Skip to main content
Log in

Lung microdialysis—A powerful tool for the determination of exogenous and endogenous compounds in the lower respiratory tract (mini-review)

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In vivo measurement of concentrations of drugs and endogenous substances at the site of action has become a primary focus of research. In this context the minimal invasive microdialysis (MD) technique has been increasingly employed for the determination of pharmacokinetics in lung. Although lung MD is frequently employed to investigate various drugs and endogenous substances, the majority of lung MD studies were performed to determine the pharmacokinetic profile of antimicrobials that can be related to the importance of respiratory tract infections. For the lower respiratory tract various methods, such as surgical collection of whole lung tissue and bonchoalveolar lavage (BAL), are currently available for the determination of pharmacokinetics of antimicrobials. Head-to-head comparison of pharmacokinetics of antibiotics in lung revealed high differences between MD and conventional methods. MD might be regarded as a more advantageous approach because of its higher anatomical resolution and the ability to obtain dynamic time-vs-concentration profiles within one subject. However, due to ethical objections lung MD is limited to animals or patients undergoing elective thoracic surgery. From these studies it was speculated that the concentrations in healthy lung tissue may be predicted reasonably by the measurement of concentrations in skeletal muscle tissue. However, until now this was only demonstrated for β-lactam antibiotics and needs to be confirmed for other classes of antimicrobials. In conclusion, the present review shows that MD is a promising method for the determination of antimicrobials in the lung, but might also be applicable for measuring a wide range of other drugs and for the investigation of metabolism in the lower respiratory tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muller M. Microdialysis in clinical drug delivery studies.Adv Drug Deliv Rev. 2000;45:255–269.

    Article  PubMed  CAS  Google Scholar 

  2. de la Pena A, Liu P, Derendorf H. Microdialysis in peripheral tissues.Adv Drug Deliv Rev. 2000;45:189–216.

    Article  PubMed  Google Scholar 

  3. Ungerstedt U. Microdialysis—principles and applications for studies in animals and man.J Intern Med. 1991;230:365–373.

    Article  PubMed  CAS  Google Scholar 

  4. Muller M, Haag O, Burgdorff T, et al. Characterization of peripheral-compartment kinetics of antibiotics by in vivo microdialysis in humans.Antimicrob Agents Chemother. 1996;40:2703–2709.

    PubMed  CAS  Google Scholar 

  5. Joukhadar, C, Derendorf H, Muller M. Microdialysis. A novel tool for clinical studies of anti-infective agents.Eur J Clin Pharmacol. 2001;57:211–219.

    Article  PubMed  CAS  Google Scholar 

  6. Chalmers GW, Thomson L, Macleod KJ, et al. Endothelin-1 levels in induced sputum samples from asthmatic and normal subjects.Thorax. 1997;52:625–627.

    Article  PubMed  CAS  Google Scholar 

  7. Conte JEJr, Golden JA, Kipps J, McIver M, Zurlinden E. Intrapulmonary pharmacokinetics and pharmacodynamics of itraconazole and 14-hydroxyitraconazole at steady state.Antimicrob Agents Chemother. 2004;48:3823–3827.

    Article  PubMed  CAS  Google Scholar 

  8. Ingvast-Larsson C, Appelgren LE, Nyman G. Distribution studies of theophylline: microdialysis in rat and horse and whole body autoradiography in rat.J Vet Pharmacol Ther. 1992;15:386–394.

    Article  PubMed  CAS  Google Scholar 

  9. Tomaselli F, Dittrich P, Maier A, et al. Penetration of piperacillin and tazobactam into pneumonic human lung tissue measured by in vivo microdialysis.Br J Clin Pharmacol. 2003;55:620–624.

    Article  PubMed  CAS  Google Scholar 

  10. Herkner H, Muller MR, Kreischitz N, et al. Closed-chest microdialysis to measure antibiotic penetration into human lung tissue.Am J Respir Crit Care Med. 2002;165:273–276.

    PubMed  Google Scholar 

  11. Tomaselli F, Maier A, Matzi V, Smolle-Juttner FM, Dittrich P. Penetration of meropenem into pneum onic humanlung tissue as measured by in vivo microdialysis.Antimicrob Agents Chemother. 2004;48:2228–2232.

    Article  PubMed  CAS  Google Scholar 

  12. Liu P, Muller M, Grant M, Webb AI, Obermann B, Derendorf H. Interstitial tissue concentrations of cefpodoxime.J Antimicrob Chemother. 2002;50:19–22.

    Article  PubMed  CAS  Google Scholar 

  13. Grubb BR, Jones JH, Boucher RC Mucociliary transport determined by in vivo microdialysis in the airways of normal and CF mice.Am J Physiol Lung Cell Mol Physiol. 2004; 286:L588-L595.

    Article  PubMed  CAS  Google Scholar 

  14. Eichler W, Bechtel MJ, Klaus S, et al. Na/H+ exchange inhibitor cariporide: effects on respiratory dysfunction after cardiopulmonary bypass.Perfusion.. 2004;19:33–40.

    Article  PubMed  Google Scholar 

  15. Larsson CI. The use of an “internal standard” for control of the recovery in microdialysis.Life Sci. 1991;49:PL73-PL78.

    Article  PubMed  CAS  Google Scholar 

  16. De La Pena A, Dalla Costa T, Talton JD, et al. Penetration of cefaclor into the interstitial space fluid of skeletal muscle and lung tissue in rats.Pharm Res. 2001;18:1310–1314.

    Article  Google Scholar 

  17. Eisenberg EJ, Conzentino P, Eickhoff WM, Cundy KC. Pharmacokinetic measurement of drugs in lung epithelial lining fluid by microdialysis: aminoglycoside antibiotics in rat bronchi.J Pharmacol Toxicol Methods. 1993;29:93–98.

    Article  PubMed  CAS  Google Scholar 

  18. DeGuchi Y, Terasaki T, Yamada H, Tsuji A. An application of microdialysis to drug tissue distribution study: in vivo evidence for free-ligand hypothesis and tissue binding of beta-lactam antibiotics in interstitial fluids.J Pharmacobiodyn. 1992;15:79–89.

    PubMed  CAS  Google Scholar 

  19. Vincent JL, Bihari DJ, Suter PM, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European, Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee,.JAMA. 1995;274:639–644.

    Article  PubMed  CAS  Google Scholar 

  20. Bartlett JG Mundy LM. Community-acquired pneumonia.N Engl J Med. 1995;333:1618–1624.

    Article  PubMed  CAS  Google Scholar 

  21. Zeitlinger MA, Dehghanyar P, Mayer BX, et al. Relevance of soft-tissue penetration by levofloxacin for target site bacteria killing in patients with sepsis.Antimicrob Agents Chemother. 2003;47:3548–3553.

    Article  PubMed  CAS  Google Scholar 

  22. Joukhadar C, Frossard M, Mayer BX, et al. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock.Crit Care Med. 2001;29:385–391.

    Article  PubMed  CAS  Google Scholar 

  23. Lambert HP. Clinical significance of tissue penetration of antibiotics in the respiratory tract.Scand J Infect Dis Suppl. 1978;14:262–266.

    PubMed  CAS  Google Scholar 

  24. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men.Clin Infect Dis. 1998;26:1–12.

    Article  PubMed  CAS  Google Scholar 

  25. Drusano GL, Craig WA. Relevance of pharmacokinetics and pharmacodynamics in the selection of antibiotics for respiratory tract infections.J Chemother. 1997;9:38–44.

    PubMed  CAS  Google Scholar 

  26. Schentag JJ. Correlation of pharmacokinetic parameters to efficacy of antibiotics: relationships between serum concentrations MIC values, and bacterial eradication in patients with gram-negative pneumonia.Scand J Infect Dis Suppl. 1990;74:218–234.

    PubMed  CAS  Google Scholar 

  27. EMEA. Points to consider on pharmacokinetics and pharmacodynamics in the development of antibacteiral medicinal products. Available at: http://www.emea.en.int/pdfs/human/ewp/265599en.pdf. Accessed October 11, 2005.

  28. FDA. Guidance for Industry. Developing antimicrobial drugs—general considerations for clinical trials. Available at: http://www.fda.gov/cder/guidance/2580dft.pdf. Accessed October 11, 2005.

  29. Bergogne-Berezin E. New concepts in the pulmonary disposition of antibiotics.Pulm Pharmacol. 1995;8:65–81.

    Article  PubMed  CAS  Google Scholar 

  30. Gail DB, Lenfant CJ. Cells of the lung: biology and clinical implications.Am Rev Respir Dis. 1983;127:366–387.

    PubMed  CAS  Google Scholar 

  31. Marlin GE, Burgess KR, burgoyne J, Funnell GR, Guinness MD. Penetration of piperacillin into bronchial mucosa and sputum.Thorax. 1981;36:774–780.

    Article  PubMed  CAS  Google Scholar 

  32. Klastersky J, Thys JP, Mombelli G. Comparative studies of intermittent and continuous administration of aminogly cosides in the treatment of bronchopulmonary infectiosn due to gram-negative bacteria.Rev Infect Dis. 1981;3:74–83.

    PubMed  CAS  Google Scholar 

  33. Brun Y, Forey F, Gamondes JP, Tebib A, Brune J, Fleurette J. Levels of erythromycin in pulmonary tissue and bronchial mucus compared to those of amoxycillin.J Antimicrob Chemother. 1981;8:459–466.

    Article  PubMed  CAS  Google Scholar 

  34. Jehl F, Muller-Serieys C, de Larminat V, Monteil H, Bergogne-Berezin E. Penetration of piperacillin-tazobactam, into bronchial secretions after multiple doses to intensive care patients.Antimicrob Agents Chemother. 1994;38:2780–2784.

    PubMed  CAS  Google Scholar 

  35. Bergogne-Berezin E, Muller-Serieys C, Aubier M, Dombret MC. Concentration of meropenem in serum and in bronchial secretions in patients undergoing fibreoptic bronchoscopy.Eur J Clin Pharmacol. 1994;46:87–88. Erratum in. Eur J Clin Pharmacol. 1994;46;282.

    Article  PubMed  CAS  Google Scholar 

  36. Cole DR, Pung J. Penetration of cefazolin into pleural fluid.Antimicrob Agents Chemother. 1977;11:1033–1035.

    PubMed  CAS  Google Scholar 

  37. Byl B, Jacobs F, Roucloux I, de Franquen P, Cappello M, Thys JP. Penetration of meropenem in lung, bronchial mucosa, and pleural tissues.Antimicrob Agents Chemother. 1999; 43:681–682.

    PubMed  CAS  Google Scholar 

  38. Reynolds HY. Use of bronchoalveolar lavage in humans—past necessity and future imperative.Lung.. 2000;178:271–293.

    Article  PubMed  CAS  Google Scholar 

  39. Valcke Y, Pauwels R, Van der Straeten M. The penetration of aminoglycosides into the alveolar lining fluid of rats. The effect of airway inflammation.Am Rev Respir Dis. 1990;142:1099–1103.

    PubMed  CAS  Google Scholar 

  40. Panteix G, Harf R, Desnottes JF, et al. Accumulation of pefloxacin in the lower respiratory tract demonstrated by bronchoalveolar lavage.J Antimicrob Chemother. 1994;33:979–985.

    Article  PubMed  CAS  Google Scholar 

  41. Allegranzi B, Cazzadori A, Di Perri G, et al Concentrations of single-dose meropenem (1 g iv) in bronchoalveolar lavage and epithelial lining fluid.J Antimicrob Chemother. 2000;46:319–322.

    Article  PubMed  CAS  Google Scholar 

  42. Harf R, Panteix G, Desnottes JF, Diallo N, Leclercq M. Spiramycin uptake by alveolar macrophages.J Antimicrob Chemother. 1988;22:135–140.

    Article  PubMed  CAS  Google Scholar 

  43. Le Conte P, Potel G, Peltier P, et al. Lung distribution and pharmacokinetics of aerosolized tobramycin.Am Rev. Respir Dis. 1993;147:1279–1282.

    PubMed  Google Scholar 

  44. Wollmer P, Pride NB, Rhodes CG, et al. Measurement of pulmonary erythromycin concentration in patients with lobar pneumonia by means of positron tomography.Lancet. 1982;320:1361–1364.

    Article  Google Scholar 

  45. Allegranzi B. Concentrations of single-dose meropenem (1 g iv) in bronchoalveolar lavage and epithelial lining fluid.J Antimicrob Chemother. 2000;46:319–322.

    Article  PubMed  CAS  Google Scholar 

  46. Baldwin DR, Honeybourne D, Wise R. Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance.Antimicrob Agents Chemother. 1992;36:1176–1180.

    PubMed  CAS  Google Scholar 

  47. Decre D, Bergogne-Berezin E. Pharmacokinetics of quinolones with special reference to the respiratory tree.J Antimicrob Chemother. 1993;31:331–343.

    Article  PubMed  CAS  Google Scholar 

  48. Braude AC, Hornstein A, Klein M, Vas S, Rebuck AS. Pulmonary disposition of to bramycin.Am Rev Respir Dis 1983;127:563–565.

    PubMed  CAS  Google Scholar 

  49. Kunin CM. Clinical significance of protein binding of the penicillins.Ann N Y Acad Sci. 1967;145:282–290.

    Article  PubMed  CAS  Google Scholar 

  50. Tulkens PM. Intracellular pharmacokinetics and localization of antibiotics as predictors of their efficacy against intraphagocytic infections.Scand J Infect Dis Suppl. 1990;74:209–217.

    PubMed  CAS  Google Scholar 

  51. Boselli E Breilh D Cannesson M, et al. Steady-state plasma and intrapulmonary concentrations of piperacillin/tazobactam 4 g/0.5 g administered to critically ill patients with severe nosocomial pneumonia.Intensive Care Med. 2004;30:976–979.

    Article  PubMed  Google Scholar 

  52. Nix DE, Goodwin SD, Peloquin CA, Rotella DL, Schentag JJ. Antibiotic tissue penetration and its relevance: impact of tissue penetration on infection response.Antimicrob Agents Chemother. 1991;35:1953–1959.

    PubMed  CAS  Google Scholar 

  53. Zeitlinger M, Graninger W, Joukhadar C. Pharmacokinetics of the macrolides azithromycin, clarithromycin and roxithromycin in plasma and tissue—are there significant differences? In:Wien Klin Wochenschr. vol. 11–12a. 2004:18–24.

    Google Scholar 

  54. Rodvold KA, Gotfried MH, Danziger LH, Servi RJ. Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers.Antimicrob Agents Chemother. 1997;41:1399–1402.

    PubMed  CAS  Google Scholar 

  55. Poulin P, Theil FP. A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery.J Pharm Sci. 2000;89:16–35.

    Article  PubMed  CAS  Google Scholar 

  56. Joukhadar C, Klein N, Mayer BX, et al. Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis.Crit Care Med. 2002;30:1478–1482.

    Article  PubMed  CAS  Google Scholar 

  57. Joukhadar, C, Stass H, Muller-Zellenberg U, et al. Penetration of moxifloxacin into healthy and inflamed subcutaneous adipose tissues in humansAntimicrob Agents Chemother. 2003;47:3099–3103.

    Article  PubMed  CAS  Google Scholar 

  58. LeBel M. Fluoroquinolones in the treatment of cystic fibrosis: a critical appraisal.Eur J Clin Microbiol Infect Dis 1991;10:316–324.

    Article  PubMed  CAS  Google Scholar 

  59. Mendelman PM, Smith AL, Levy J, Weber A, Ramsey B, Davis RL. Aminoglycoside penetration, inactivation, and efficacy in cystic fibrosis sputum.Am Rev Respir Dis. 1985;132:761–765.

    PubMed  CAS  Google Scholar 

  60. Barza M, Cuchural G. General principles of antibiotic tissue penetration.J Antimicrob Chemother. 1985;15:59–75.

    PubMed  CAS  Google Scholar 

  61. Muller-Serieys C, Bancal C, Dombret MC, et al. Penetration of cefpodoxime proxetil in lung parenchyma and epithelial lining fluid of noninfected patients.Antimicrob Agents Chemother. 1992;36:2099–2103.

    PubMed  CAS  Google Scholar 

  62. Prokesch RC, Hand WL. Antibiotic entry into human polymorphonuclear leukocytes.Antimicrob Agents Chemother. 1982;21:373–380.

    PubMed  CAS  Google Scholar 

  63. Forsgren A, Bellahsene A. Antibiotic accumulation in human polymorphonuclear leucocytes and lymphocytes.Scand J Infect Dis Suppl. 1985;44:16–23.

    PubMed  CAS  Google Scholar 

  64. Peck CC, Nichols AI, Baker J, Lenert LL, Ezra D. Clinical pharmacodynamics of theophylline.J Allergy Clin Immunol. 1985;76:292–297.

    Article  PubMed  CAS  Google Scholar 

  65. Devarajan PV, Sule PN, Parmar DV. Comparative pharmacodynamic.-pharmacokinetic correlation of oral sustained-release theophylline formulation in adult asthmatics.Drug Dev Ind Pharm. 1999;25:529–534.

    Article  PubMed  CAS  Google Scholar 

  66. Glynn-Barnhart A, Hill M, Szefler SJ. Sustained release theophylline preparations Practical recommendations for prescribing and therapeutic drug monitoring.Drugs. 1988;35:711–726.

    PubMed  CAS  Google Scholar 

  67. Hook GE, Bend JR. Pulmonary metabolism of xenobiotics.Life Sci. 1976;18:279–290.

    Article  PubMed  CAS  Google Scholar 

  68. Robertson CS, Gopinath SP, Uzura M, Valadka AB, Goodman JC. Metabolic changes in the brain during transient ischemia measured with microdialysis.Neurol Res. 1998;20:S91-S94.

    PubMed  Google Scholar 

  69. Frykholm P, Hillered L, Langstrom B, et al. Increase of interstitial glycerol reflects the degree of ischaemic brain damage: a PET and microdialysis study in a middle cerebral artery occulusion-reperfusion primate model.J Neurol Neurosurg Psychiatry. 2001;71:455–461.

    Article  PubMed  CAS  Google Scholar 

  70. Parkin M, Hopwood S, Jones DA, et al. Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events.J Cereb Blood Flow Metab. 2005;25:402–413.

    Article  PubMed  CAS  Google Scholar 

  71. Taggart DP, el-Fiky M, Carter R, Bowman A, Wheatley, DJ. Respiratory dysfunction after uncomplicated cardiopulmonary bypass.Ann Thorac Surg. 1993;56:1123–1128.

    Article  PubMed  CAS  Google Scholar 

  72. Theroux P, Chaitman BR, Danchin N, et al. Inhibition of the sodium-hydrogen exchanger with cariporide to prevent myocardial infarction in high-risk ischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against necrosis (GUARDIAN) Investigators.Circulation. 2000;102:3032–3038.

    PubMed  CAS  Google Scholar 

  73. Afzelius BA. A human syndrome caused by immotile cilia.Science. 1976;193:317–319.

    Article  PubMed  CAS  Google Scholar 

  74. Robinson M, Bye PT. Mucociliary clearance in cystic fibrosis.Pediatr Pulmonol. 2002;33:293–306.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Zeitlinger.

Additional information

Published: October 22, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeitlinger, M., Müller, M. & Joukhadar, C. Lung microdialysis—A powerful tool for the determination of exogenous and endogenous compounds in the lower respiratory tract (mini-review). AAPS J 7, 62 (2005). https://doi.org/10.1208/aapsj070362

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070362

Keywords

Navigation