Skip to main content
Log in

Pharmacokinetics of Cardiovascular Drugs in Children

Inotropes and Vasopressors

  • Review Article
  • Clinical Pharmacokinetics in Special Populations
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Infants and children with congenital or acquired heart disease and children with systemic disease often require pharmacological support of their failing circulation. Catecholamines may serve as inotropic (enhance myocardial contractility) or vasopressor (elevate systemic vascular resistance) agents. Noncatecholamine inotropic agents, such as the cardiac glycosides or the bipyridines, may be used in place of, or in addition to, catecholamines.

Developmental changes in neonates, infants and children will affect the response to inotropic or pressor therapy. Maturation of the gastrointestinal tract, liver and kidneys alters absorption, metabolism and elimination of drugs, although there are few clear examples of this among the vasoactive drugs considered in this review. Changes in body composition affect the volume of distribution (Vd) and clearance (CL) of drugs. Developmentally based pharmacodynamic differences also affect the responses to both therapeutic and toxic effects of inotropes. These pharmacodynamic differences are based in part upon developmental changes in myocardial structure, cardiac innervation and adrenergic receptor function. For example, the immature myocardium has fewer contractile elements and therefore a decreased ability to increase contractility; it also responds poorly to standard techniques of manipulating preload.

Available data suggest that dopamine and dobutamine pharmacokinetics are similar to those in adults. Wide interindividual variability has been noted. A consistent relationship between CL and age has not been demonstrated, although one investigator demonstrated an almost 2-fold increase in the CL of dopamine in children under the age of 2 years. The CL of dopamine appears to be reduced in children with renal and hepatic failure. Fewer data are available regarding the pharmacokinetics of epinephrine (adrenaline), norepinephrine (noradrenaline) and isoprenaline (isoproterenol).

Digoxin pharmacokinetics have been extensively evaluated in infants and children. The Vd for digoxin is increased in infants and children. Children beyond the neonatal period display increased CL of digoxin, approaching adult values during puberty. Although it was previously thought that children both needed and tolerated higher serum concentrations of digoxin than adults, more recent studies indicate that adequate clinical response can be achieved with serum concentrations similar to those aimed for in adults, with decreased toxicity. Evaluation of studies of digoxin pharmacokinetics is complicated by the presence of an endogenous substance with digoxin-like activity on radioimmunoassay.

Limited studies of amrinone pharmacokinetics in infants and children indicate a dramatically larger Vd, and a decreased elimination half-life in older infants and children, compared with values observed in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heiman G. Enteral absorption and bioavailability in children in relation to age. Eur. J Clin Pharmacol 1980; 18: 43–50

    Article  Google Scholar 

  2. Kearns GL, Reed MD. Clinical pharmacokinetics in infants and children: A reappraisal. Clin Pharmacokinet 1989; 17 Suppl. 1: 29–67

    Article  PubMed  Google Scholar 

  3. Danon A, Sapira JD. Binding of catecholamines to human serum albumin. J Pharmacol Exp Ther 1972; 182: 295–302

    PubMed  CAS  Google Scholar 

  4. Banner Jr W, Vernon DD, Dean JM, et al. Nonlinear dopamine pharmacokinetics in pediatric patients. J Pharmacol Exp Ther 1989; 249: 131–3

    PubMed  CAS  Google Scholar 

  5. Notterman, D. Pediatric pharmacotherapy. In: Chernow B, editor. The pharmacologic approach to the critically ill patient. Baltimore: Williams and Wilkins, 1994: 139–55

    Google Scholar 

  6. Besunder JB, Reed MD, Blumer JL. Principles of drug biodisposition in the neonate: a critical evaluation of the pharmacokinetic-pharmacodynamic interface (Part 1). Clin Pharmacokinet 1988; 14: 189–216

    Article  PubMed  CAS  Google Scholar 

  7. Garson A. Medicolegal problems in the management of cardiac arrhythmias in children. Pediatrics 1987; 79: 4–8

    Google Scholar 

  8. Epstein ML, Kiel EA, Victorica BE. Cardiac decompensation following verapamil therapy in infants with supraventricular tachycardia. Pediatrics 1985; 75: 737–40

    PubMed  CAS  Google Scholar 

  9. Radford D. Side-effects of verapamil in infants. Arch Dis Child 1983; 58: 465–6

    Article  PubMed  CAS  Google Scholar 

  10. Garland JS, Berens RJ, Losek JD, et al. An infant fatality following verapamil therapy for supraventricular tachycardia: Cardiovascular collapse following intravenous verapamil. Pediatr Emerg Care 1985; 1(4): 198–200

    Article  PubMed  CAS  Google Scholar 

  11. Kopin IJ. Plasma levels of catecholamines and dopamine-β-hydroxylase. In: Trendelenburg U, Weiner N, editors. Catecholamines II. Berlin: Springer-Verlag, 1986: 211–75

    Google Scholar 

  12. Stein H, Kotaro O, Martinez A, et al. Plasma epinephrine appearance and clearance rates in fetal and newborn sheep. Am J Physiol 1993; 265 (Regulatory Integrative Comp Physiol 34): R756–60

    PubMed  CAS  Google Scholar 

  13. Eliot RJ, Lam R, Leake RD, et al. Plasma catecholamine concentrations in infants at birth and during the first 48 hours of life. J Pediatr 1980; 96: 311–5

    Article  PubMed  CAS  Google Scholar 

  14. Sumikawa K, Hayashi Y, Yamatodani A, et al. Contribution of the lungs to the clearance of exogenous dopamine in humans. Anesth Analg 1991; 72: 662–6

    Article  Google Scholar 

  15. Russel WJ, Frewin DB, Jonsson JR. Pulmonary extraction of catecholamines in critically ill patients. Anaesth Intensive Care 1982; 10: 319–23

    Google Scholar 

  16. Iverson LL. The uptake of catechol amines at high perfusion concentrations in the rat isolated heart: A novel catechol amine uptake process. Br J Pharmacol 1965; 25: 18–33

    Google Scholar 

  17. Trendelenburg U. The extraneuronal uptake and metabolism of catecholamines in the heart. In: Paton DM, editor. The mechanism of neuronal and extraneuronal transport of catecholamines. New York: Raven Press, 1976

    Google Scholar 

  18. Perloff WH. Physiology of the heart and circulation. In: Swedlow DB, Raphaely RC, editors. Cardiovascular problems in pediatric critical care. New York: Livingstone, 1986: 1–86

    Google Scholar 

  19. Legato MJ. Cellular mechanisms of normal growth in the mammalian heart. I. Qualitative and quantitative features of ventricular architecture in the dog from birth to five months of age. Circ Res 1979; 44: 250–62

    Article  PubMed  CAS  Google Scholar 

  20. Reinhardt D, Zehmisch T, Becker B, et al. Age dependency of α and β adrenoreceptor on thrombocytes and lymphocytes of asthmatic and non-asthmatic children. Eur J Pediatr 1984; 142: 111–6

    Article  PubMed  CAS  Google Scholar 

  21. Roan Y, Galant SP. Decreased neutrophil β adrenergic receptors in the neonate. Pediatr Res 1982; 16: 591–3

    Article  PubMed  CAS  Google Scholar 

  22. Rockson SG, Homey CJ, Quinn P, et al. Cellular mechanisms of impaired adrenergic responsiveness in neonatal dogs. J Clin Invest 1981; 67: 319–27

    Article  PubMed  CAS  Google Scholar 

  23. Driscoll DJ. Use of inotropic and chronotropic agents in neonates. Clin Perinatol 1987; 14(4): 931–49

    PubMed  CAS  Google Scholar 

  24. Geis WP, Tatooles CJ, Priola DV, et al. Factors influencing neurohumoral control of the heart in the newborn dog. Am J Physiol 1975; 228: 1685–9

    PubMed  CAS  Google Scholar 

  25. Orlowski JP, Porembka DT, Gallagher JM, et al. Comparison study of intraosseous, central intravenous, and peripheral intravenous infusions of emergency drugs. Am J Dis Child 1990; 144: 112–7

    PubMed  CAS  Google Scholar 

  26. Warren DW, Kissoon N, Mattar A, et al. Pharmacokinetics from multiple intraosseous and peripheral intravenous site injections in normovolemic and hypovolemic pigs. Crit Care Med 1994; 22: 838–43

    Article  PubMed  CAS  Google Scholar 

  27. Welik R, LaGana GM. Successful ET administration of atropine. Ann Emerg Med 1983; 12: 516

    Article  PubMed  CAS  Google Scholar 

  28. Greenberg MI, Mayeda DV, Chrzanowski R, et al. Endotracheal administration of atropine sulfate. Ann Emerg Med 1982; 11: 546–8

    Article  PubMed  CAS  Google Scholar 

  29. Prengel AW, Lindner KH, Hähnel J, et al. Endotracheal and endobronchial lidocaine administration: Effect on plasma lidocaine concentration and blood gases. Crit Care Med 1991; 19: 911–5

    Article  PubMed  CAS  Google Scholar 

  30. Greenberg MI, Roberts JR, Baskin SI. Endotracheal naloxone reversal of morphine-induced respiratory depression in rabbits. Ann Emerg Med 1980; 9(6): 289–92

    Article  PubMed  CAS  Google Scholar 

  31. Basar WC, Ward JT, Oher EJ. Blood levels of diazepam after endotracheal administration in dogs. Ann Emerg Med 1982; 11: 242–7

    Article  Google Scholar 

  32. Redding JS, Asuncion JS, Pearson JW. Effective routes of drug administration during cardiac arrest. Anesth Analg 1967; 46(2): 253–8

    Article  PubMed  CAS  Google Scholar 

  33. Greenberg MI, Roberts JR, Baskin SI. Use of endotracheally administered epinephrine in a pediatric patient. Am J Dis Child 1981; 135: 767–8

    PubMed  CAS  Google Scholar 

  34. Lindemann R. Endotracheal administration of epinephrine during cardiopulmonary resuscitation [letter]. Am J Dis Child 1982; 136: 753

    PubMed  CAS  Google Scholar 

  35. Polin K, Harper Brown D, Leikin JB. Endotracheal administration of epinephrine and atropine. Pediatr Emerg Care 1986; 2(3): 168–9

    Article  PubMed  CAS  Google Scholar 

  36. Lindemann R. Resuscitation of the newborn: Endotracheal administration of epinephrine. Acta Paediatr Scand 1984; 73: 210–2

    Article  PubMed  CAS  Google Scholar 

  37. Roberts JR, Greenberg MI, Knaub M, et al. Blood levels following intravenous and endotracheal epinephrine administration. J Am Coll Emerg Phys 1979; 8(2): 53–6

    Article  CAS  Google Scholar 

  38. Roberts JR, Greenberg MI, Knaub M, et al. Comparison of the pharmacologic effects of epinephrine administered by the intravenous and endotracheal routes. J Am Coll Emerg Phys 1978; 7(7): 260–4

    Article  CAS  Google Scholar 

  39. Chernow B, Holbrook P, D’Angona DS, et al. Epinephrine absorption after intratracheal administration. Anesth Analg 1984; 63: 829–32

    Article  PubMed  CAS  Google Scholar 

  40. Schüttler J, Hörnchen U, Stoeckel H. Pharmacokinetics and -dynamics of epinephrine administered endobronchially. Anesthesiology 1985; 63(3A): A117

    Article  Google Scholar 

  41. Mazkereth R, Paret G, Ezra D, et al. Epinephrine blood concentrations after peripheral bronchial versus endotracheal administration of epinephrine in dogs. Crit Care Med 1992; 20(11): 1582–7

    Article  PubMed  CAS  Google Scholar 

  42. Greenberg MI, Spivey W. A comparison of deep versus shallow administration of ET dionosil in dogs and the effect of forced manual hyperventilation. Ann Emerg Med 1983; 12: 242

    Article  Google Scholar 

  43. Jasani MS, Nadkarni VM, Finkelstein MS, et al. Effects of different techniques of endotracheal epinephrine administration in pediatric porcine hypoxic-hypercarbic cardiopulmonary arrest. Crit Care Med 1994; 22: 1174–80

    Article  PubMed  CAS  Google Scholar 

  44. Quinton DN, O’Byrne G, Aitkenhead AR. Comparison of the endotracheal and peripheral intravenous adrenaline in cardiac arrest: is the endotracheal route reliable? Lancet 1987; 1: 828–9

    Article  PubMed  CAS  Google Scholar 

  45. Emergency Cardiac Care Committee and Subcommittees, American Heart Association. Guidelines for cardiopulmonary resuscitation and emergency cardiac care. JAMA 1992; 268: 2172–299

    Article  Google Scholar 

  46. Nahata MC, Powell DA, Durrell DE, et al. Effect of infusion methods on tobramycin serum concentrations in newborn infants. J Pediatr 1984; 104: 136–8

    Article  PubMed  CAS  Google Scholar 

  47. Leff RD, Roberts RJ. Methods for intravenous drug administration in the pediatric patient. J Pediatr 1981; 98: 631–5

    Article  PubMed  CAS  Google Scholar 

  48. Roberts RJ. Intravenous administration of medication in pediatric patients: problems and solutions. Pediatr Clin North Am 1981; 28: 23–34

    PubMed  CAS  Google Scholar 

  49. Gould T, Roberts RJ. Therapeutic problems arising from the use of the intravenous route for drug administration. J Pediatr 1979; 95: 465–71

    Article  PubMed  CAS  Google Scholar 

  50. Nahata MC. Influence of infusion methods on therapeutic drug monitoring in pediatric patients. Drug Intell Clin Pharm 1986; 20: 367–9

    PubMed  CAS  Google Scholar 

  51. Berman Jr W, Whitman V, Marks KH, et al. Inadvertent over administration of digoxin to low-birth-weight infants. J Pediatr 1978; 92: 1024–5

    Article  PubMed  Google Scholar 

  52. Schulze KF, Graff M, Schimmel MS, et al. Physiologic oscillations produced by an infusion pump. J Pediatr 1983; 103(5): 796–8

    Article  PubMed  CAS  Google Scholar 

  53. Leff RD, Roberts RJ. Problems in drug therapy for pediatric patients. Am J Hosp Pharm 1987; 44: 865–70

    PubMed  CAS  Google Scholar 

  54. Hurlbut JC, Thompson A, Reed MD, et al. Influence of infusion pumps on the pharmacologic response to nitroprusside. Crit Care Med 1991; 19: 98–101

    Article  PubMed  CAS  Google Scholar 

  55. Klem SA, Farrington JM, Leff RD. Influence of infusion pump operation and flow rate on hemodynamic stability during epinephrine infusion. Crit Care Med 1993; 21(8): 111. 213-7

    Article  Google Scholar 

  56. Stull JC, Erenberg A, Leff RD. Flow rate variability from electronic infusion devices. Crit Care Med 1988; 16: 888–91

    Article  PubMed  CAS  Google Scholar 

  57. Rooke GA, Bowdle TA. Syringe pumps for infusion of vasoactive drugs: mechanical idiosyncrasies and recommended operating procedures. Anesth Analg 1994; 78: 150–6

    Article  PubMed  CAS  Google Scholar 

  58. Notterman DA, Greenwald BM, Moran F, et al. Dopamine clearance in critically ill infants and children: effect of age and organ system dysfunction. Clin Pharmacol Ther 1990; 48: 138–47

    Article  PubMed  CAS  Google Scholar 

  59. Engelman K, Portnoy B. Sensitive double-isotope derivative assay for norepinephrine and epinephrine. Circ Res 1970; 26: 53–7

    Article  PubMed  CAS  Google Scholar 

  60. Passon PG, Peuler JD. A simplified radiometric assay for plasma norepinephrine and epinephrine. Anal Biochem 1973; 51: 518–631

    Article  Google Scholar 

  61. Kennedy B, Ziegler MG. A more sensitive and specific radioenzymatic assay for catecholamines. Life Sci 1990; 47: 2143–53

    Article  PubMed  CAS  Google Scholar 

  62. Ewy GA, Plachetka JR. Dopamine and dobutamine: Pharmacology and use in advanced heart failure. In: Ewy GA, Bressler R, editors. Cardiovascular drugs and the management of heart disease. New York: Raven Press, 1992: 65–82

    Google Scholar 

  63. Bhatt-Mehta V, Nahata MC, McClead RE, et al. Dopamine pharmacokinetics in critically ill newborn infants. Eur J Clin Pharmacokinet 1991; 40: 593–7

    CAS  Google Scholar 

  64. Perez CA, Reimer JM, Schreiber MD, et al. Effect of high dose dopamine on urine output in newborn infants. Crit Care Med 1986; 14: 1045–9

    Article  PubMed  CAS  Google Scholar 

  65. Park IS, Michael LH, Driscoll DJ. Comparative response of the developing canine myocardium to inotropic agents. Am J Physiol 1982; 242: H13–8

    PubMed  CAS  Google Scholar 

  66. Driscoll DJ, Fukushige J, Hartley CJ, et al. The comparative hemodynamic effects of isoproterenol in chronically instrumented puppies and adult dogs. Dev Pharmacol Ther 1981; 2: 91–103

    PubMed  CAS  Google Scholar 

  67. Friedman WF. The intrinsic physiologic properties of the developing heart. In: Friedman WF, Lesch M, Sonneblick EH, editors. Neonatal heart disease. New York: Grune and Stratton, 1973

    Google Scholar 

  68. Driscoll DJ, Gillette PC, Ezrailson EG, et al. Inotropic response of the neonatal canine myocardium to dopamine. Pediatr Res 1978; 12: 42–5

    Article  PubMed  CAS  Google Scholar 

  69. Zaritsky A, Chernow B. Use of catecholamines in pediatrics. J Pediatr 1984; 105: 341–50

    Article  PubMed  CAS  Google Scholar 

  70. Goodall McC, Alton H. Dopamine (3-hydroxy-tyramine) replacement in metabolism in sympathetic nerve and adrenal medullary depletions after prolonged thermal injury. J Clin Invest 1969; 48: 1761–7

    Article  PubMed  CAS  Google Scholar 

  71. Tyce GM, Van Dyke RA, Rettke SR, et al. Human liver and conjugation of catecholamines. J Lab Clin Med 1987; 109: 532–7

    PubMed  CAS  Google Scholar 

  72. Fisher DG, Schwartz PH, Davis AL. Pharmacokinetics of exogenous epinephrine in critically ill children. Crit Care Med 1993; 21: 111–7

    Article  PubMed  CAS  Google Scholar 

  73. Padbury JF, Youtaro A, Baylen BG, et al. Dopamine pharmacokinetics in critically ill newborn infants. J Pediatr 1987; 110: 293–8

    Article  PubMed  CAS  Google Scholar 

  74. Eldadah MK, Schwartz PH, Harrison R, et al. Pharmacokinetics of dopamine in infants and children. Crit Care Med 1991; 19(8): 1008–11

    Article  PubMed  CAS  Google Scholar 

  75. Zaritsky A, Lotze A, Stull R, et al. Steady-state dopamine clearance in critically ill infants and children. Crit Care Med 1988; 16(3): 217–20

    Article  PubMed  CAS  Google Scholar 

  76. Jarnberg PO, Bengtsson L, Edstrand J, et al. Dopamine infusion in man. Plasma catecholamine levels and pharmacokinetics. Acta Anaesthesiol Scand 1981; 25: 328–31

    Article  PubMed  CAS  Google Scholar 

  77. Perkin RM, Levin DL. Dobutamine: a hemodynamic evaluation in children with shock. J Pediatr 1982; 100: 977–83

    Article  PubMed  CAS  Google Scholar 

  78. Berg RA, Donnerstein RL, Padbury JF. Dobutamine infusions in stable, critically ill children: Pharmacokinetics and hemodynamic actions. Critical Care Medicine 1993; 21: 678–86

    Article  PubMed  CAS  Google Scholar 

  79. Leier CV, Unverferth DV, Kates RE. The relationship between plasma dobutamine concentrations and cardiovascular responses in cardiac failure. Am J Med 1979; 66: 238–42

    Article  PubMed  CAS  Google Scholar 

  80. Martinez AM, Padbury JF, Thio S. Dobutamine pharmacokinetics and cardiovascular responses in critically ill neonates. Pediatrics 1992; 89: 47–51

    PubMed  CAS  Google Scholar 

  81. Berg RA, Padbury JF, Donnerstein RL, et al. Dobutamine pharmacokinetics and pharmacodynamics in normal children and adolescents. J Pharmacol Exp Ther 1993; 265(3): 1232–8

    PubMed  CAS  Google Scholar 

  82. Habib DM, Padbury JF, Anas NG, et al. Dobutamine pharmacokinetics and pharmacodynamics in pediatric intensive care patients. Crit Care Med 1992; 20: 601–8

    Article  PubMed  CAS  Google Scholar 

  83. Kates R, Leier CV. Dobutamine pharmacokinetics in severe heart failure. Clin Pharmacol Ther 1978; 24: 537–41

    PubMed  CAS  Google Scholar 

  84. Murphy P, Williams T, Kau D. Disposition of dobutamine in the dog. J Pharmacol Exp Ther 1976; 199: 423–31

    PubMed  CAS  Google Scholar 

  85. Schwartz PH, Eldadah MK, Newth CJL. The pharmacokinetics of dobutamine in pediatric intensive care unit patients. Drug Metab Dispos 1991; 19: 614–9

    PubMed  CAS  Google Scholar 

  86. Banner Jr W, Vernon DD, Minton SD, et al. Nonlinear dobutamine pharmacokinetics in a pediatric population. Crit Care Med 1991; 19: 871–3

    Article  PubMed  Google Scholar 

  87. Notterman D, Metakis L, Steinberg C. Isoproterenol pharmacokinetics in children with status asthmaticus: pronounced β-adrenergic receptor desensitization [abstract 185]. Pediatr Res 1992; 31 (4 Pt 2): 33A

    Google Scholar 

  88. Reyes G, Schwartz PH, Newth CJL, et al. The pharmacokinetics of isoproterenol in critically ill pediatric patients. J Clin Pharmacol 1993; 33: 29–34

    PubMed  CAS  Google Scholar 

  89. Parry WH, Martorano F, Cotton EK. Management of life-threatening asthma with intravenous isoproterenol infusions. Am J Dis Child 1976; 130: 39–42

    PubMed  CAS  Google Scholar 

  90. Kurland G, Williams J, Lewiston NJ. Fatal myocardial toxicity during continuous infusion intravenous isoproterenol therapy of asthma. J Allergy Clin Immunol 1979; 63: 407–11

    Article  PubMed  CAS  Google Scholar 

  91. Matson JR, Loughlin GM, Strunk RC. Myocardial ischemia complicating the use of isoproterenol in asthmatic children. J Pediatr 1978; 92: 776–8

    Article  PubMed  CAS  Google Scholar 

  92. Conolly ME, Davies DS, Dollery CT, et al. Metabolism of isoprenaline in dog and man. Br J Pharmacol 1972; 46: 458–72

    Article  PubMed  CAS  Google Scholar 

  93. Conway WD, Minatoya H, Lands AM, et al. Absorption and elimination profile of isoproterenol III. J Pharm Sci 1968; 57: 1135–41

    Article  PubMed  CAS  Google Scholar 

  94. Best JD, Halter JB. Release and clearance rates of epinephrine in man: Importance of arterial measurements. J Clin Endocrinol Metab 1982; 55: 263–8

    Article  PubMed  CAS  Google Scholar 

  95. Clutter WE, Bier DM, Shah SD, et al. Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest 1980; 66: 94–101

    Article  PubMed  CAS  Google Scholar 

  96. Desjars P, Pinaud M, Potel G, et al. A reappraisal of norepinephrine therapy in human septic shock. Crit Care Med 1987; 15: 134–7

    Article  PubMed  CAS  Google Scholar 

  97. Cryer PE. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 1980; 303: 436–44

    Article  PubMed  CAS  Google Scholar 

  98. Weiner N. Norepinephrine, epinephrine, and the sympathomimetic amines. In: Gilman AG, Goodman LS, Rall TW, et al., editors. The pharmacologic basis of therapeutics, 7th ed. New York: Macmillan, 1985: 145–80

    Google Scholar 

  99. Boakes AJ, Laurence DR, Teoh PC, et al. Interactions between sympathomimetic amines and antidepressant agents in man. BMJ 1973; 1: 311–5

    Article  PubMed  CAS  Google Scholar 

  100. Elis J, Laurence DR, Mattie H, et al. Modification by monoamine oxidase inhibitors of the effect of some sympathomimetics on blood pressure. BMJ 1967; 2: 75–8

    Article  PubMed  CAS  Google Scholar 

  101. Sjoqvist F. Psychotropic drugs (2). Interaction between monoamine oxidase (MAO) inhibitors and other substances. Proc R Soc Med 1965; 58: 967–78

    PubMed  CAS  Google Scholar 

  102. Horwitz D, Goldberg LI, Sjoerdsma A. Increased blood pressure responses to dopamine and norepinephrine produced by monoamine oxidase inhibitors in man. J Lab Clin Med 1960; 56: 747–53

    PubMed  CAS  Google Scholar 

  103. Houben H, Thien T, van’t Laar A. Effect of low-dose epinephrine infusion on hemodynamics after selective and nonselective β-blockade in hypertension. Clin Pharmacol Ther 1982; 31(6): 685–90

    Article  PubMed  CAS  Google Scholar 

  104. Reeves RA, Boer WH, DeLeve L, et al. Nonselective beta-blockade enhances pressor responsiveness to epinephrine, norepinephrine, and angiotensin II in normal man. Clin Pharmacol Ther 1984; 35: 461–6

    Article  PubMed  CAS  Google Scholar 

  105. Newman BR, Schultz LK. Epinephrine-resistant anaphylaxis in a patient taking propranolol hydrochloride. Ann Allergy 1981; 47: 35–7

    PubMed  CAS  Google Scholar 

  106. Johnston RR, Eger II EI, Wilson C. A comparative interaction of epinephrine with enflurane, isoflurane and halothane in man. Anesth Analg 1976; 55: 709–12

    Article  PubMed  CAS  Google Scholar 

  107. Hirsch IA, Zauder HL. Chloral hydrate: A potential cause of arrhythmias. Anesth Analg 1986; 65: 691–2

    PubMed  CAS  Google Scholar 

  108. Wettrell G, Andersson KE. Pharmacokinetics of digoxin in infants. Clin Pharmacokinet 1977; 2: 17–31

    Article  PubMed  CAS  Google Scholar 

  109. Iisalo E. Clinical Pharmacokinetics of Digoxin. Clin Pharmacokinet 1977; 2: 1–16

    Article  PubMed  CAS  Google Scholar 

  110. Lindenbaum J, Mellow MH, Blackstone MO, et al. Variation in biologic availability of digoxin from four preparations. N Engl J Med 1971; 285: 1344–7

    Article  PubMed  CAS  Google Scholar 

  111. Hernandez A, Burton RM, Pagtakhan RD, et al. Pharmacodynamics of 3H-digoxin in infants. Pediatrics 1969; 44: 418–28

    PubMed  CAS  Google Scholar 

  112. Wettrell G, Andersson KE. Absorption of digoxin in infants. Eur J Clin Pharmacol 1975; 9: 44–55

    Article  Google Scholar 

  113. Larese RJ, Mirkin BL. Kinetics of digoxin absorption and relation of serum levels to cardiac arrhythmias in children. Clin Pharmacol Ther 1974; 15: 387–69

    PubMed  CAS  Google Scholar 

  114. Dobkin JF, Saha JR, Butler VP, et al. Digoxin-inactivating bacteria: Identification in human gut flora. Science 1983; 220: 325–7

    Article  CAS  Google Scholar 

  115. Linday LA, Dobkin JF, Wang TC, et al. Digoxin inactivation by the gut flora in infancy and childhood. Pediatrics 1987; 79: 544–8

    PubMed  CAS  Google Scholar 

  116. Greenblatt DJ, Duhme DW, Koch-Weser J, et al. Evaluation of digoxin bioavailability in single-dose studies. N Engl J Med 1973; 289: 651–4

    Article  PubMed  CAS  Google Scholar 

  117. Dohlemann C, Buhlmeyer K. Ergebnisse vergleichender oraler und intravenoser Digitalis-Therapie bei Saulgingen. Monatsschr Kinderheilkd 1972; 120: 458–61

    PubMed  CAS  Google Scholar 

  118. Oliver GG, Taxman R, Frederickson R. Influence of congestive heart failure on digoxin blood levels. In: Storstein O, Nitter-Hauge S, Storstein L, editors. Symposium on digitalis, Oslo, Norway. Oslo: Gyldendal Norsk Forlag, 1973: 336–47

  119. Rietbrock N, Woodcock BG. Pharmacokinetics of digoxin and derivatives. In: Greef K, editor. Cardiac glycosides: pharmacokinetics and clinical pharmacology. Berlin: Springer-Verlag, 1981: 31–56

    Google Scholar 

  120. Wettrell G. Distribution and elimination of digoxin in infants. Eur J Clin Pharmacol 1977; 11: 329–35

    Article  PubMed  CAS  Google Scholar 

  121. Morselli PL, Assael BM, Gomeni R, et al. Digoxin pharmacokinetics during human development. In: Morselli PL, Garatini S, Sereni F, editors. Basic and therapeutic aspects of perinatal pharmacology. New York: Raven Press, 1975: 377–92

    Google Scholar 

  122. Andersson KE, Nyberg L, Dencker H, et al. Absorption of digoxin in man after oral and intrasigmoid administration studied by portal vein catheterization. Eur J Clin Pharmacol 1975; 9: 39–47

    Article  PubMed  CAS  Google Scholar 

  123. Lang D, von Bernuth G. Serum concentration and serum half-life of digoxin in premature and mature newborns. Pediatrics 1977; 59: 902–6

    PubMed  CAS  Google Scholar 

  124. Iisalo E, Dahl M. Serum levels and renal excretion of digoxin during maintenance therapy in children. Acta Paediatr Scand 1974; 63: 699–704

    Article  PubMed  CAS  Google Scholar 

  125. Yanagi R, Kim WP, Krasula RW, et al. Urinary excretion of digoxin in infants and children [abstract 484]. Circulation 1974; 123 Suppl. 3: 123: 49–50

    Google Scholar 

  126. Halkin H, Radomsky M, Millman P, et al. Steady state serum concentrations and renal clearance of digoxin in neonates, infants, and children. Eur J Clin Pharmacol 1978; 13: 113–7

    Article  PubMed  CAS  Google Scholar 

  127. Linday LA, Engle MA, Reidenberg MM. Maturation and renal digoxin clearance. Clin Pharmacol Ther 1981; 30: 735–8

    Article  PubMed  CAS  Google Scholar 

  128. Koren G. Clinical pharmacokinetic significance of the renal tubular secretion of digoxin. Clin Pharmacokinet 1987; 13: 334–43

    Article  PubMed  CAS  Google Scholar 

  129. Park MK. Use of digoxin in infants and children with specific emphasis on dosage. J Pediatr 1986; 108: 871–7

    Article  PubMed  CAS  Google Scholar 

  130. Boerth RC. Decreased sensitivity of newborn myocardium to the positive inotropic effects of ouabain. In: Morselli PL, Garatini S, Sereni F, editors. Basic and therapeutic aspects of perinatal pharmacology. New York: Raven Press, 1975: 191–9

    Google Scholar 

  131. Levy AM, Leaman DM, Hanson JS. Effects of digoxin on systolic time intervals of neonates and infants. Circulation 1972; 46: 816–23

    Article  PubMed  CAS  Google Scholar 

  132. Park MK, Ludden T, Arom KV, et al. Myocardial vs serum digoxin concentrations in infants and adults. Am J Dis Child 1982; 136: 418–20

    PubMed  CAS  Google Scholar 

  133. Halkin H, Radomsky M, Blieden L, et al. Steady state serum digoxin concentration in relation to digitalis toxicity in neonates and infants. Pediatrics 1978; 61: 184–8

    PubMed  CAS  Google Scholar 

  134. Valdes Jr R, Graves SW, Brown BA, et al. Endogenous substance in newborn infants causing false positive digoxin measurements. J Pediatr 1983; 102: 947–50

    Article  PubMed  CAS  Google Scholar 

  135. Phelps SJ, Kamper CA, Bottorff MB, et al. Effect of age and serum creatinine on endogenous digoxin-like substances in infants and children. J Pediatr 1987; 110: 136–9

    Article  PubMed  CAS  Google Scholar 

  136. Alousi A, Farah A, Lesher G, et al. Cardiotonic activity of amrinone-WIN 40680 (5-amino-3,4′-bipyridine-6-(IH)-one). Circ Res 1979; 45: 666–77

    Article  PubMed  CAS  Google Scholar 

  137. Hayes J, Bowling N, Boden G, et al. Molecular basis for the cardiovascular activities of amrinone and AR-L57. J Pharmacol Exp Ther 1984; 230: 124–32

    PubMed  CAS  Google Scholar 

  138. Mancini D, LeJemtel T, Sonnenblick E. Intravenous use of amrinone for the treatment of the failing heart. Am J Cardiol 1985; 56: 8B–15B

    Article  PubMed  CAS  Google Scholar 

  139. Edelson H, LeJemtel TH, Alousi AA, et al. Relationship between amrinone plasma concentration and cardiac index. Clin Pharmacol Ther 1981; 29(6): 723–8

    Article  PubMed  CAS  Google Scholar 

  140. Hamilton RA, Kowalsky SF, Wright EM, et al. Effect of the acetylator phenotype on amrinone pharmacokinetics. Clin Pharmacol Ther 1986; 40: 615–9

    Article  PubMed  CAS  Google Scholar 

  141. Kullberg MP, Freeman GB, Biddlecome C, et al. Amrinone metabolism. Clin Pharmacol Ther 1981; 29: 394–401

    Article  PubMed  CAS  Google Scholar 

  142. Ward A, Brogden RN, Heel RC, et al. Amrinone: a preliminary review of it pharmacological properties and therapeutic use. Drugs 1983; 26: 468–502

    Article  PubMed  CAS  Google Scholar 

  143. Lawless S, Burckart G, Diven W, et al. Amrinone pharmacokinetics in neonates and infants. J Clin Pharmacol 1988; 28: 283–4

    PubMed  CAS  Google Scholar 

  144. Lawless S, Burckart G, Diven W, et al. Amrinone in neonates and infants after cardiac surgery. Crit Care Med 1989; 17(8): 751–4

    Article  PubMed  CAS  Google Scholar 

  145. Allen-Webb EM, Ross MP, Pappas JB, et al. Age-related amrinone pharmacokinetics in a pediatric population. Crit Care Med 1994; 22: 1016–24

    Article  PubMed  CAS  Google Scholar 

  146. Neal W, Pierpoint M. Effect of amrinone on cardiac function in children with severe congestive heart failure[abstract175]. Pediatr Res 1981; 15: 469

    Article  Google Scholar 

  147. Coe J, Olley P, Vella G, et al. Bipyridine derivatives lower arteriolar resistance and improve left ventricular function in newborn lambs. Pediatr Res 1987; 22: 422–8

    Article  PubMed  CAS  Google Scholar 

  148. Binah O, Sodowick B, Vulliemox Y. The inotropic effects of amrinone and milrinone on neonatal and young canine cardiac muscle. Circulation 1986; 73 Suppl. 3: 46–51

    Google Scholar 

  149. Ross-Ascuitto N, Ascuitto R, Chen V, et al. Negative inotropic effects of amrinone in the neonatal piglet heart. Circ Res 1987; 61(6): 847–52

    Article  PubMed  CAS  Google Scholar 

  150. Binah O, Legato MJ, Danilo P, et al. Developmental changes in the cardiac effects of amrinone in the dog. Circ Res 1983; 52: 747–52

    Article  PubMed  CAS  Google Scholar 

  151. Wilmshurst PT, Al-Hasani SFA, Semple MJ, et al. The effects of amrinone on platelet count, survival, and function in patients with congestive cardiac failure. Br J Clin Pharmacol 1984; 17: 317–24

    Article  PubMed  CAS  Google Scholar 

  152. Ross MP, Allen-Webb EM, Pappas JB, et al. Amrinone-associated thrombocytopenia: pharmacokinetic analysis. Clin Pharmacol Ther 1993; 53: 661–7

    Article  PubMed  CAS  Google Scholar 

  153. Wilmshurst PT, Webb-Peploe MM. Side effects of amrinone therapy. Br Heart J 1983; 49: 447–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinberg, C., Notterman, D.A. Pharmacokinetics of Cardiovascular Drugs in Children. Clin. Pharmacokinet. 27, 345–367 (1994). https://doi.org/10.2165/00003088-199427050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199427050-00003

Keywords

Navigation