphate, 20 mEq/l acetate; 400 mOsm/l, 170 kCal/l).
Preoperative acetylsalicylic acid 100 mg/day was continued in all patients prior to the day of surgery. All patients were premedicated with 10 mg of oral diazepam. Anesthesia was induced with etomidate 2 mg/kg, fentanyl 1 μg/kg, vecuronium 1 mg/kg; isofluorane 1 MAC was used for anesthesia maintenance. Intraoperative arterial and central venous pressure monitorization were done.
The cardiopulmonary bypass (CPB) circuit was primed with 1,500 ml of determined solution. In both groups 5,000 units of heparin was added. After anticoagulation with heparin (300 U/kg), activated clotting time (ACT) was kept over 400 seconds. CPB was established using a roller pump with a membrane oxygenator (Dideco Compactflo Evo, Sorin Group, Mirandola Modena, Italy). The average flow rate varied from 2.3 to 2.4 l/min/m2. Surgery was performed under mild hypothermia (33°C). Mean arterial pressure was kept between 45 to 70 mm Hg. All patients were rewarmed to 37°C (nasopharyngeal temperature) before weaning from CPB. Heparin was neutralized with 1:1 protamine sulfate.
Cold (4-8°C) blood cardioplegia of 1000 ml (25 mEq/l potassium) was administered after aortic cross clamping, and 500 ml repeat doses were given every 15 to 20 minutes (antegrade and from venous bypass grafts, retrograde in patients with left main coronary disease). Terminal warm blood cardioplegia (36-37°C) was given prior to aortic clamp release.
The operation room temperature was kept at 20-21°C.
In postoperative period rate of fluid infusions were adjusted according to hemodynamic measurements. Central venous pressure was maintained between 8–12 mm Hg.
Packed red blood cell was given if the hematocrit level fell below 25%. Fresh frozen plasma and platelet concentrates were administered in cases of documented postoperative coagulation abnormalities (international normalized ratio > 1.5, activated partial thromboplastin time > 60 s and platelet count < 80,000/mm3) or suspected postoperative platelet dysfunction and factor deficiency.
The decision for re-exploration for hemorrhage was made when 200 ml/hour of drainage was documented on two consecutive hours despite measures taken or more than 300 ml/hour drainage.
On postoperative day 1, all patients were administered metoprolol (50 mg/day) or carvedilol (3.125-6.25 mg/day) and N-acetylcysteine (oral: creatinine < 1.3 mg/dl; intravenous: creatinine > 1.3 mg/dl) and continued. All patients were routinely administered low molecular weight heparin in prophylactic dose.
Atrial fibrillation was diagnosed based on electrocardiogram. All patients were ECG monitored continuously during the intensive care unit (ICU) stay and for the first 24 hours in the ward. Soon ECG was immediately performed in cases of irregular pulse, palpitation or symptoms related with possible AF.
In cases with AF, if required intravenous metoprolol was administered for heart rate control. For rhythm control, intravenous amiodarone was administered as intravenous 300 mg loading dose in 1 hour, followed by 900 mg in 24 hours and followed by oral amiodarone 200 mg three times a day. In refractory cases 450 mg additional intravenous infusion was given in 12 hours period. If no response was noted after 48 hours, electrical cardioversion was employed. Low molecular weight heparin dosage was switched to therapeutic interval. In cases of permanent AF development, oral warfarin was administered.
Primary outcome variables included mean time to extubation, ICU and postoperative hospital length of stay, incidence of renal dysfunction (based on the finding that peak creatinine value was 1.5 or greater times the preoperative value), postoperative stroke, postoperative total amount of blood loss, postoperative exploration for hemorrhage, number of used blood and blood products and in hospital mortality.

Statistical analysis

Statistical analyses were performed using SPSS software for Windows version 17.0 (Statistical Package for the Social Sciences Inc, Chicago, IL, USA). Continuous variables were expressed as ‘mean values ± standard deviation (SD)’. Categorical variables were expressed as number and percentages. Demographic characteristics and outcomes of the groups were compared using “independent samples t-test” for continuous variables, and, ‘chi-square test’ and ‘Fisher’s exact test’ for categorical variables. Statistical significance was set as ‘p < 0.05’.

Results

The mean age of the patients was 61.81 ± 10.12 in the crystalloid group whereas 61.52 ± 9.29 in the HES group (p > 0.05). There were 77 male patients in crystalloid group and 74 in HES group (p > 0.05). Preoperative demographic findings and intraoperative characteristics of the patients are given in Table 1.
Table 1
Comparison of the two groups by preoperative and intraoperative characteristics
Factor
Isolyte-M® group (n:100)
Voluven® 6% group (n:100)
p value*
 
Mean ± SD
Mean ± SD
 
Age
61.81 ± 10.12
61.52 ± 9.29
0.833
BMI (kg/m2)
27.88 ± 3.96
29.02 ± 4.61
0.063
LVEF (%)
53.72 ± 10.81
52.33 ± 11.08
0.370
Cross-clamp time (min)
53.57 ± 20.12
55.58 ± 17.22
0.449
CPB time (min)
79.69 ± 27.93
82.57 ± 23.98
0.435
Graft #
3.22 ± 1.06
3.10 ± 0.90
0.390
 
n:%
n:%
p value**
Patient Total
100
100
 
Male sex
77
74
0.622
Current/Ex-smoker
67
63
0.553
Diabetes Mellitus
46
42
0.569
Hypertension
65
62
0.659
Dyslipidemia
79
76
0.611
Preoperative β-blocker use
40
47
0.318
Peripheral Arterial Diseasea
1
6
0.118***
Stroke
-
1
1.000***
Carotid Diseaseb
7
5
0.552***
COPD/Asthma
14
15
0.841
*independent samples t-test.
**chi-square test.
***Fisher’s exact test.
aHistory of therapeutic vascular intervention, history of claudication, angiography/non-invasive proven peripheral arterial disease.
bHistory of carotid intervention or angiographic/non-invasive proven >40% stenosis of either carotid.
BMI: body mass index, LVEF: left ventricular ejection fraction.
CPB: cardiopulmonary bypass, COPD: chronic obstructive pulmonary disease.
There was not a statistically significant difference when intubation times, postoperative drainage, amount of red blood cell and fresh frozen plasma used and postoperative adverse events (renal failure, stroke, mortality) were compared. Number of platelet concentrate used was lower in the HES group (p < 0.05). Postoperative ICU and postoperative hospital length of stay were shorter in HES group (p < 0.05) (Table 2). No mortality was noted during the study period.
Table 2
Comparison of the two groups by postoperative variables
 
Isolyte-M® group
Voluven® 6% group
 
 
Mean ± SD
Mean ± SD
p value*
ICU intubation time, hours
10.38 ± 9.04
9.38 ± 2.64
0.290
Length Of Stay
   
ICU, hours
47.93 ± 12.01
45.25 ± 5.86
0.046
Postoperative, days
6.14 ± 2.55
5.47 ± 1.20
0.019
Drainage tubes removed, hours
36.36 ± 10.39
36.12 ± 13.32
0.886
Total amount of drainage, ml
741.75 ± 448.58
680.30 ± 332.92
0.273
Number of FFP used
1.05 ± 1.32
1.02 ± 1.40
0.877
Number of packed RBC used
1.82 ± 1.65
1.63 ± 1.50
0.397
Number of PC used
0.61 ± 1.92
0.15 ± 0.98
0.035
 
n:%
n:%
p value**
Postoperative exploration for hemorrhage
2
5
0.445
Postoperative AF
15
19
0.451***
Renal Dysfunctiona
6
9
0.421
Postoperative Stroke
1
1
1.000
*Independent samples t-test.
** Fisher’s exact test.
***chi-square test.
adefined when peak creatinine value was 1.5 or greater times the preoperative value.
ICU: intensive care unit, FFP: fresh frozen plasma.
RBC: red blood cell, PC: platelet concentrate.
AF: atrial fibrillation.
Atrial fibrillation incidence was 19% in HES group whereas 15% in crystalloid group (p > 0.05).

Discussion

Coronary bypass surgery is the most frequently performed cardiac operation worldwide and modifications are made in order to maintain more reasonable results [3]. Various improvements are recorded on surgical techniques, CPB devices, drugs and perioperative management. Postoperative outcomes especially renal functions are very important in these patients due to the direct relation between mortality and morbidity. In this report, we also hypothesized to document improvements in perioperative management by using HES solutions as priming solution.
During CPB, derangements in multiple organ systems occur, and the resultant SIRS is the main reason for postoperative morbidity and mortality. The main causes of these changes are the contact with foreign surfaces, changes in coagulation and fibrinolytic systems, activation of the complement system, hemodilution and hypothermia. Also endotoxemia and ischemia-reperfusion injury have adverse effects. Any component of CPB system has direct influence on postoperative outcomes. Two of the most important components are the type and volume of priming solution [4, 5].
Various types of priming solutions have been researched and employed, but today still there is no consensus on ideal priming solution in clinic use that can prevent SIRS, fluid retention and hypercoagulation. Hydroxyethyl starch is used very frequently as a priming solution in cardiovascular surgery and as a volume expanding agent in perioperative care and in trauma. Many reports were published concerning the results following HES use, but very recently some of them were retracted. This shaded the formed concept on HES solutions and created a doubtful era. Today, there is still a controversy on the effects of HES particularly on coagulation and renal functions.
Choi et al. [6] studied the effects of HES when used as a priming solution in comparison with human albumin and they did not find any difference on coagulation variables, postoperative blood loss, transfusion requirements and inflammatory response. In our study, we compared HES with a commonly used crystalloid solution and found similar results; HES did not cause detrimental results on postoperative outcomes.
Liou et al. [7] reported comparison between three different priming solutions; ringers lactate, human albumin and %10 HES. Time to extubation, ICU stay and hospital stay did not differ among the groups. The inflammatory cytokines TNF-α, IL-1β and IL-6 levels were also measured following CPB and no statistically significant difference was reported. There was statistically significant difference in postoperative body weight gain, HES and human albumin groups caused less weight gain compared to ringers lactate. This was because hypo-oncotic prime solutions lead to interstitial fluid expansion more than colloids. We also documented similar results, but we also studied postoperative outcomes. We did not study the inflammatory cytokines.
Kuitunen et al. [8] reported the effects of HES used for priming on coagulation and concluded that HES use increased blood loss. They revealed that less stable thrombi were formed documented with thromboelastography. They also concluded that HES in cardiac surgery may increase blood loss. In our study, we did not find any difference concerning the blood loss between the crystalloid and HES groups, HES did not adversely affect postoperative bleeding.
Tiryakioglu et al. [9] designed a similar study of prime solutions and compared ringers lactate with HES. They documented unfavorable effects of HES on renal functions, but the urea and creatinine levels were in the normal range in both groups. They found no statistical difference in amount of postoperative bleeding, time to extubation, intensive care unit stay and discharge times. They only noted statistically significant difference in net volume balance in favor of HES group. We did not document any adverse effect on renal functions.
Yap et al. [10] studied gelatin and HES as prime solutions and compared postoperative outcomes like intraocular pressure, blood profile and blood loss. They designated intraocular pressure as a marker to determine plasma oncotic pressure and they found that HES had had significant favorable results compared to gelatin. There was no difference concerning blood profile, blood loss and other postoperative outcomes.
In a meta-analysis, it was documented that use of HES did not cause any impairment in renal functions and also no difference was found considering the risk of complications, reoperation and mortality [11]. Very recently, Akkucuk et al. [12] documented their results on use of HES 130/0.4 on pediatric patients undergoing CPB and revealed no adverse effects on renal functions and other events.
In cardiac surgery, the effects of HES solutions also were studied for volume replacement in the postoperative period. The results of the studies were similar to those when HES solutions were used for priming. There were no adverse effects documented on postoperative coagulation parameters and postoperative renal functions [13, 14].
The effects of HES on AF can be regarded as a special issue. Atrial fibrillation is the most common rhythm disturbance following cardiac surgery and many efforts are being made to reduce the risk of occurrence of AF. It was revealed that there was a strong correlation between the AF and inflammation [1517]. The anti-inflammatory effects of HES solutions have been documented [18, 19]. In our study, we also studied the effects of HES used as a prime solution on occurrence of postoperative AF. We did not note any difference between the groups.

Conclusions

In this prospective randomized study, we did not document any difference between HES and crystalloid solutions used for CPB priming regarding postoperative outcomes like postoperative bleeding, renal functions and the use of blood and FFP. The number of used PC was less and the hospital length of stay and ICU stay were shorter in HES group. The results may differ in high risk patient groups and further studies with increased number of patients should be made particularly on patients with renal failure and coagulation disorders.

Acknowledgements

Institution where the work was done: Medicana International Ankara Hospital, Ankara, Turkey.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

GHA: study concepts, study design, definition of intellectual content, literature research, data acquisition, data analysis, manuscript preparation, manuscript editing; DAB: study concepts, study design, definition of intellectual content, literature research, data acquisition, data analysis, manuscript preparation, manuscript editing SN: definition of intellectual content, literature research, data acquisition, manuscript preparation, manuscript editing; DE: data analysis, statistical analysis, manuscript editing; TM: definition of intellectual content, data acquisition, data analysis, manuscript editing; UHI: study concepts, study design, definition of intellectual content, data acquisition, data analysis, manuscript editing; YC: study concepts, study design, definition of intellectual content manuscript preparation, manuscript editing, supervision. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Bahar I, Akgul A, Ozatik MA, Vural KM, Demirbag AE, Boran M, Tasdemir O: Acute renal failure following open heart surgery: risk factors and prognosis. Perfusion. 2005, 20: 317-322. 10.1191/0267659105pf829oa.CrossRefPubMed Bahar I, Akgul A, Ozatik MA, Vural KM, Demirbag AE, Boran M, Tasdemir O: Acute renal failure following open heart surgery: risk factors and prognosis. Perfusion. 2005, 20: 317-322. 10.1191/0267659105pf829oa.CrossRefPubMed
2.
Zurück zum Zitat Vermeer H, Teerenstra S, de Sevaux RG, van Swieten HA, Weerwind PW: The effect of hemodilution during normothermic cardiac surgery on renal physiology and function: a review. Perfusion. 2008, 23: 329-338. 10.1177/0267659109105398.CrossRefPubMed Vermeer H, Teerenstra S, de Sevaux RG, van Swieten HA, Weerwind PW: The effect of hemodilution during normothermic cardiac surgery on renal physiology and function: a review. Perfusion. 2008, 23: 329-338. 10.1177/0267659109105398.CrossRefPubMed
3.
Zurück zum Zitat Atluri P, Kozin ED, Hiesinger W, Woo YJ: Off-pump, minimally invasive and robotic coronary revascularization yield improved outcomes over traditional on-pump CABG. Int J Med Robot. 2009, 5: 1-12. 10.1002/rcs.230.CrossRefPubMed Atluri P, Kozin ED, Hiesinger W, Woo YJ: Off-pump, minimally invasive and robotic coronary revascularization yield improved outcomes over traditional on-pump CABG. Int J Med Robot. 2009, 5: 1-12. 10.1002/rcs.230.CrossRefPubMed
4.
Zurück zum Zitat Warren OJ, Smith AJ, Alexiou C, Rogers PL, Jawad N, Vincent C, Darzi AW, Athanasiou T: The inflammatory response to cardiopulmonary bypass: part 1-mechanisms of pathogenesis. J Cardiothorac Vasc Anesth. 2009, 23: 223-231. 10.1053/j.jvca.2008.08.007.CrossRefPubMed Warren OJ, Smith AJ, Alexiou C, Rogers PL, Jawad N, Vincent C, Darzi AW, Athanasiou T: The inflammatory response to cardiopulmonary bypass: part 1-mechanisms of pathogenesis. J Cardiothorac Vasc Anesth. 2009, 23: 223-231. 10.1053/j.jvca.2008.08.007.CrossRefPubMed
5.
Zurück zum Zitat Warren OJ, Watret AL, de Wit KL, Alexiou C, Vincent C, Darzi AW, Athanasiou T: The inflammatory response to cardiopulmonary bypass: part 2-anti-inflammatory therapeutic strategies. J Cardiothorac Vasc Anesth. 2009, 23: 384-393. 10.1053/j.jvca.2008.09.007.CrossRefPubMed Warren OJ, Watret AL, de Wit KL, Alexiou C, Vincent C, Darzi AW, Athanasiou T: The inflammatory response to cardiopulmonary bypass: part 2-anti-inflammatory therapeutic strategies. J Cardiothorac Vasc Anesth. 2009, 23: 384-393. 10.1053/j.jvca.2008.09.007.CrossRefPubMed
6.
Zurück zum Zitat Choi YS, Shim JK, Hong SW, Kim JC, Kwak YL: Comparing the effects of 5% albumin and 6% hydroxyethyl starch 130/0.4 on coagulation and inflammatory response when used as priming solutions for cardiopulmonary bypass. Minerva Anestesiol. 2010, 76: 584-591.PubMed Choi YS, Shim JK, Hong SW, Kim JC, Kwak YL: Comparing the effects of 5% albumin and 6% hydroxyethyl starch 130/0.4 on coagulation and inflammatory response when used as priming solutions for cardiopulmonary bypass. Minerva Anestesiol. 2010, 76: 584-591.PubMed
7.
Zurück zum Zitat Liou HL, Shih CC, Chao YF, Lin NT, Lai ST, Wang SH, Chen HI: Inflammatory response to colloids compared to crystalloid priming in cardiac surgery patients with cardiopulmonary bypass. Chin J Physiol. 2012, 55: 210-218.CrossRefPubMed Liou HL, Shih CC, Chao YF, Lin NT, Lai ST, Wang SH, Chen HI: Inflammatory response to colloids compared to crystalloid priming in cardiac surgery patients with cardiopulmonary bypass. Chin J Physiol. 2012, 55: 210-218.CrossRefPubMed
8.
Zurück zum Zitat Kuitunen AH, Hynynen MJ, Vahtera E, Salmenpera MT: Hydroxyethyl starch as a priming solution for cardiopulmonary bypass impairs hemostasis after cardiac surgery. Anesth Analg. 2004, 98: 291-297.CrossRefPubMed Kuitunen AH, Hynynen MJ, Vahtera E, Salmenpera MT: Hydroxyethyl starch as a priming solution for cardiopulmonary bypass impairs hemostasis after cardiac surgery. Anesth Analg. 2004, 98: 291-297.CrossRefPubMed
9.
Zurück zum Zitat Tiryakioglu O, Yildiz G, Vural H, Goncu T, Ozyazicioglu A, Yavuz S: Hydroxyethyl starch versus Ringer solution in vardiopulmonary bypass prime solutions (a randomized controlled trial). J Cardiothorac Surg. 2008, 3: 45-10.1186/1749-8090-3-45.CrossRefPubMedPubMedCentral Tiryakioglu O, Yildiz G, Vural H, Goncu T, Ozyazicioglu A, Yavuz S: Hydroxyethyl starch versus Ringer solution in vardiopulmonary bypass prime solutions (a randomized controlled trial). J Cardiothorac Surg. 2008, 3: 45-10.1186/1749-8090-3-45.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Yap WW, Young D, Pathi V: Effects of gelatine and medium molecular weight starch as priming fluid in cardiopulmonary bypass- a randomized controlled trial. Perfusion. 2007, 22: 57-61. 10.1177/0267659107077903.CrossRefPubMed Yap WW, Young D, Pathi V: Effects of gelatine and medium molecular weight starch as priming fluid in cardiopulmonary bypass- a randomized controlled trial. Perfusion. 2007, 22: 57-61. 10.1177/0267659107077903.CrossRefPubMed
11.
Zurück zum Zitat Shi XY, Zou Z, He XY, Xu HT, Yuan HB, Liu H: Hydroxyethyl starch for cardiovascular surgery: a systematic review of randomized controlled trials. Eur J Clin Pharmacol. 2011, 67: 767-782. 10.1007/s00228-011-1008-5.CrossRefPubMed Shi XY, Zou Z, He XY, Xu HT, Yuan HB, Liu H: Hydroxyethyl starch for cardiovascular surgery: a systematic review of randomized controlled trials. Eur J Clin Pharmacol. 2011, 67: 767-782. 10.1007/s00228-011-1008-5.CrossRefPubMed
12.
Zurück zum Zitat Akkucuk FG, Kanbak M, Ayhan B, Celebioglu B, Aypar U: The effect of HES (130/0.4) usage as the priming solution on renal function in children undergoing cardiac surgery. Ren Fail. 2013, 35: 210-215. 10.3109/0886022X.2012.747139.CrossRefPubMed Akkucuk FG, Kanbak M, Ayhan B, Celebioglu B, Aypar U: The effect of HES (130/0.4) usage as the priming solution on renal function in children undergoing cardiac surgery. Ren Fail. 2013, 35: 210-215. 10.3109/0886022X.2012.747139.CrossRefPubMed
13.
Zurück zum Zitat Ertmer C, Wulf H, Van Aken H, Friederich P, Mahl C, Bepperling F, Westphal M, Gogarten W: Efficacy and safety of 10% HES 130/0.4 versus 10% HES 200/0.5 for plasma volume expansion in cardiac surgery patients. Minerva Med. 2012, 103: 111-122.PubMed Ertmer C, Wulf H, Van Aken H, Friederich P, Mahl C, Bepperling F, Westphal M, Gogarten W: Efficacy and safety of 10% HES 130/0.4 versus 10% HES 200/0.5 for plasma volume expansion in cardiac surgery patients. Minerva Med. 2012, 103: 111-122.PubMed
14.
Zurück zum Zitat Alavi SM, Ahmadi BB, Baharestani B, Babaei T: Comparison of the effects of gelatin, Ringer’s solution and a modern hydroxyl ethyl starch solution after coronary artery bypass graft surgery. Cardiovasc J Afr. 2012, 23: 428-431. 10.5830/CVJA-2012-026.CrossRefPubMedPubMedCentral Alavi SM, Ahmadi BB, Baharestani B, Babaei T: Comparison of the effects of gelatin, Ringer’s solution and a modern hydroxyl ethyl starch solution after coronary artery bypass graft surgery. Cardiovasc J Afr. 2012, 23: 428-431. 10.5830/CVJA-2012-026.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Maesen B, Nijs J, Maesen J, Allessie M, Schotten U: Post-Operative Atrial Fibrillation: A Maze of Mechanisms. Europace. 2012, 14: 159-174. 10.1093/europace/eur208.CrossRefPubMed Maesen B, Nijs J, Maesen J, Allessie M, Schotten U: Post-Operative Atrial Fibrillation: A Maze of Mechanisms. Europace. 2012, 14: 159-174. 10.1093/europace/eur208.CrossRefPubMed
16.
Zurück zum Zitat Guo Y, Lip GY, Apostolakis S: Inflammation in Atrial Fibrillation. J Am Coll Cardiol. 2012, 60: 2263-2270. 10.1016/j.jacc.2012.04.063.CrossRefPubMed Guo Y, Lip GY, Apostolakis S: Inflammation in Atrial Fibrillation. J Am Coll Cardiol. 2012, 60: 2263-2270. 10.1016/j.jacc.2012.04.063.CrossRefPubMed
17.
Zurück zum Zitat Friedrichs K, Klinke A, Baldus S: Inflammatory pathways underlying Atrial Fibrillation. Trends Mol Med. 2011, 17: 556-563. 10.1016/j.molmed.2011.05.007.CrossRefPubMed Friedrichs K, Klinke A, Baldus S: Inflammatory pathways underlying Atrial Fibrillation. Trends Mol Med. 2011, 17: 556-563. 10.1016/j.molmed.2011.05.007.CrossRefPubMed
18.
Zurück zum Zitat Tian J, Lin X, Zhou W, Xu J: Hydroxyethyl starch inhibits NF-KappaB activation and prevents the expression of inflammatory mediators in Endotoxic Rats. Ann Clin Lab Sci. 2003, 33: 451-458.PubMed Tian J, Lin X, Zhou W, Xu J: Hydroxyethyl starch inhibits NF-KappaB activation and prevents the expression of inflammatory mediators in Endotoxic Rats. Ann Clin Lab Sci. 2003, 33: 451-458.PubMed
19.
Zurück zum Zitat Xie J, Lv R, Yu L, Huang W: Hydroxyethyl Starch 130/0.4 inhibits production of plasma Proinflammatory cytokines and attenuates nuclear factor-KappaB activation and Toll-Like receptors expression in Monocytes during Sepsis. J Surg Res. 2010, 160: 133-138. 10.1016/j.jss.2009.05.050.CrossRefPubMed Xie J, Lv R, Yu L, Huang W: Hydroxyethyl Starch 130/0.4 inhibits production of plasma Proinflammatory cytokines and attenuates nuclear factor-KappaB activation and Toll-Like receptors expression in Monocytes during Sepsis. J Surg Res. 2010, 160: 133-138. 10.1016/j.jss.2009.05.050.CrossRefPubMed
Metadaten
Titel
Hydroxyethyl starch 6%, 130/0.4 vs. a balanced crystalloid solution in cardiopulmonary bypass priming: a randomized, prospective study
verfasst von
Hasan Alper Gurbuz
Ahmet Baris Durukan
Nevriye Salman
Murat Tavlasoglu
Elif Durukan
Halil İbrahim Ucar
Cem Yorgancioglu
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
Journal of Cardiothoracic Surgery / Ausgabe 1/2013
Elektronische ISSN: 1749-8090
DOI
https://doi.org/10.1186/1749-8090-8-71

Weitere Artikel der Ausgabe 1/2013

Journal of Cardiothoracic Surgery 1/2013 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.