Skip to main content
Erschienen in: Sports Medicine 9/2007

01.09.2007 | Review Article

The Molecular Bases of Training Adaptation

verfasst von: Vernon G. Coffey, Dr John A. Hawley

Erschienen in: Sports Medicine | Ausgabe 9/2007

Einloggen, um Zugang zu erhalten

Abstract

Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exerciseinduced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Literatur
1.
Zurück zum Zitat Bouchard C, Malina R, Pérusse L, editors. On the horizon: molecular biology: a new vista for exercise physiology. In: Genetics of fitness and physical performance. Champaign (IL): Human Kinetics, 1997: 970x1050 Bouchard C, Malina R, Pérusse L, editors. On the horizon: molecular biology: a new vista for exercise physiology. In: Genetics of fitness and physical performance. Champaign (IL): Human Kinetics, 1997: 970x1050
2.
Zurück zum Zitat Izquierdo M, Ibanez J, Hakkinen K, et al. Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists. J Sports Sci 2004; 22 (5): 465–78CrossRef Izquierdo M, Ibanez J, Hakkinen K, et al. Maximal strength and power, muscle mass, endurance and serum hormones in weightlifters and road cyclists. J Sports Sci 2004; 22 (5): 465–78CrossRef
3.
Zurück zum Zitat Mahoney DJ, Parise G, Melov S, et al. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 2005; 19 (11): 1498–500PubMed Mahoney DJ, Parise G, Melov S, et al. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 2005; 19 (11): 1498–500PubMed
4.
Zurück zum Zitat Bickel CS, Slade J, Mahoney E, et al. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol 2005; 98 (2): 482–8PubMed Bickel CS, Slade J, Mahoney E, et al. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol 2005; 98 (2): 482–8PubMed
5.
Zurück zum Zitat Yang Y, Creer A, Jemiolo B, et al. Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol 2005; 98 (5): 1745–52PubMedCrossRef Yang Y, Creer A, Jemiolo B, et al. Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol 2005; 98 (5): 1745–52PubMedCrossRef
6.
Zurück zum Zitat Pilegaard H, Ordway GA, Saltin B, et al. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 2000; 279: E806–14PubMed Pilegaard H, Ordway GA, Saltin B, et al. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 2000; 279: E806–14PubMed
7.
Zurück zum Zitat Booth FW, Baldwin KM. Muscle plasticity: energy demand and supply processes. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. Section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press, 1996: 1075–123 Booth FW, Baldwin KM. Muscle plasticity: energy demand and supply processes. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. Section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press, 1996: 1075–123
8.
Zurück zum Zitat Irrcher I, Adhihetty PJ, Joseph AM, et al. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 2003; 33 (11): 783–93PubMedCrossRef Irrcher I, Adhihetty PJ, Joseph AM, et al. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 2003; 33 (11): 783–93PubMedCrossRef
9.
Zurück zum Zitat Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2004; 2 (10): e348PubMedCrossRef Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2004; 2 (10): e348PubMedCrossRef
10.
Zurück zum Zitat Holloszy JO, Rennie MJ, Hickson RC, et al. Physiological consequences of the biochemical adaptations to endurance exercise. Ann N Y Acad Sci 1977; 301: 440–50PubMedCrossRef Holloszy JO, Rennie MJ, Hickson RC, et al. Physiological consequences of the biochemical adaptations to endurance exercise. Ann N Y Acad Sci 1977; 301: 440–50PubMedCrossRef
11.
Zurück zum Zitat Rennie MJ, Wackerhage H, Spangenburg EE, et al. Control of the size of the human muscle mass. Ann Rev Physiol 2004; 66: 799–828CrossRef Rennie MJ, Wackerhage H, Spangenburg EE, et al. Control of the size of the human muscle mass. Ann Rev Physiol 2004; 66: 799–828CrossRef
12.
Zurück zum Zitat Häkkinen K. Neuromuscular and hormonal adaptations during strength and power training: a review. J Sports Med Phys Fitness 1989; 29 (1): 9–26PubMed Häkkinen K. Neuromuscular and hormonal adaptations during strength and power training: a review. J Sports Med Phys Fitness 1989; 29 (1): 9–26PubMed
13.
Zurück zum Zitat Ingalls CP. Nature vs nurture: can exercise really alter fibre type composition in human skeletal muscle. J Appl Physiol 2004; 97 (5): 1591–2PubMedCrossRef Ingalls CP. Nature vs nurture: can exercise really alter fibre type composition in human skeletal muscle. J Appl Physiol 2004; 97 (5): 1591–2PubMedCrossRef
14.
Zurück zum Zitat Williams RS, Neufer PD. Regulation of gene expression in skeletal muscle by contractile activity. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. Section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press, 1996: 1124–150 Williams RS, Neufer PD. Regulation of gene expression in skeletal muscle by contractile activity. In: Rowell LB, Shepherd JT, editors. Handbook of physiology. Section 12. Exercise: regulation and integration of multiple systems. New York: Oxford University Press, 1996: 1124–150
15.
Zurück zum Zitat Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002; (119): PE6 Alenghat FJ, Ingber DE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002; (119): PE6
16.
Zurück zum Zitat Kumar A, Chaudhry I, Reid MB, et al. Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J Biol Chem 2002; 277 (48): 46493–503PubMedCrossRef Kumar A, Chaudhry I, Reid MB, et al. Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J Biol Chem 2002; 277 (48): 46493–503PubMedCrossRef
17.
Zurück zum Zitat Hornberger TA, Armstrong DD, Koh TJ, et al. Intracellular stretch: implications for mechanotransduction. Am J Physiol Cell Physiol 2005; 288 (1): C185–94PubMed Hornberger TA, Armstrong DD, Koh TJ, et al. Intracellular stretch: implications for mechanotransduction. Am J Physiol Cell Physiol 2005; 288 (1): C185–94PubMed
18.
Zurück zum Zitat Spriet LL. Regulation of skeletal muscle fat oxidation during exercise in humans. Med Sci Sports Exerc 2002; 34 (9): 1477–84PubMedCrossRef Spriet LL. Regulation of skeletal muscle fat oxidation during exercise in humans. Med Sci Sports Exerc 2002; 34 (9): 1477–84PubMedCrossRef
19.
Zurück zum Zitat Schertzer JD, Green HJ, Fowles JR, et al. Effects of prolonged exercise and recovery on sarcoplasmic reticulum Ca2+ cycling properties in rat muscle homogenates. Acta Physiol Scand 2004; 180: 195–208PubMedCrossRef Schertzer JD, Green HJ, Fowles JR, et al. Effects of prolonged exercise and recovery on sarcoplasmic reticulum Ca2+ cycling properties in rat muscle homogenates. Acta Physiol Scand 2004; 180: 195–208PubMedCrossRef
20.
Zurück zum Zitat Matsunaga S, Inashima S, Tsuchimochi H, et al. Altered sarcoplasmic reticulum function in rat diaphragm after high-intensity exercise. Acta Physiol Scand 2002; 176: 227–32PubMedCrossRef Matsunaga S, Inashima S, Tsuchimochi H, et al. Altered sarcoplasmic reticulum function in rat diaphragm after high-intensity exercise. Acta Physiol Scand 2002; 176: 227–32PubMedCrossRef
21.
Zurück zum Zitat Holloway GP, Green HJ, Duhamel TA, et al. Muscle sarcoplasmic reticulum Ca2+ cycling adaptations during 16h of heavy intermittent cycle exercise. J Appl Physiol 2005; 99 (3): 836–43PubMedCrossRef Holloway GP, Green HJ, Duhamel TA, et al. Muscle sarcoplasmic reticulum Ca2+ cycling adaptations during 16h of heavy intermittent cycle exercise. J Appl Physiol 2005; 99 (3): 836–43PubMedCrossRef
22.
Zurück zum Zitat Baar K, Esser K. Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol Cell Physiol 1999; 276 (45): C120–7 Baar K, Esser K. Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol Cell Physiol 1999; 276 (45): C120–7
23.
Zurück zum Zitat Chin ER. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol 2005; 99 (2): 414–23PubMedCrossRef Chin ER. Role of Ca2+/calmodulin-dependent kinases in skeletal muscle plasticity. J Appl Physiol 2005; 99 (2): 414–23PubMedCrossRef
24.
Zurück zum Zitat Smith MA, Reid MB. Redox modulation of contractile function in respiratory and limb skeletal muscle. Resp Physiol Neurobiol New Direct Exerc Physiol 2006; 151 (2-3): 229–41 Smith MA, Reid MB. Redox modulation of contractile function in respiratory and limb skeletal muscle. Resp Physiol Neurobiol New Direct Exerc Physiol 2006; 151 (2-3): 229–41
25.
Zurück zum Zitat Arbogast S, Reid MB. Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide. Am J Physiol Regul Integr Comp Physiol 2004; 287 (4): R698–705PubMedCrossRef Arbogast S, Reid MB. Oxidant activity in skeletal muscle fibers is influenced by temperature, CO2 level, and muscle-derived nitric oxide. Am J Physiol Regul Integr Comp Physiol 2004; 287 (4): R698–705PubMedCrossRef
26.
Zurück zum Zitat Carrero P, Okamoto K, Coumailleau P, et al. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor α. Mol Cell Biol 2000; 20 (1): 402–15PubMedCrossRef Carrero P, Okamoto K, Coumailleau P, et al. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor α. Mol Cell Biol 2000; 20 (1): 402–15PubMedCrossRef
27.
Zurück zum Zitat Jindra M, Gaziova I, Uhlirova M, et al. Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress in Drosophila. EMBO J 2004; 23 (17): 3538–47PubMedCrossRef Jindra M, Gaziova I, Uhlirova M, et al. Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress in Drosophila. EMBO J 2004; 23 (17): 3538–47PubMedCrossRef
28.
Zurück zum Zitat Hawley JA, Zierath J. Integration of metabolic and mitogenic signal transduction in skeletal muscle. Exerc Sport Sci Rev 2004; 32 (1): 4–8PubMedCrossRef Hawley JA, Zierath J. Integration of metabolic and mitogenic signal transduction in skeletal muscle. Exerc Sport Sci Rev 2004; 32 (1): 4–8PubMedCrossRef
29.
Zurück zum Zitat Sakamoto K, Goodyear LJ. Exercise effects on muscle insulin signaling and action (invited review): intracellular signaling in contracting skeletal muscle. J Appl Physiol 2002; 93 (1): 369–83PubMed Sakamoto K, Goodyear LJ. Exercise effects on muscle insulin signaling and action (invited review): intracellular signaling in contracting skeletal muscle. J Appl Physiol 2002; 93 (1): 369–83PubMed
30.
Zurück zum Zitat Ferguson RA, Ball D, Krustrup P, et al. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans. J Physiol (Lond) 2001; 536 (1): 261–71CrossRef Ferguson RA, Ball D, Krustrup P, et al. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans. J Physiol (Lond) 2001; 536 (1): 261–71CrossRef
31.
Zurück zum Zitat Ivy JL, Chi MM, Hintz CS, et al. Progressive metabolite changes in individual human muscle fibers with increasing work rates. Am J Physiol Cell Physiol 1987; 252 (6): C630–9 Ivy JL, Chi MM, Hintz CS, et al. Progressive metabolite changes in individual human muscle fibers with increasing work rates. Am J Physiol Cell Physiol 1987; 252 (6): C630–9
32.
Zurück zum Zitat Krustrup P, Ferguson RA, Kjar M, et al. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis. J Physiol (Lond) 2003; 549 (1): 255–69CrossRef Krustrup P, Ferguson RA, Kjar M, et al. ATP and heat production in human skeletal muscle during dynamic exercise: higher efficiency of anaerobic than aerobic ATP resynthesis. J Physiol (Lond) 2003; 549 (1): 255–69CrossRef
33.
Zurück zum Zitat Hardie DG, Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 2006; 21 (1): 48–60PubMedCrossRef Hardie DG, Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 2006; 21 (1): 48–60PubMedCrossRef
34.
Zurück zum Zitat Aschenbach WG, Sakamoto K, Goodyear LJ. Adenosine monophosphate-activated protein kinase, metabolism and exercise. Sports Med 2004; 34 (2): 91–103PubMedCrossRef Aschenbach WG, Sakamoto K, Goodyear LJ. Adenosine monophosphate-activated protein kinase, metabolism and exercise. Sports Med 2004; 34 (2): 91–103PubMedCrossRef
35.
Zurück zum Zitat Jorgensen SB, Richter EA, Wojtaszewski JFP. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol (Lond) 2006; 574 (1): 17–31CrossRef Jorgensen SB, Richter EA, Wojtaszewski JFP. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol (Lond) 2006; 574 (1): 17–31CrossRef
36.
Zurück zum Zitat Hayashi T, Hirshman M, Kurth E, et al. Evidence for 5’-AMP activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 1998; 47 (8): 1369–73PubMedCrossRef Hayashi T, Hirshman M, Kurth E, et al. Evidence for 5’-AMP activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 1998; 47 (8): 1369–73PubMedCrossRef
37.
Zurück zum Zitat Musi N, Hayashi T, Fujii N, et al. AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab 2001; 280 (5): E677–84PubMed Musi N, Hayashi T, Fujii N, et al. AMP-activated protein kinase activity and glucose uptake in rat skeletal muscle. Am J Physiol Endocrinol Metab 2001; 280 (5): E677–84PubMed
38.
Zurück zum Zitat Nakano M, Hamada T, Hayashi T, et al. Isoform-specific activation of 5’adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-a-d-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle. Metabolism 2006; 55 (3): 300–8PubMedCrossRef Nakano M, Hamada T, Hayashi T, et al. Isoform-specific activation of 5’adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-a-d-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle. Metabolism 2006; 55 (3): 300–8PubMedCrossRef
39.
Zurück zum Zitat Kaushik VK, Young ME, Dean DJ, et al. Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle:effects of AICAR. Am J Physiol Endocrinol Metab 2001; 281 (2): E335–40PubMed Kaushik VK, Young ME, Dean DJ, et al. Regulation of fatty acid oxidation and glucose metabolism in rat soleus muscle:effects of AICAR. Am J Physiol Endocrinol Metab 2001; 281 (2): E335–40PubMed
40.
Zurück zum Zitat Lee JL, Kim M, Park H-S, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARa and PGC-1. Biochem Biophys Res Commun 2006; 340: 291–5PubMedCrossRef Lee JL, Kim M, Park H-S, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating PPARa and PGC-1. Biochem Biophys Res Commun 2006; 340: 291–5PubMedCrossRef
41.
Zurück zum Zitat Terada S, Kawanaka K, Goto M, et al. Effects of high-intensity intermittent swimming on PGC-1a protein expression in rat skeletal muscle. Acta Physiol Scand 2005; 184 (1): 59–65PubMedCrossRef Terada S, Kawanaka K, Goto M, et al. Effects of high-intensity intermittent swimming on PGC-1a protein expression in rat skeletal muscle. Acta Physiol Scand 2005; 184 (1): 59–65PubMedCrossRef
42.
Zurück zum Zitat Jorgensen SB, Wojtaszewski JFP, Viollet B, et al. Effects of a AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J 2005; 19 (9): 1146–8PubMed Jorgensen SB, Wojtaszewski JFP, Viollet B, et al. Effects of a AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J 2005; 19 (9): 1146–8PubMed
43.
Zurück zum Zitat Bolster DR, Crozier SJ, Kimball SR, et al. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 2002; 277 (27): 23977–80PubMedCrossRef Bolster DR, Crozier SJ, Kimball SR, et al. AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 2002; 277 (27): 23977–80PubMedCrossRef
44.
Zurück zum Zitat Toyoda T, Tanaka S, Ebihara K, et al. Low-intensity contraction activates the a1-isoform of 5’-AMP-activated protein kinase in rat skeletal muscle. Am J Physiol Endocrinol Metab 2006; 290 (3): E583–90PubMedCrossRef Toyoda T, Tanaka S, Ebihara K, et al. Low-intensity contraction activates the a1-isoform of 5’-AMP-activated protein kinase in rat skeletal muscle. Am J Physiol Endocrinol Metab 2006; 290 (3): E583–90PubMedCrossRef
45.
Zurück zum Zitat Wojtaszewski JFP, Birk JB, Frosig C, et al. 5’AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J Physiol (Lond) 2005; 564 (2): 563–73CrossRef Wojtaszewski JFP, Birk JB, Frosig C, et al. 5’AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J Physiol (Lond) 2005; 564 (2): 563–73CrossRef
46.
Zurück zum Zitat Atherton PJ, Babraj JA, Smith K, et al. Selective activation of AMPK-PGC-1a; or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 2005; 19 (7): 786–8PubMed Atherton PJ, Babraj JA, Smith K, et al. Selective activation of AMPK-PGC-1a; or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J 2005; 19 (7): 786–8PubMed
47.
Zurück zum Zitat Durante PE, Mustard KJ, Park S-H, et al. Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles. Am J Physiol Endocrinol Metab 2002; 283 (1): E178–86PubMed Durante PE, Mustard KJ, Park S-H, et al. Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles. Am J Physiol Endocrinol Metab 2002; 283 (1): E178–86PubMed
48.
Zurück zum Zitat FrØsig C, JØrgensen SB, Hardie DG, et al. 5’-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 2004; 286: E411-7PubMedCrossRef FrØsig C, JØrgensen SB, Hardie DG, et al. 5’-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab 2004; 286: E411-7PubMedCrossRef
49.
Zurück zum Zitat Hurst D, Taylor EB, Cline TD, et al. AMP-activated protein kinase activity and phosphorylation of AMP-activated protein kinase in contracting muscle of sedentary and endurance trained rats. Am J Physiol Endocrinol Metab 2005; 289 (4): E710–15PubMedCrossRef Hurst D, Taylor EB, Cline TD, et al. AMP-activated protein kinase activity and phosphorylation of AMP-activated protein kinase in contracting muscle of sedentary and endurance trained rats. Am J Physiol Endocrinol Metab 2005; 289 (4): E710–15PubMedCrossRef
50.
Zurück zum Zitat McConell GK, Lee-Young RS, Chen Z-P, et al. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J Physiol (Lond) 2005; 568 (2): 665–76CrossRef McConell GK, Lee-Young RS, Chen Z-P, et al. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J Physiol (Lond) 2005; 568 (2): 665–76CrossRef
51.
Zurück zum Zitat Nielsen JN, Mustard KJW, Graham DA, et al. 5’-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. J Appl Physiol 2003; 94 (2): 631–41PubMed Nielsen JN, Mustard KJW, Graham DA, et al. 5’-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle. J Appl Physiol 2003; 94 (2): 631–41PubMed
52.
Zurück zum Zitat Taylor EB, Lamb JD, Hurst RW, et al. Endurance training increases skeletal muscle LKB1 and PGC-1a protein abundance: effects of time and intensity. Am J Physiol Endocrinol Metab 2005; 289 (6): E960–8PubMedCrossRef Taylor EB, Lamb JD, Hurst RW, et al. Endurance training increases skeletal muscle LKB1 and PGC-1a protein abundance: effects of time and intensity. Am J Physiol Endocrinol Metab 2005; 289 (6): E960–8PubMedCrossRef
53.
Zurück zum Zitat Yu M, Stepto NK, Chibalin AV, et al. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J Physiol 2003; 546 (2): 327–35PubMedCrossRef Yu M, Stepto NK, Chibalin AV, et al. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J Physiol 2003; 546 (2): 327–35PubMedCrossRef
54.
Zurück zum Zitat Rasmussen BB, Winder WW. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J Appl Physiol 1997; 83 (4): 1104–9PubMed Rasmussen BB, Winder WW. Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J Appl Physiol 1997; 83 (4): 1104–9PubMed
55.
Zurück zum Zitat Chen Z-P, Stephens TJ, Murthy S, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 2003; 52 (9): 2205–12PubMedCrossRef Chen Z-P, Stephens TJ, Murthy S, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 2003; 52 (9): 2205–12PubMedCrossRef
56.
Zurück zum Zitat Wadley GD, Lee-Young RS, Canny BJ, et al. Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. Am J Physiol Endocrinol Metab 2006; 290 (4): E694–702PubMedCrossRef Wadley GD, Lee-Young RS, Canny BJ, et al. Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. Am J Physiol Endocrinol Metab 2006; 290 (4): E694–702PubMedCrossRef
57.
Zurück zum Zitat Clark SA, Chen Z-P, Murphy KT, et al. Intensified exercise training does not alter AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab 2004; 286 (5): E737–43PubMedCrossRef Clark SA, Chen Z-P, Murphy KT, et al. Intensified exercise training does not alter AMPK signaling in human skeletal muscle. Am J Physiol Endocrinol Metab 2004; 286 (5): E737–43PubMedCrossRef
58.
Zurück zum Zitat Chen Z-P, McConell GK, Michell BJ, et al. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 2000; 279 (5): E1202–6PubMed Chen Z-P, McConell GK, Michell BJ, et al. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 2000; 279 (5): E1202–6PubMed
59.
Zurück zum Zitat Dreyer HC, Fujita S, Cadenas JG, et al. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol C475-84 (Lond) 2006; 576 (Pt 2): 613–24CrossRef Dreyer HC, Fujita S, Cadenas JG, et al. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol C475-84 (Lond) 2006; 576 (Pt 2): 613–24CrossRef
60.
Zurück zum Zitat Koopman R, Zorenc AHG, Gransier RJJ, et al. Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. Am J Physiol Endocrinol Metab 2006; 290 (6): E1245–52PubMedCrossRef Koopman R, Zorenc AHG, Gransier RJJ, et al. Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. Am J Physiol Endocrinol Metab 2006; 290 (6): E1245–52PubMedCrossRef
61.
Zurück zum Zitat Coffey VG, Zhong Z, Shield A, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 2005; 20 (1): 190–2PubMed Coffey VG, Zhong Z, Shield A, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J 2005; 20 (1): 190–2PubMed
62.
Zurück zum Zitat Rose AJ, Hargreaves M. Exercise increases Ca2+-calmodulin dependent protein kinase II activity in human skeletal muscle. J Physiol (Lond) 2003; 553 (1): 303–9CrossRef Rose AJ, Hargreaves M. Exercise increases Ca2+-calmodulin dependent protein kinase II activity in human skeletal muscle. J Physiol (Lond) 2003; 553 (1): 303–9CrossRef
63.
Zurück zum Zitat Wu H, Kanatous SB, Thurmond FA, et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 2002; 296 (5566): 349–52PubMedCrossRef Wu H, Kanatous SB, Thurmond FA, et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 2002; 296 (5566): 349–52PubMedCrossRef
64.
Zurück zum Zitat Fluck M, Waxham MN, Hamilton MT, et al. Skeletal muscle Ca2+-independent kinase activity increases during either hypertrophy or running. J Appl Physiol 2000; 88 (1): 352–8PubMed Fluck M, Waxham MN, Hamilton MT, et al. Skeletal muscle Ca2+-independent kinase activity increases during either hypertrophy or running. J Appl Physiol 2000; 88 (1): 352–8PubMed
65.
Zurück zum Zitat Rose AJ, Kiens B, Richter EA. Ca2+-calmodulin dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol (Lond) 2006; 574 (Pt 3): 889–903CrossRef Rose AJ, Kiens B, Richter EA. Ca2+-calmodulin dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol (Lond) 2006; 574 (Pt 3): 889–903CrossRef
66.
Zurück zum Zitat Liu Y, Shen T, Randall WR, et al. Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 2005; 26 (1): 13–21PubMedCrossRef Liu Y, Shen T, Randall WR, et al. Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 2005; 26 (1): 13–21PubMedCrossRef
67.
Zurück zum Zitat Michel RN, Dunn SE, Chin ER. Calcineurin and skeletal muscle growth. Proc Nutr Soc 2004; 63 (2): 341–9PubMedCrossRef Michel RN, Dunn SE, Chin ER. Calcineurin and skeletal muscle growth. Proc Nutr Soc 2004; 63 (2): 341–9PubMedCrossRef
68.
Zurück zum Zitat Sakuma K, Nishikawa J, Nakao R, et al. Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Acta Neuropathol 2003; 105 (3): 271–80PubMed Sakuma K, Nishikawa J, Nakao R, et al. Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Acta Neuropathol 2003; 105 (3): 271–80PubMed
69.
Zurück zum Zitat Musaro A, McCullagh KJA, Naya FJ, et al. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 1999; 400 (6744): 581–5PubMedCrossRef Musaro A, McCullagh KJA, Naya FJ, et al. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 1999; 400 (6744): 581–5PubMedCrossRef
70.
Zurück zum Zitat Dunn SE, Burns JL, Michel RN. Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem 1999; 274 (31): 21908–12 Dunn SE, Burns JL, Michel RN. Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem 1999; 274 (31): 21908–12
71.
Zurück zum Zitat Scicchitano BM, Spath L, Musaro A, et al. Vasopressin-dependent myogenic cell differentiation is mediated by both Ca2+/calmodulin-dependent kinase and calcineurin pathways. Mol Biol Cell 2005; 16 (8): 3632–41PubMedCrossRef Scicchitano BM, Spath L, Musaro A, et al. Vasopressin-dependent myogenic cell differentiation is mediated by both Ca2+/calmodulin-dependent kinase and calcineurin pathways. Mol Biol Cell 2005; 16 (8): 3632–41PubMedCrossRef
72.
Zurück zum Zitat Dunn SE, Chin ER, Michel RN. Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth. J Cell Biol 2000; 151 (3): 663–72PubMedCrossRef Dunn SE, Chin ER, Michel RN. Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth. J Cell Biol 2000; 151 (3): 663–72PubMedCrossRef
73.
Zurück zum Zitat Naya FJ, Mercer B, Shelton J, et al. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 2000; 275 (7): 4545–8PubMedCrossRef Naya FJ, Mercer B, Shelton J, et al. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 2000; 275 (7): 4545–8PubMedCrossRef
74.
Zurück zum Zitat Parsons SA, Millay DP, Wilkins BJ, et al. Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem 2004; 279 (25): 26192–200PubMedCrossRef Parsons SA, Millay DP, Wilkins BJ, et al. Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem 2004; 279 (25): 26192–200PubMedCrossRef
75.
Zurück zum Zitat Talmadge R, Otis J, Rittler M, et al. Calcineurin activation influences muscle phenotype in a muscle-specific fashion. BMC Cell Biol 2004; 5: 28PubMedCrossRef Talmadge R, Otis J, Rittler M, et al. Calcineurin activation influences muscle phenotype in a muscle-specific fashion. BMC Cell Biol 2004; 5: 28PubMedCrossRef
76.
Zurück zum Zitat Wu H, Naya F, McKinsey T, et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 2000; 19 (9): 1963–73PubMedCrossRef Wu H, Naya F, McKinsey T, et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 2000; 19 (9): 1963–73PubMedCrossRef
77.
Zurück zum Zitat Chin ER, Olson EN, Richardson JA, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Gene Dev 1998; 12 (16): 2499–509PubMedCrossRef Chin ER, Olson EN, Richardson JA, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Gene Dev 1998; 12 (16): 2499–509PubMedCrossRef
78.
Zurück zum Zitat Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 2005; 37 (10): 1974–84PubMedCrossRef Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 2005; 37 (10): 1974–84PubMedCrossRef
79.
Zurück zum Zitat Taniguchi C, Emanuelli B, Kahn C. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7 (2): 85–96PubMedCrossRef Taniguchi C, Emanuelli B, Kahn C. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7 (2): 85–96PubMedCrossRef
80.
Zurück zum Zitat Vandenburgh HH, Karlisch P, Shansky J, et al. Insulin and IGFI induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Physiol Cell Physiol 1991; 260 (3): C475–84 Vandenburgh HH, Karlisch P, Shansky J, et al. Insulin and IGFI induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Physiol Cell Physiol 1991; 260 (3): C475–84
81.
Zurück zum Zitat Latres E, Amini AR, Amini AA, et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 2005; 280 (4): 2737-44PubMedCrossRef Latres E, Amini AR, Amini AA, et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem 2005; 280 (4): 2737-44PubMedCrossRef
82.
Zurück zum Zitat Stitt TN, Drujan D, Clarke BA, et al. The IGF/PI3K/Akt path-way prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004; 14: 395–403PubMedCrossRef Stitt TN, Drujan D, Clarke BA, et al. The IGF/PI3K/Akt path-way prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004; 14: 395–403PubMedCrossRef
83.
Zurück zum Zitat Chakravarthy MV, Davis BS, Booth FW. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol 2000; 89: 1365–79PubMed Chakravarthy MV, Davis BS, Booth FW. IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol 2000; 89: 1365–79PubMed
84.
Zurück zum Zitat Rommel C, Bodine SC, Clarke BA, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/ mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 2001; 3: 1009–13PubMedCrossRef Rommel C, Bodine SC, Clarke BA, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/ mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 2001; 3: 1009–13PubMedCrossRef
85.
86.
Zurück zum Zitat Nader GA. Molecular determinants of skeletal muscle mass: getting the ‘AKT’ together. Int J Biochem Cell Biol 2005; 37 (10): 1985–96PubMedCrossRef Nader GA. Molecular determinants of skeletal muscle mass: getting the ‘AKT’ together. Int J Biochem Cell Biol 2005; 37 (10): 1985–96PubMedCrossRef
87.
Zurück zum Zitat Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307 (5712): 1098–101PubMedCrossRef Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307 (5712): 1098–101PubMedCrossRef
88.
Zurück zum Zitat Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001; 3: 1014–9PubMedCrossRef Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001; 3: 1014–9PubMedCrossRef
89.
Zurück zum Zitat Bruss MD, Arias EB, Lienhard GE, et al. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes 2005; 54 (1): 41–50PubMedCrossRef Bruss MD, Arias EB, Lienhard GE, et al. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes 2005; 54 (1): 41–50PubMedCrossRef
90.
Zurück zum Zitat Cai S-L, Tee AR, Short JD, et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 2006; 173 (2): 279–89PubMedCrossRef Cai S-L, Tee AR, Short JD, et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 2006; 173 (2): 279–89PubMedCrossRef
91.
Zurück zum Zitat Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4 (9): 648–57PubMedCrossRef Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4 (9): 648–57PubMedCrossRef
92.
Zurück zum Zitat Nader GA, McLoughlin TJ, Esser KA. MTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol 2005; 289 (6): C1457–65PubMedCrossRef Nader GA, McLoughlin TJ, Esser KA. MTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol 2005; 289 (6): C1457–65PubMedCrossRef
93.
Zurück zum Zitat Lai K-MV, Gonzalez M, Poueymirou WT, et al. Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 2004; 24 (21): 9295–304PubMedCrossRef Lai K-MV, Gonzalez M, Poueymirou WT, et al. Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 2004; 24 (21): 9295–304PubMedCrossRef
94.
Zurück zum Zitat Hahn-Windgassen A, Nogueira V, Chen C-C, et al. Akt activvates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 2005; 280 (37): 32081–9PubMedCrossRef Hahn-Windgassen A, Nogueira V, Chen C-C, et al. Akt activvates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 2005; 280 (37): 32081–9PubMedCrossRef
95.
Zurück zum Zitat Vyas DR, Spangenburg EE, Abraha TW, et al. GSK-3β negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol 2002; 283 (2): C545–51PubMed Vyas DR, Spangenburg EE, Abraha TW, et al. GSK-3β negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol 2002; 283 (2): C545–51PubMed
96.
Zurück zum Zitat Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated down stream signaling. PNAS 2002; 99 (21): 13571–6PubMedCrossRef Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated down stream signaling. PNAS 2002; 99 (21): 13571–6PubMedCrossRef
97.
Zurück zum Zitat Rena G, Woods YL, Prescott AR, et al. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 2002; 21 (9): 2263–71PubMedCrossRef Rena G, Woods YL, Prescott AR, et al. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 2002; 21 (9): 2263–71PubMedCrossRef
98.
Zurück zum Zitat Bolster DR, Kubica N, Crozier SJ, et al. Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. J Physiol (Lond) 2003; 553 (1): 213–20CrossRef Bolster DR, Kubica N, Crozier SJ, et al. Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. J Physiol (Lond) 2003; 553 (1): 213–20CrossRef
99.
Zurück zum Zitat Wilson C, Hargreaves M, Howlett KF. Exercise does not alter subcellular localization, but increases phosphorylation of insulin-signaling proteins in human skeletal muscle. Am J Physiol Endocrinol Metab 2006; 290 (2): E341–6PubMedCrossRef Wilson C, Hargreaves M, Howlett KF. Exercise does not alter subcellular localization, but increases phosphorylation of insulin-signaling proteins in human skeletal muscle. Am J Physiol Endocrinol Metab 2006; 290 (2): E341–6PubMedCrossRef
100.
Zurück zum Zitat Sakamoto K, Arnolds DEW, Ekberg I, et al. Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle. Biochem Biophys Res Commun 2004; 319 (2): 419–25PubMedCrossRef Sakamoto K, Arnolds DEW, Ekberg I, et al. Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle. Biochem Biophys Res Commun 2004; 319 (2): 419–25PubMedCrossRef
101.
Zurück zum Zitat Thorell A, Hirshman MF, Nygren J, et al. Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol Endocrinol Metab 1999; 277 (4): E733–41 Thorell A, Hirshman MF, Nygren J, et al. Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol Endocrinol Metab 1999; 277 (4): E733–41
102.
Zurück zum Zitat Widegren U, Jiang XJ, Krook A, et al. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J 1998; 12: 1379–89PubMed Widegren U, Jiang XJ, Krook A, et al. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. FASEB J 1998; 12: 1379–89PubMed
103.
Zurück zum Zitat Creer A, Gallagher P, Slivka D, et al. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol 2005; 99 (3): 950–6PubMedCrossRef Creer A, Gallagher P, Slivka D, et al. Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol 2005; 99 (3): 950–6PubMedCrossRef
104.
Zurück zum Zitat Leger B, Cartoni R, Praz M, et al. Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol (Lond) 2006; 576 (Pt 3): 923–33CrossRef Leger B, Cartoni R, Praz M, et al. Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol (Lond) 2006; 576 (Pt 3): 923–33CrossRef
105.
Zurück zum Zitat Eliasson J, Elfegoun T, Nilsson J, et al. Maximal lengthening contractions increase p70S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab 2006; 291 (6): E1197–205PubMedCrossRef Eliasson J, Elfegoun T, Nilsson J, et al. Maximal lengthening contractions increase p70S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply. Am J Physiol Endocrinol Metab 2006; 291 (6): E1197–205PubMedCrossRef
106.
Zurück zum Zitat Williamson DL, Kubica N, Kimball SR, et al. Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle. J Physiol (Lond) 2006; 573 (2): 497–510CrossRef Williamson DL, Kubica N, Kimball SR, et al. Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle. J Physiol (Lond) 2006; 573 (2): 497–510CrossRef
107.
Zurück zum Zitat Reynolds TH, Reid P, Larkin LM, et al. Effects of aerobic exercise training on the protein kinase B (PKB)/mammalian target of rapamycin (mTOR) signaling pathway in aged skeletal muscle. Exp Gerontol 2004; 39 (3): 379–85PubMedCrossRef Reynolds TH, Reid P, Larkin LM, et al. Effects of aerobic exercise training on the protein kinase B (PKB)/mammalian target of rapamycin (mTOR) signaling pathway in aged skeletal muscle. Exp Gerontol 2004; 39 (3): 379–85PubMedCrossRef
108.
Zurück zum Zitat Krisan AD, Collins DE, Crain AM, et al. Resistance training enhances components of the insulin signaling cascade in normal and high-fat-fed rodent skeletal muscle. J Appl Physiol 2004; 96 (5): 1691–700PubMedCrossRef Krisan AD, Collins DE, Crain AM, et al. Resistance training enhances components of the insulin signaling cascade in normal and high-fat-fed rodent skeletal muscle. J Appl Physiol 2004; 96 (5): 1691–700PubMedCrossRef
109.
Zurück zum Zitat Sakamoto K, Aschenbach WG, Hirshman MF, et al. Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Am J Physiol Endocrinol Metab 2003; 285 (5): E1081–8PubMed Sakamoto K, Aschenbach WG, Hirshman MF, et al. Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Am J Physiol Endocrinol Metab 2003; 285 (5): E1081–8PubMed
110.
Zurück zum Zitat Markuns JF, Wojtaszewski JFP, Goodyear LJ. Insulin and exercise decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal muscle. J Biol Chem 1999; 274 (35): 24896–900PubMedCrossRef Markuns JF, Wojtaszewski JFP, Goodyear LJ. Insulin and exercise decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal muscle. J Biol Chem 1999; 274 (35): 24896–900PubMedCrossRef
111.
Zurück zum Zitat Wojtaszewski JFP, Higaki Y, Hirshman MF, et al. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin In 1999; 104 (9): 1257–64 Wojtaszewski JFP, Higaki Y, Hirshman MF, et al. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin In 1999; 104 (9): 1257–64
112.
Zurück zum Zitat Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005; 17 (6): 596–603PubMedCrossRef Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005; 17 (6): 596–603PubMedCrossRef
113.
Zurück zum Zitat Kim D-H, Sarbassov DD, Ali SM, et al. G[β]L, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003; 11 (4): 895–904PubMedCrossRef Kim D-H, Sarbassov DD, Ali SM, et al. G[β]L, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003; 11 (4): 895–904PubMedCrossRef
114.
Zurück zum Zitat Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22 (2): 159–68PubMedCrossRef Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22 (2): 159–68PubMedCrossRef
115.
Zurück zum Zitat Park I-H, Erbay E, Nuzzi P, et al. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1. Exp Cell Res 2005; 309 (1): 211–9PubMedCrossRef Park I-H, Erbay E, Nuzzi P, et al. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1. Exp Cell Res 2005; 309 (1): 211–9PubMedCrossRef
116.
Zurück zum Zitat Sarbassov DD, Ali SM, Kim D-H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14 (14): 1296–302PubMedCrossRef Sarbassov DD, Ali SM, Kim D-H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14 (14): 1296–302PubMedCrossRef
117.
Zurück zum Zitat Wang X, Beugnet A, Murakami M, et al. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol 2005; 25 (7): 2558–72PubMedCrossRef Wang X, Beugnet A, Murakami M, et al. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol 2005; 25 (7): 2558–72PubMedCrossRef
118.
Zurück zum Zitat Manning BD, Cantley LC. Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 2003; 28 (11): 573–6PubMedCrossRef Manning BD, Cantley LC. Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 2003; 28 (11): 573–6PubMedCrossRef
119.
Zurück zum Zitat Garami A, Zwartkruis FJT, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003; 11 (6): 1457–66PubMedCrossRef Garami A, Zwartkruis FJT, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003; 11 (6): 1457–66PubMedCrossRef
120.
Zurück zum Zitat Ohanna M, Sobering AK, Lapointe T, et al. Atrophy of S6K1-/skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 2005; 7 (3): 286–94PubMedCrossRef Ohanna M, Sobering AK, Lapointe T, et al. Atrophy of S6K1-/skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol 2005; 7 (3): 286–94PubMedCrossRef
121.
Zurück zum Zitat Ali SM, Sabatini DM. Structure of S6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site. J Biol Chem 2005; 280 (20): 19445–8PubMedCrossRef Ali SM, Sabatini DM. Structure of S6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site. J Biol Chem 2005; 280 (20): 19445–8PubMedCrossRef
122.
Zurück zum Zitat Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 2006; 31 (6): 342–8PubMedCrossRef Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 2006; 31 (6): 342–8PubMedCrossRef
123.
Zurück zum Zitat Thomson DM, Gordon SE. Impaired overload-induced muscle growth is associated with diminished translational signaling in aged rat fast-twitch skeletal muscle. J Physiol (Lond) 2006; 574 (Pt 1): 291–305CrossRef Thomson DM, Gordon SE. Impaired overload-induced muscle growth is associated with diminished translational signaling in aged rat fast-twitch skeletal muscle. J Physiol (Lond) 2006; 574 (Pt 1): 291–305CrossRef
124.
Zurück zum Zitat Reynolds TH IV, Bodine SC, et al. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 2002; 277 (20): 17657–62PubMedCrossRef Reynolds TH IV, Bodine SC, et al. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J Biol Chem 2002; 277 (20): 17657–62PubMedCrossRef
125.
Zurück zum Zitat Parkington JD, LeBrasseur NK, Siebert AP, et al. Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. J Appl Physiol 2004; 97 (1): 243–8PubMedCrossRef Parkington JD, LeBrasseur NK, Siebert AP, et al. Contraction-mediated mTOR, p70S6k, and ERK1/2 phosphorylation in aged skeletal muscle. J Appl Physiol 2004; 97 (1): 243–8PubMedCrossRef
126.
Zurück zum Zitat Parkington JD, Siebert AP, LeBrasseur NK, et al. Differential activation of mTOR signaling by contractile activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2003; 285 (5): R1086–90PubMed Parkington JD, Siebert AP, LeBrasseur NK, et al. Differential activation of mTOR signaling by contractile activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2003; 285 (5): R1086–90PubMed
127.
Zurück zum Zitat Schieke SM, Phillips D, McCoy JP Jr, et al. The mTOR pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006; 281 (37): 27643–52PubMedCrossRef Schieke SM, Phillips D, McCoy JP Jr, et al. The mTOR pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 2006; 281 (37): 27643–52PubMedCrossRef
128.
Zurück zum Zitat Bolster DR, Kimball SR, Jefferson LS. Translational control mechanisms modulate skeletal muscle gene expression during hypertrophy. Exerc Sport Sci Rev 2003; 31 (3): 111–6PubMedCrossRef Bolster DR, Kimball SR, Jefferson LS. Translational control mechanisms modulate skeletal muscle gene expression during hypertrophy. Exerc Sport Sci Rev 2003; 31 (3): 111–6PubMedCrossRef
129.
Zurück zum Zitat Shima H, Pende M, Chen Y, et al. Disruption of the p70(s6k)/ p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 1998; 17 (22): 6649–59PubMedCrossRef Shima H, Pende M, Chen Y, et al. Disruption of the p70(s6k)/ p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J 1998; 17 (22): 6649–59PubMedCrossRef
130.
Zurück zum Zitat Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins.Nature 2005; 433 (7025): 477–80PubMedCrossRef Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins.Nature 2005; 433 (7025): 477–80PubMedCrossRef
131.
Zurück zum Zitat Nader GA, Esser KA. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 2001; 90: 1936–42PubMed Nader GA, Esser KA. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol 2001; 90: 1936–42PubMed
132.
Zurück zum Zitat Karlsson HKR, Nilsson P-A, Nilsson J, et al. Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab 2004; 287 (1): E1–7PubMedCrossRef Karlsson HKR, Nilsson P-A, Nilsson J, et al. Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. Am J Physiol Endocrinol Metab 2004; 287 (1): E1–7PubMedCrossRef
133.
Zurück zum Zitat Kubica N, Bolster DR, Farrell PA, et al. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Be mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 2005; 280 (9): 7570–80PubMedCrossRef Kubica N, Bolster DR, Farrell PA, et al. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Be mRNA in a mammalian target of rapamycin-dependent manner. J Biol Chem 2005; 280 (9): 7570–80PubMedCrossRef
134.
Zurück zum Zitat Hornberger TA, Mateja RD, Chin ER, et al. Aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle. J Appl Physiol 2005; 98 (4): 1562–6PubMedCrossRef Hornberger TA, Mateja RD, Chin ER, et al. Aging does not alter the mechanosensitivity of the p38, p70S6k, and JNK2 signaling pathways in skeletal muscle. J Appl Physiol 2005; 98 (4): 1562–6PubMedCrossRef
135.
Zurück zum Zitat Spangenburg EE, McBride TA. Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. J Appl Physiol 2006; 100 (1): 129–35PubMedCrossRef Spangenburg EE, McBride TA. Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. J Appl Physiol 2006; 100 (1): 129–35PubMedCrossRef
136.
Zurück zum Zitat Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 2004; 287 (4): C834–43PubMedCrossRef Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 2004; 287 (4): C834–43PubMedCrossRef
137.
Zurück zum Zitat Fernandez-Celemin L, Pasko N, Blomart V, et al. Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-α. Am J Physiol Endocrinol Metab 2002; 283 (6): E1279–90PubMed Fernandez-Celemin L, Pasko N, Blomart V, et al. Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-α. Am J Physiol Endocrinol Metab 2002; 283 (6): E1279–90PubMed
138.
Zurück zum Zitat Garcia-Martinez C, Agell N, Llovera M, et al. Tumour necrosis factor-[α] increases the ubiquitinization of rat skeletal muscle proteins. FEBS Lett 1993; 323 (3): 211–4PubMedCrossRef Garcia-Martinez C, Agell N, Llovera M, et al. Tumour necrosis factor-[α] increases the ubiquitinization of rat skeletal muscle proteins. FEBS Lett 1993; 323 (3): 211–4PubMedCrossRef
139.
Zurück zum Zitat Lang CH, Krawiec BJ, Huber D, et al. Sepsis and inflammatory insults downregulate IGFBP-5, but not IGFBP-4, in skeletal muscle via a TNF-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2006; 290 (4): R963–72PubMedCrossRef Lang CH, Krawiec BJ, Huber D, et al. Sepsis and inflammatory insults downregulate IGFBP-5, but not IGFBP-4, in skeletal muscle via a TNF-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2006; 290 (4): R963–72PubMedCrossRef
140.
Zurück zum Zitat Williamson DL, Kimball SR, Jefferson LS. Acute treatment with TNF-α attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism. Am J Physiol Endocrinol Metab 2005; 289 (1): E95–104PubMedCrossRef Williamson DL, Kimball SR, Jefferson LS. Acute treatment with TNF-α attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism. Am J Physiol Endocrinol Metab 2005; 289 (1): E95–104PubMedCrossRef
141.
Zurück zum Zitat Langen RCJ, Van Der Velden JLJ, Schols AMWJ, et al. Tumor necrosis factor-α inhibits myogenic differentiation through MyoD protein destabilization. FASEB J 2004; 18 (2): 227–37PubMedCrossRef Langen RCJ, Van Der Velden JLJ, Schols AMWJ, et al. Tumor necrosis factor-α inhibits myogenic differentiation through MyoD protein destabilization. FASEB J 2004; 18 (2): 227–37PubMedCrossRef
142.
Zurück zum Zitat Vashisht Gopal Y, Arora T, Van Dyke M. Tumor necrosis factor-α depletes histone deacetylase 1 protein through IKK2. EMBO Rep 2006; 7 (3): 291–6CrossRef Vashisht Gopal Y, Arora T, Van Dyke M. Tumor necrosis factor-α depletes histone deacetylase 1 protein through IKK2. EMBO Rep 2006; 7 (3): 291–6CrossRef
143.
Zurück zum Zitat Del Aguila LF, Claffey KP, Kirwan JP. TNF-a impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am J Physiol Endocrinol Metab 1999; 276 (5): E849–55 Del Aguila LF, Claffey KP, Kirwan JP. TNF-a impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am J Physiol Endocrinol Metab 1999; 276 (5): E849–55
144.
Zurück zum Zitat Plomgaard P, Bouzakri K, Krogh-Madsen R, et al. Tumor necrosis factor-a induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 2005; 54 (10): 2939–45PubMedCrossRef Plomgaard P, Bouzakri K, Krogh-Madsen R, et al. Tumor necrosis factor-a induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 2005; 54 (10): 2939–45PubMedCrossRef
145.
Zurück zum Zitat de Alvaro C, Teruel T, Hernandez R, et al. Tumor necrosis factor α produces insulin resistance in skeletal muscle by activation of inhibitor κB kinase in a p38 MAPK-dependent manner. J Biol Chem 2004; 279 (17): 17070–8PubMedCrossRef de Alvaro C, Teruel T, Hernandez R, et al. Tumor necrosis factor α produces insulin resistance in skeletal muscle by activation of inhibitor κB kinase in a p38 MAPK-dependent manner. J Biol Chem 2004; 279 (17): 17070–8PubMedCrossRef
146.
Zurück zum Zitat Li Y-P, Lecker SH, Chen Y, et al. TNF-a increases ubiquitin conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J 2003; 17 (9): 1048–57PubMedCrossRef Li Y-P, Lecker SH, Chen Y, et al. TNF-a increases ubiquitin conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J 2003; 17 (9): 1048–57PubMedCrossRef
147.
Zurück zum Zitat Li Y-P, Chen Y, John J, et al. TNF-a acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 2005; 19 (3): 362–70PubMedCrossRef Li Y-P, Chen Y, John J, et al. TNF-a acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 2005; 19 (3): 362–70PubMedCrossRef
148.
Zurück zum Zitat Lang CH, Frost RA, Nairn AC, et al. TNF-a impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am J Physiol Endocrinol Metab 2002; 282 (2): E336–47PubMed Lang CH, Frost RA, Nairn AC, et al. TNF-a impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am J Physiol Endocrinol Metab 2002; 282 (2): E336–47PubMed
149.
Zurück zum Zitat Sriwijitkamol A, Christ-Roberts C, Berria R, et al. Reduced skeletal muscle inhibitor of Bß content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes 2006; 55 (3): 760–7PubMedCrossRef Sriwijitkamol A, Christ-Roberts C, Berria R, et al. Reduced skeletal muscle inhibitor of Bß content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training. Diabetes 2006; 55 (3): 760–7PubMedCrossRef
150.
Zurück zum Zitat Ostrowski K, Rohde T, Asp S, et al. Pro-and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 1999; 515 (1): 287–91PubMedCrossRef Ostrowski K, Rohde T, Asp S, et al. Pro-and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 1999; 515 (1): 287–91PubMedCrossRef
151.
Zurück zum Zitat Del Aguila LF, Krishnan RK, Ulbrecht JS, et al. Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. Am J Physiol Endocrinol Metab 2000; 279 (1): E206–12PubMed Del Aguila LF, Krishnan RK, Ulbrecht JS, et al. Muscle damage impairs insulin stimulation of IRS-1, PI 3-kinase, and Akt-kinase in human skeletal muscle. Am J Physiol Endocrinol Metab 2000; 279 (1): E206–12PubMed
152.
Zurück zum Zitat Amada K, Vannier E, Sacheck JM, et al. Senescence of human skeletal muscle impairs the local inflammatory cytokine response to acute eccentric exercise. FASEB J 2004; 19 (2): 264–6 Amada K, Vannier E, Sacheck JM, et al. Senescence of human skeletal muscle impairs the local inflammatory cytokine response to acute eccentric exercise. FASEB J 2004; 19 (2): 264–6
153.
154.
Zurück zum Zitat Chen ZJ, Bhoj V, Seth RB. Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 2006; 13 (5): 687–92PubMedCrossRef Chen ZJ, Bhoj V, Seth RB. Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 2006; 13 (5): 687–92PubMedCrossRef
155.
Zurück zum Zitat Tergaonkar V, Correa RG, Ikawa M, et al. Distinct roles of I[κ]B proteins in regulating constitutive NF-[κ]B activity. Nat Cell Biol 2005; 7 (9): 921–3PubMedCrossRef Tergaonkar V, Correa RG, Ikawa M, et al. Distinct roles of I[κ]B proteins in regulating constitutive NF-[κ]B activity. Nat Cell Biol 2005; 7 (9): 921–3PubMedCrossRef
156.
Zurück zum Zitat Alkalay I, Yaron A, Hatzubai A, et al. Stimulation-dependent IκBa phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway. PNAS 1995; 92 (23): 10599–603PubMedCrossRef Alkalay I, Yaron A, Hatzubai A, et al. Stimulation-dependent IκBa phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway. PNAS 1995; 92 (23): 10599–603PubMedCrossRef
157.
Zurück zum Zitat Scherer D, Brockman J, Chen Z, et al. Signal-induced degradation of IκBa requires site-specific ubiquitination. PNAS 1995; 92 (24): 11259–63PubMedCrossRef Scherer D, Brockman J, Chen Z, et al. Signal-induced degradation of IκBa requires site-specific ubiquitination. PNAS 1995; 92 (24): 11259–63PubMedCrossRef
158.
Zurück zum Zitat Chen Z, Hagler J, Palombella V, et al. Signal-induced site-specific phosphorylation targets IκBa to the ubiquitin proteasome pathway. Gene Dev 1995; 9 (13): 1586–97PubMedCrossRef Chen Z, Hagler J, Palombella V, et al. Signal-induced site-specific phosphorylation targets IκBa to the ubiquitin proteasome pathway. Gene Dev 1995; 9 (13): 1586–97PubMedCrossRef
159.
Zurück zum Zitat Cai D, Frantz JD, Tawa J, et al. IKK[ß]/NF-[κ]B activation causes severe muscle wasting in mice. Cell 2004; 119 (2): 285–98PubMedCrossRef Cai D, Frantz JD, Tawa J, et al. IKK[ß]/NF-[κ]B activation causes severe muscle wasting in mice. Cell 2004; 119 (2): 285–98PubMedCrossRef
160.
Zurück zum Zitat Hunter RB, Stevenson E, Koncarevic A, et al. Activation of an alternative NF-;AB pathway in skeletal muscle during disuse atrophy. FASEB J 2002; 16 (6): 529–38PubMedCrossRef Hunter RB, Stevenson E, Koncarevic A, et al. Activation of an alternative NF-;AB pathway in skeletal muscle during disuse atrophy. FASEB J 2002; 16 (6): 529–38PubMedCrossRef
161.
Zurück zum Zitat Kumar A, Boriek AM. Mechanical stress activates the nuclear factor-κB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 2003; 17 (3): 386–96PubMedCrossRef Kumar A, Boriek AM. Mechanical stress activates the nuclear factor-κB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 2003; 17 (3): 386–96PubMedCrossRef
162.
Zurück zum Zitat Wyke S, Tisdale M. NF-κB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin-proteasome system in skeletal muscle. Br J Cancer 2005; 92 (4): 711–21PubMedCrossRef Wyke S, Tisdale M. NF-κB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin-proteasome system in skeletal muscle. Br J Cancer 2005; 92 (4): 711–21PubMedCrossRef
163.
Zurück zum Zitat Ji LL, Gomez-Cabrera MC, Steinhafel N, et al. Acute exercise activates nuclear factor (NF)-κB signaling pathway in rat skeletal muscle. FASEB J 2004; 18 (13): 1499–506PubMedCrossRef Ji LL, Gomez-Cabrera MC, Steinhafel N, et al. Acute exercise activates nuclear factor (NF)-κB signaling pathway in rat skeletal muscle. FASEB J 2004; 18 (13): 1499–506PubMedCrossRef
164.
Zurück zum Zitat Ho RC, Hirshman MF, Li Y, et al. Regulation of IκB kinase and NF-κB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol 2005; 289 (4): C794–801PubMedCrossRef Ho RC, Hirshman MF, Li Y, et al. Regulation of IκB kinase and NF-κB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol 2005; 289 (4): C794–801PubMedCrossRef
165.
Zurück zum Zitat Durham WJ, Li Y-P, Gerken E, et al. Fatiguing exercise reduces DNA binding activity of NF-κB in skeletal muscle nuclei. J Appl Physiol 2004; 97 (5): 1740–5PubMedCrossRef Durham WJ, Li Y-P, Gerken E, et al. Fatiguing exercise reduces DNA binding activity of NF-κB in skeletal muscle nuclei. J Appl Physiol 2004; 97 (5): 1740–5PubMedCrossRef
166.
Zurück zum Zitat Murphy LO, MacKeigan JP, Blenis J. A network of immediate early gene products propagates subtle differences in mitogen activated protein kinase signal amplitude and duration. Mol Cell Biol 2004; 24 (1): 144–53PubMedCrossRef Murphy LO, MacKeigan JP, Blenis J. A network of immediate early gene products propagates subtle differences in mitogen activated protein kinase signal amplitude and duration. Mol Cell Biol 2004; 24 (1): 144–53PubMedCrossRef
167.
Zurück zum Zitat Simone C, Forcales CS, Hill DA, et al. Pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet 2004; 36 (7): 738–42PubMedCrossRef Simone C, Forcales CS, Hill DA, et al. Pathway targets SWI-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet 2004; 36 (7): 738–42PubMedCrossRef
168.
Zurück zum Zitat Zhao M, New L, Kravchenko VV, et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 1999; 19 (1): 21–30PubMed Zhao M, New L, Kravchenko VV, et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 1999; 19 (1): 21–30PubMed
169.
Zurück zum Zitat Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004; 117 (3): 399–412PubMedCrossRef Sandri M, Sandri C, Gilbert A, et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004; 117 (3): 399–412PubMedCrossRef
170.
Zurück zum Zitat Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146: 159–216PubMedCrossRef Flück M, Hoppeler H. Molecular basis of skeletal muscle plasticity from gene to form and function. Rev Physiol Biochem Pharmacol 2003; 146: 159–216PubMedCrossRef
171.
Zurück zum Zitat Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 2002; 29: 218–22PubMedCrossRef Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 2002; 29: 218–22PubMedCrossRef
172.
Zurück zum Zitat Adhihetty PJ, Irrcher I, Joseph AM, et al. Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol 2003; 88 (1): 99–107PubMedCrossRef Adhihetty PJ, Irrcher I, Joseph AM, et al. Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol 2003; 88 (1): 99–107PubMedCrossRef
173.
Zurück zum Zitat Hoppeler H, Flück M. Plasticity of skeletal muscle mitochondria: structure and function. Med Sci Sports Exerc 2003; 35 (1): 95–104PubMedCrossRef Hoppeler H, Flück M. Plasticity of skeletal muscle mitochondria: structure and function. Med Sci Sports Exerc 2003; 35 (1): 95–104PubMedCrossRef
174.
Zurück zum Zitat Goffart S, Wiesner RJ. Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol 2003; 88 (1): 33–40PubMedCrossRef Goffart S, Wiesner RJ. Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol 2003; 88 (1): 33–40PubMedCrossRef
175.
Zurück zum Zitat Hood DA, Irrcher I, Ljubicic V, et al. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 2006; 209 (12): 2265–75PubMedCrossRef Hood DA, Irrcher I, Ljubicic V, et al. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 2006; 209 (12): 2265–75PubMedCrossRef
176.
Zurück zum Zitat Freyssenet D, Irrcher I, Connor MK, et al. Calcium-regulated changes in the mitochondrial phenotype in skeletal muscle cells. Am J Physiol Cell Physiol 2004; 286: C1053-61PubMedCrossRef Freyssenet D, Irrcher I, Connor MK, et al. Calcium-regulated changes in the mitochondrial phenotype in skeletal muscle cells. Am J Physiol Cell Physiol 2004; 286: C1053-61PubMedCrossRef
177.
Zurück zum Zitat Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 2005; 25 (4): 1354–66PubMedCrossRef Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 2005; 25 (4): 1354–66PubMedCrossRef
178.
Zurück zum Zitat Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002; 286 (1): 81–9PubMedCrossRef Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002; 286 (1): 81–9PubMedCrossRef
179.
Zurück zum Zitat Irrcher I, Hood DA. Regulation of Egr-1, SRF, and Sp1 mRNA expression in contracting skeletal muscle cells. J Appl Physiol 2004; 97 (6): 2207–13PubMedCrossRef Irrcher I, Hood DA. Regulation of Egr-1, SRF, and Sp1 mRNA expression in contracting skeletal muscle cells. J Appl Physiol 2004; 97 (6): 2207–13PubMedCrossRef
180.
Zurück zum Zitat Connor MK, Irrcher I, Hood DA. Contractile activity-induced transcriptional activation of cytochrome c involves Sp1 and is proportional to mitochondrial ATP synthesis in C2C12 muscle cells. J Biol Chem 2001; 276 (19): 15898–904PubMedCrossRef Connor MK, Irrcher I, Hood DA. Contractile activity-induced transcriptional activation of cytochrome c involves Sp1 and is proportional to mitochondrial ATP synthesis in C2C12 muscle cells. J Biol Chem 2001; 276 (19): 15898–904PubMedCrossRef
181.
Zurück zum Zitat Short KR, Vittone JL, Bigelow ML, et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 2003; 52 (8): 1888–96PubMedCrossRef Short KR, Vittone JL, Bigelow ML, et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 2003; 52 (8): 1888–96PubMedCrossRef
182.
Zurück zum Zitat Baar K, Wende AR, Jones TE, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 2002; 16 (14): 1879–86PubMedCrossRef Baar K, Wende AR, Jones TE, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 2002; 16 (14): 1879–86PubMedCrossRef
183.
Zurück zum Zitat Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 2006; 97 (4): 673–83PubMedCrossRef Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 2006; 97 (4): 673–83PubMedCrossRef
184.
Zurück zum Zitat Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PG-C-1[α] drives the formation of slow-twitch muscle fibres. Nature 2002; 418 (6899): 797–801PubMedCrossRef Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PG-C-1[α] drives the formation of slow-twitch muscle fibres. Nature 2002; 418 (6899): 797–801PubMedCrossRef
185.
Zurück zum Zitat Santel A, Fuller M. Control of mitochondrial morphology by a human mitofusin. J Cell Sci 2001; 114 (5): 867–74PubMed Santel A, Fuller M. Control of mitochondrial morphology by a human mitofusin. J Cell Sci 2001; 114 (5): 867–74PubMed
186.
Zurück zum Zitat Santel A, Frank S, Gaume B, et al. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 2003; 116 (13): 2763–74PubMedCrossRef Santel A, Frank S, Gaume B, et al. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 2003; 116 (13): 2763–74PubMedCrossRef
187.
Zurück zum Zitat Bach D, Pich S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. J Biol Chem 2003; 278 (19): 17190–7PubMedCrossRef Bach D, Pich S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. J Biol Chem 2003; 278 (19): 17190–7PubMedCrossRef
188.
Zurück zum Zitat Cartoni R, Leger B, Hock MB, et al. Mitofusins 1/2 and ERRa expression are increased in human skeletal muscle after physical exercise. J Physiol 2005; 567 (1): 349–58PubMedCrossRef Cartoni R, Leger B, Hock MB, et al. Mitofusins 1/2 and ERRa expression are increased in human skeletal muscle after physical exercise. J Physiol 2005; 567 (1): 349–58PubMedCrossRef
189.
Zurück zum Zitat Soriano FX, Liesa M, Bach D, et al. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator activated receptor-γ coactivator-1α, estrogen-related receptor α, and mitofusin 2. Diabetes 2006; 55 (6): 1783–91PubMedCrossRef Soriano FX, Liesa M, Bach D, et al. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator activated receptor-γ coactivator-1α, estrogen-related receptor α, and mitofusin 2. Diabetes 2006; 55 (6): 1783–91PubMedCrossRef
190.
Zurück zum Zitat Kanki T, Ohgaki K, Gaspari M, et al. Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol 2004; 24 (22): 9823–34PubMedCrossRef Kanki T, Ohgaki K, Gaspari M, et al. Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol Cell Biol 2004; 24 (22): 9823–34PubMedCrossRef
191.
Zurück zum Zitat Maniura-Weber K, Goffart S, Garstka HL, et al. Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucl Acid Res 2004; 32 (20): 6015–27CrossRef Maniura-Weber K, Goffart S, Garstka HL, et al. Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucl Acid Res 2004; 32 (20): 6015–27CrossRef
192.
Zurück zum Zitat Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98 (1): 115–24PubMedCrossRef Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999; 98 (1): 115–24PubMedCrossRef
193.
Zurück zum Zitat Gordon JW, Rungi AA, Inagaki H, et al. Plasticity in skeletal, cardiac and smooth muscle selected contribution: effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J Appl Physiol 2001; 90: 389–96PubMedCrossRef Gordon JW, Rungi AA, Inagaki H, et al. Plasticity in skeletal, cardiac and smooth muscle selected contribution: effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J Appl Physiol 2001; 90: 389–96PubMedCrossRef
194.
Zurück zum Zitat Bengtsson J, Gustafsson T, Widegren U, et al. Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans. Pflugers Arch 2001; 443 (1): 61–6PubMedCrossRef Bengtsson J, Gustafsson T, Widegren U, et al. Mitochondrial transcription factor A and respiratory complex IV increase in response to exercise training in humans. Pflugers Arch 2001; 443 (1): 61–6PubMedCrossRef
195.
Zurück zum Zitat Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor a in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20 (5): 1868–76PubMedCrossRef Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor a in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20 (5): 1868–76PubMedCrossRef
196.
Zurück zum Zitat Oberkofler H, Esterbauer H, Linnemayr V, et al. Peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 recruitment regulates PPAR subtype specificity. J Biol Chem 2002; 277 (19): 16750–7PubMedCrossRef Oberkofler H, Esterbauer H, Linnemayr V, et al. Peroxisome proliferator-activated receptor (PPAR) gamma coactivator-1 recruitment regulates PPAR subtype specificity. J Biol Chem 2002; 277 (19): 16750–7PubMedCrossRef
197.
Zurück zum Zitat Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006; 116 (3): 615–22PubMedCrossRef Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006; 116 (3): 615–22PubMedCrossRef
198.
Zurück zum Zitat Lee C-H, Olson P, Evans RM. Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors (minireview). Endocrinology 2003; 144 (6): 2201–7PubMedCrossRef Lee C-H, Olson P, Evans RM. Lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors (minireview). Endocrinology 2003; 144 (6): 2201–7PubMedCrossRef
199.
Zurück zum Zitat Luquet S, Lopez-Soriano J, Holst D, et al. Peroxisome proliferator-activated receptor-δ controls muscle development and oxidative capability. FASEB J 2003; 17 (15): 2299–301PubMed Luquet S, Lopez-Soriano J, Holst D, et al. Peroxisome proliferator-activated receptor-δ controls muscle development and oxidative capability. FASEB J 2003; 17 (15): 2299–301PubMed
200.
Zurück zum Zitat Wang Y, Zhang C, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004; 2 (10): e294PubMedCrossRef Wang Y, Zhang C, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2004; 2 (10): e294PubMedCrossRef
201.
Zurück zum Zitat Russell AP, Hesselink MKC, Lo SK, et al. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J 2005; 19 (8): 986–8PubMed Russell AP, Hesselink MKC, Lo SK, et al. Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J 2005; 19 (8): 986–8PubMed
202.
Zurück zum Zitat Fritz T, Kramer DK, Karlsson HK, et al. Low-intensity exercise increases skeletal muscle protein expression of PPARdelta and UCP3 in type 2 diabetic patients. Diabetes Metab Res Rev 2006; 22 (6): 492–8PubMedCrossRef Fritz T, Kramer DK, Karlsson HK, et al. Low-intensity exercise increases skeletal muscle protein expression of PPARdelta and UCP3 in type 2 diabetic patients. Diabetes Metab Res Rev 2006; 22 (6): 492–8PubMedCrossRef
203.
Zurück zum Zitat Coffey VG, Shield A, Canny BJ, et al. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab 2006; 290 (5): E849–55PubMedCrossRef Coffey VG, Shield A, Canny BJ, et al. Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab 2006; 290 (5): E849–55PubMedCrossRef
204.
Zurück zum Zitat Norrbom J, Sundberg CJ, Ameln H, et al. PGC-1a mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 2003; 96 (1): 189–94PubMedCrossRef Norrbom J, Sundberg CJ, Ameln H, et al. PGC-1a mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 2003; 96 (1): 189–94PubMedCrossRef
205.
Zurück zum Zitat Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 2003; 546 (3): 851–8PubMedCrossRef Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 2003; 546 (3): 851–8PubMedCrossRef
206.
Zurück zum Zitat Tunstall RJ, Mehan KA, Wadley GD, et al. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 2002; 283: E66–72PubMed Tunstall RJ, Mehan KA, Wadley GD, et al. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab 2002; 283: E66–72PubMed
207.
Zurück zum Zitat Pilegaard H, Osada T, Andersen LT, et al. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise. Metabolism 2005; 54 (8): 1048–55PubMedCrossRef Pilegaard H, Osada T, Andersen LT, et al. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise. Metabolism 2005; 54 (8): 1048–55PubMedCrossRef
208.
Zurück zum Zitat Hildebrandt AL, Pilegaard H, Neufer PD. Differential transcriptional activation of select metabolic genes in response to variations in exercise intensity and duration in red and white skeletal muscle. Am J Physiol Endocrinol Metab 2003; 285 (5): E1021–7PubMed Hildebrandt AL, Pilegaard H, Neufer PD. Differential transcriptional activation of select metabolic genes in response to variations in exercise intensity and duration in red and white skeletal muscle. Am J Physiol Endocrinol Metab 2003; 285 (5): E1021–7PubMed
209.
Zurück zum Zitat Phillips SM, Tipton KD, Aarsland A, et al. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol Endocrinol Metab 1997; 36: E99–107 Phillips SM, Tipton KD, Aarsland A, et al. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol Endocrinol Metab 1997; 36: E99–107
210.
Zurück zum Zitat Chesley A, MacDougall JD, Tarnopolsky MA, et al. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol 1992; 73 (4): 1383–8PubMed Chesley A, MacDougall JD, Tarnopolsky MA, et al. Changes in human muscle protein synthesis after resistance exercise. J Appl Physiol 1992; 73 (4): 1383–8PubMed
211.
Zurück zum Zitat Jones SW, Hill RJ, Krasney PA, et al. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with regulation of skeletal muscle mass. FASEB J 2004; 18 (9): 1025–7PubMed Jones SW, Hill RJ, Krasney PA, et al. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with regulation of skeletal muscle mass. FASEB J 2004; 18 (9): 1025–7PubMed
212.
Zurück zum Zitat Wang X, Li W, Williams M, et al. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 2001; 20 (16): 4370–9PubMedCrossRef Wang X, Li W, Williams M, et al. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 2001; 20 (16): 4370–9PubMedCrossRef
213.
Zurück zum Zitat Farrell PA, Hernandez JM, Fedele MJ, et al. Eukaryotic initiation factors and protein synthesis after resistance exercise in rats. J Appl Physiol 2000; 88 (3): 1036–42PubMed Farrell PA, Hernandez JM, Fedele MJ, et al. Eukaryotic initiation factors and protein synthesis after resistance exercise in rats. J Appl Physiol 2000; 88 (3): 1036–42PubMed
214.
Zurück zum Zitat Hannan KM, Brandenburger Y, Jenkins A, et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 2003; 23 (23): 8862–77PubMedCrossRef Hannan KM, Brandenburger Y, Jenkins A, et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 2003; 23 (23): 8862–77PubMedCrossRef
215.
Zurück zum Zitat Musaro A, McCullagh K, Paul A, et al. Localized IGF-1 trans-gene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 2001; 27 (2): 195–200PubMedCrossRef Musaro A, McCullagh K, Paul A, et al. Localized IGF-1 trans-gene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 2001; 27 (2): 195–200PubMedCrossRef
216.
Zurück zum Zitat Adams GR, McCue SA. Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 1998; 84 (5): 1716–22PubMed Adams GR, McCue SA. Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 1998; 84 (5): 1716–22PubMed
217.
Zurück zum Zitat Song YH, Godard M, Li Y, et al. Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. J Investig Med 2005; 53 (3): 135–42PubMedCrossRef Song YH, Godard M, Li Y, et al. Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. J Investig Med 2005; 53 (3): 135–42PubMedCrossRef
218.
Zurück zum Zitat Shen W-H, Boyle DW, Wisniowski P, et al. Insulin and IGF-I stimulate the formation of the eukaryotic initiation factor 4F complex and protein synthesis in C2C12 myotubes independent of availability of external amino acids. J Endocrinol 2005; 185 (2): 275–89PubMedCrossRef Shen W-H, Boyle DW, Wisniowski P, et al. Insulin and IGF-I stimulate the formation of the eukaryotic initiation factor 4F complex and protein synthesis in C2C12 myotubes independent of availability of external amino acids. J Endocrinol 2005; 185 (2): 275–89PubMedCrossRef
219.
Zurück zum Zitat Vary TC. IGF-I stimulates protein synthesis in skeletal muscle through multiple signaling pathways during sepsis. Am J Physiol Regul Integr Comp Physiol 2006; 290 (2): R313–21PubMedCrossRef Vary TC. IGF-I stimulates protein synthesis in skeletal muscle through multiple signaling pathways during sepsis. Am J Physiol Regul Integr Comp Physiol 2006; 290 (2): R313–21PubMedCrossRef
220.
Zurück zum Zitat Chakravarthy MV, Abraha TW, Schwartz RJ, et al. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3’-kinase/Akt signaling pathway. J Biol Chem 2000; 275 (46): 35942–52PubMedCrossRef Chakravarthy MV, Abraha TW, Schwartz RJ, et al. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3’-kinase/Akt signaling pathway. J Biol Chem 2000; 275 (46): 35942–52PubMedCrossRef
221.
Zurück zum Zitat Jacquemin V, Furling D, Bigot A, et al. IGF-1 induces human myotube hypertrophy by increasing cell recruitment. Exp Cell Res 2004; 299 (1): 148–58PubMedCrossRef Jacquemin V, Furling D, Bigot A, et al. IGF-1 induces human myotube hypertrophy by increasing cell recruitment. Exp Cell Res 2004; 299 (1): 148–58PubMedCrossRef
222.
Zurück zum Zitat Adams GR, Haddad F, Baldwin KM. Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 1999; 87 (5): 1705–12PubMed Adams GR, Haddad F, Baldwin KM. Time course of changes in markers of myogenesis in overloaded rat skeletal muscles. J Appl Physiol 1999; 87 (5): 1705–12PubMed
223.
Zurück zum Zitat Adams GR, Cheng DC, Haddad F, et al. Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration. J Appl Physiol 2004; 96: 1613–8PubMedCrossRef Adams GR, Cheng DC, Haddad F, et al. Skeletal muscle hypertrophy in response to isometric, lengthening, and shortening training bouts of equivalent duration. J Appl Physiol 2004; 96: 1613–8PubMedCrossRef
224.
Zurück zum Zitat Hameed M, Orrell RW, Cobbold M, et al. Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance training. J Physiol 2003; 547 (1): 247–54PubMedCrossRef Hameed M, Orrell RW, Cobbold M, et al. Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance training. J Physiol 2003; 547 (1): 247–54PubMedCrossRef
225.
Zurück zum Zitat Kim J-S, Cross JM, Bamman MM. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab 2005; 288 (6): E1110–19PubMedCrossRef Kim J-S, Cross JM, Bamman MM. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab 2005; 288 (6): E1110–19PubMedCrossRef
226.
Zurück zum Zitat Spangenburg EE, Abraha T, Childs TE, et al. Skeletal muscle IGF-binding protein-3 and-5 expressions are age, muscle and load dependent. Am J Physiol Endocrinol Metab 2002; 284: E340–50PubMed Spangenburg EE, Abraha T, Childs TE, et al. Skeletal muscle IGF-binding protein-3 and-5 expressions are age, muscle and load dependent. Am J Physiol Endocrinol Metab 2002; 284: E340–50PubMed
227.
Zurück zum Zitat Petrella JK, Kim J-S, Cross JM, et al. Efficacy of myonuclear addition may explain differential myofiber growth among resistance trained young and older men and women. Am J Physiol Endocrinol Metab 2006; 291 (5): E937–46PubMedCrossRef Petrella JK, Kim J-S, Cross JM, et al. Efficacy of myonuclear addition may explain differential myofiber growth among resistance trained young and older men and women. Am J Physiol Endocrinol Metab 2006; 291 (5): E937–46PubMedCrossRef
228.
Zurück zum Zitat Bamman MM, Shipp JR, Jiang J, et al. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab 2001; 280 (3): E383–90PubMed Bamman MM, Shipp JR, Jiang J, et al. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans. Am J Physiol Endocrinol Metab 2001; 280 (3): E383–90PubMed
229.
Zurück zum Zitat Psilander N, Damsgaard R, Pilegaard H. Resistance exercise alters MRF and IGF-1 mRNA content in human skeletal muscle. J Appl Physiol 2003; 95: 1038–44PubMed Psilander N, Damsgaard R, Pilegaard H. Resistance exercise alters MRF and IGF-1 mRNA content in human skeletal muscle. J Appl Physiol 2003; 95: 1038–44PubMed
230.
Zurück zum Zitat Bickel CS, Slade JM, Haddad F, et al. Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J Appl Physiol 2003; 94 (6): 2255–62PubMed Bickel CS, Slade JM, Haddad F, et al. Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J Appl Physiol 2003; 94 (6): 2255–62PubMed
231.
Zurück zum Zitat Kostek MC, Delmonico MJ, Reichel JB, et al. Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults. J Appl Physiol 2005; 98 (6): 2147–54PubMedCrossRef Kostek MC, Delmonico MJ, Reichel JB, et al. Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults. J Appl Physiol 2005; 98 (6): 2147–54PubMedCrossRef
232.
Zurück zum Zitat Pherson P, Dennis R, Faulkner J. Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats. J Physiol 1997; 500: 523–80 Pherson P, Dennis R, Faulkner J. Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats. J Physiol 1997; 500: 523–80
233.
Zurück zum Zitat McCully KK, Faulkner JA. Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol 1985; 59 (1): 119–26PubMed McCully KK, Faulkner JA. Injury to skeletal muscle fibers of mice following lengthening contractions. J Appl Physiol 1985; 59 (1): 119–26PubMed
234.
Zurück zum Zitat Zammit PS, Golding JP, Nagata Y, et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 2004; 166 (3): 347–57PubMedCrossRef Zammit PS, Golding JP, Nagata Y, et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 2004; 166 (3): 347–57PubMedCrossRef
235.
Zurück zum Zitat Li P, Akimoto T, Zhang M, et al. Resident stem cells are not required for exercise-induced fiber-type switching and angiogenesis but are necessary for activity-dependent muscle growth. Am J Physiol Cell Physiol 2006; 290 (6): C1461–8PubMedCrossRef Li P, Akimoto T, Zhang M, et al. Resident stem cells are not required for exercise-induced fiber-type switching and angiogenesis but are necessary for activity-dependent muscle growth. Am J Physiol Cell Physiol 2006; 290 (6): C1461–8PubMedCrossRef
236.
Zurück zum Zitat Ishido M, Kami K, Masuhara M. Localization of MyoD, myogenin and cell cycle regulatory factors in hypertrophying skeletal muscle. Acta Physiol Scand 2004; 180: 281–9PubMedCrossRef Ishido M, Kami K, Masuhara M. Localization of MyoD, myogenin and cell cycle regulatory factors in hypertrophying skeletal muscle. Acta Physiol Scand 2004; 180: 281–9PubMedCrossRef
237.
Zurück zum Zitat Haddad F, Adams GR. Exercise effects on muscle insulin signaling and action: selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 2002; 93 (1): 394–403PubMed Haddad F, Adams GR. Exercise effects on muscle insulin signaling and action: selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 2002; 93 (1): 394–403PubMed
238.
Zurück zum Zitat Vissing K, Andersen JL, Harridge SDR, et al. Gene expression of myogenic factors and phenotype-specific markers in electrically stimulated muscle of paraplegics. J Appl Physiol 2005; 99 (1): 164–72PubMedCrossRef Vissing K, Andersen JL, Harridge SDR, et al. Gene expression of myogenic factors and phenotype-specific markers in electrically stimulated muscle of paraplegics. J Appl Physiol 2005; 99 (1): 164–72PubMedCrossRef
239.
Zurück zum Zitat Kosek DJ, Kim J-S, Petrella JK, et al. Efficacy of 3 D/WK resistance training on myofiber hypertrophy and myogenic mechanisms in young versus older adults. J Appl Physiol 2006; 101 (2): 531–44PubMedCrossRef Kosek DJ, Kim J-S, Petrella JK, et al. Efficacy of 3 D/WK resistance training on myofiber hypertrophy and myogenic mechanisms in young versus older adults. J Appl Physiol 2006; 101 (2): 531–44PubMedCrossRef
240.
Zurück zum Zitat Siu PM, Donley DA, Bryner RW, et al. Myogenin and oxidative enzyme gene expression levels are elevated in rat soleus muscles after endurance training. J Appl Physiol 2004; 97 (1): 277–85PubMed Siu PM, Donley DA, Bryner RW, et al. Myogenin and oxidative enzyme gene expression levels are elevated in rat soleus muscles after endurance training. J Appl Physiol 2004; 97 (1): 277–85PubMed
241.
Zurück zum Zitat Kadi F, Johansson F, Johansson R, et al. Effects of one bout of endurance exercise on the expression of myogenin in human quadriceps muscle. Histochem Cell Biol 2004; 121: 329–34PubMedCrossRef Kadi F, Johansson F, Johansson R, et al. Effects of one bout of endurance exercise on the expression of myogenin in human quadriceps muscle. Histochem Cell Biol 2004; 121: 329–34PubMedCrossRef
242.
Zurück zum Zitat Reid MB. Response of the ubiquitin-proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 2005; 288 (6): R1423–31PubMedCrossRef Reid MB. Response of the ubiquitin-proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 2005; 288 (6): R1423–31PubMedCrossRef
243.
Zurück zum Zitat Du J, Wang X, Miereles C, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 2004; 113 (1): 115–23PubMed Du J, Wang X, Miereles C, et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 2004; 113 (1): 115–23PubMed
244.
Zurück zum Zitat Tischler ME, Rosenberg S, Satarug S, et al. Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle. Metabolism 1990; 39 (7): 756–63PubMedCrossRef Tischler ME, Rosenberg S, Satarug S, et al. Different mechanisms of increased proteolysis in atrophy induced by denervation or unweighting of rat soleus muscle. Metabolism 1990; 39 (7): 756–63PubMedCrossRef
245.
Zurück zum Zitat Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004; 18 (1): 39–51PubMedCrossRef Lecker SH, Jagoe RT, Gilbert A, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004; 18 (1): 39–51PubMedCrossRef
246.
Zurück zum Zitat Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294 (5547): 1704–8PubMedCrossRef Bodine SC, Latres E, Baumhueter S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294 (5547): 1704–8PubMedCrossRef
247.
Zurück zum Zitat Kandarian S, Jackman R. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 2006; 33 (2): 155–65PubMedCrossRef Kandarian S, Jackman R. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 2006; 33 (2): 155–65PubMedCrossRef
248.
Zurück zum Zitat Tintignac LA, Lagirand J, Batonnet S, et al. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 2005; 280 (4): 2847–56PubMedCrossRef Tintignac LA, Lagirand J, Batonnet S, et al. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 2005; 280 (4): 2847–56PubMedCrossRef
249.
Zurück zum Zitat Gomes MD, Lecker SH, Jagoe RT, et al. Atrogin-1, a muscle specific F-box protein highly expressed during muscle atrophy. PNAS 2001; 98 (25): 14440–5PubMedCrossRef Gomes MD, Lecker SH, Jagoe RT, et al. Atrogin-1, a muscle specific F-box protein highly expressed during muscle atrophy. PNAS 2001; 98 (25): 14440–5PubMedCrossRef
250.
Zurück zum Zitat Wagner KR, Liu X, Chang X, et al. Muscle regeneration in the prolonged absence of myostatin. PNAS 2005; 102 (7): 2519–24PubMedCrossRef Wagner KR, Liu X, Chang X, et al. Muscle regeneration in the prolonged absence of myostatin. PNAS 2005; 102 (7): 2519–24PubMedCrossRef
251.
Zurück zum Zitat McNally EM. Powerful genes: myostatin regulation of human muscle mass. N Engl J Med 2004; 350 (26): 2642–4PubMedCrossRef McNally EM. Powerful genes: myostatin regulation of human muscle mass. N Engl J Med 2004; 350 (26): 2642–4PubMedCrossRef
252.
Zurück zum Zitat Schuelke M, Wagner KR, Stolz LE, et al. Myostatin mutation associated with gross hypertrophy in a child. N Engl J Med 2004; 350: 2682–8PubMedCrossRef Schuelke M, Wagner KR, Stolz LE, et al. Myostatin mutation associated with gross hypertrophy in a child. N Engl J Med 2004; 350: 2682–8PubMedCrossRef
253.
Zurück zum Zitat McPherron AC, Lee S-J. Double muscling in cattle due to mutations in the myostatin gene. PNAS 1997; 94 (23): 12457–61PubMedCrossRef McPherron AC, Lee S-J. Double muscling in cattle due to mutations in the myostatin gene. PNAS 1997; 94 (23): 12457–61PubMedCrossRef
254.
Zurück zum Zitat Reisz-Porszasz S, Bhasin S, Artaza JN, et al. Lower skeletal muscle mass in male transgenic mice with muscle-specific over expression of myostatin. Am J Physiol Endocrinol Metab 2003; 285: E876–88PubMed Reisz-Porszasz S, Bhasin S, Artaza JN, et al. Lower skeletal muscle mass in male transgenic mice with muscle-specific over expression of myostatin. Am J Physiol Endocrinol Metab 2003; 285: E876–88PubMed
255.
Zurück zum Zitat Langley B, Thomas M, Bishop A, et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 2002; 277 (51): 49831–40PubMedCrossRef Langley B, Thomas M, Bishop A, et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 2002; 277 (51): 49831–40PubMedCrossRef
256.
Zurück zum Zitat McCroskery S, Thomas M, Maxwell L, et al. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 2003; 162 (6): 1135–47PubMedCrossRef McCroskery S, Thomas M, Maxwell L, et al. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 2003; 162 (6): 1135–47PubMedCrossRef
257.
Zurück zum Zitat Lee S-J, McPherron AC. Regulation of myostatin activity and muscle growth. PNAS 2001; 98 (16): 9306–11PubMedCrossRef Lee S-J, McPherron AC. Regulation of myostatin activity and muscle growth. PNAS 2001; 98 (16): 9306–11PubMedCrossRef
258.
Zurück zum Zitat Sandri M, Podhorska-Okolow M, Geromel V, et al. Exercise induces myonuclear ubiquitination and apoptosis in dystrophin-deficient muscle of mice. J Neuropathol Exp Neurol 1997; 56 (1): 45–57PubMedCrossRef Sandri M, Podhorska-Okolow M, Geromel V, et al. Exercise induces myonuclear ubiquitination and apoptosis in dystrophin-deficient muscle of mice. J Neuropathol Exp Neurol 1997; 56 (1): 45–57PubMedCrossRef
259.
Zurück zum Zitat Stupka N, Tarnopolsky MA, Yardley NJ, et al. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol 2001; 91 (4): 1669–78PubMed Stupka N, Tarnopolsky MA, Yardley NJ, et al. Cellular adaptation to repeated eccentric exercise-induced muscle damage. J Appl Physiol 2001; 91 (4): 1669–78PubMed
260.
Zurück zum Zitat Willoughby DS, Taylor M, Taylor L. Glucocorticoid receptor and ubiquitin expression after repeated eccentric exercise. Med Sci Sports Exerc 2003; 35 (12): 2023-31PubMedCrossRef Willoughby DS, Taylor M, Taylor L. Glucocorticoid receptor and ubiquitin expression after repeated eccentric exercise. Med Sci Sports Exerc 2003; 35 (12): 2023-31PubMedCrossRef
261.
Zurück zum Zitat Yang Y, Jemiolo B, Trappe SW. Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol 2006; 101 (5): 1442–50PubMedCrossRef Yang Y, Jemiolo B, Trappe SW. Proteolytic mRNA expression in response to acute resistance exercise in human single skeletal muscle fibers. J Appl Physiol 2006; 101 (5): 1442–50PubMedCrossRef
262.
Zurück zum Zitat Dupont-Versteegden EE, Fluckey JD, Knox M, et al. Effect of flywheel-based resistance exercise on processes contributing to muscle atrophy during unloading in adult rats. J Appl Physiol 2006; 101 (1): 202–12PubMedCrossRef Dupont-Versteegden EE, Fluckey JD, Knox M, et al. Effect of flywheel-based resistance exercise on processes contributing to muscle atrophy during unloading in adult rats. J Appl Physiol 2006; 101 (1): 202–12PubMedCrossRef
263.
Zurück zum Zitat Roth SM, Martel GF, Ferrell RE, et al. Myostatin gene expression is reduced in humans with heavy-resistance strength training. Exp Biol Med 2003; 228: 706–9 Roth SM, Martel GF, Ferrell RE, et al. Myostatin gene expression is reduced in humans with heavy-resistance strength training. Exp Biol Med 2003; 228: 706–9
264.
Zurück zum Zitat Raue U, Slivka D, Jemiolo B, et al. Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. J Appl Physiol 2006; 101 (1): 53–9PubMedCrossRef Raue U, Slivka D, Jemiolo B, et al. Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. J Appl Physiol 2006; 101 (1): 53–9PubMedCrossRef
265.
Zurück zum Zitat Willoughby DS. Effects of heavy resistance training on myostatin mRNA and protein expression. Med Sci Sports Exerc 2004; 36 (4): 574–82PubMedCrossRef Willoughby DS. Effects of heavy resistance training on myostatin mRNA and protein expression. Med Sci Sports Exerc 2004; 36 (4): 574–82PubMedCrossRef
266.
Zurück zum Zitat Matsakas A, Friedel A, Hertrampf T, et al. Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand 2005; 183 (3): 299–307PubMedCrossRef Matsakas A, Friedel A, Hertrampf T, et al. Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand 2005; 183 (3): 299–307PubMedCrossRef
267.
Zurück zum Zitat Leveritt MD, Abernethy PJ, Barry BK, et al. Concurrent strength and endurance training: a review. Sports Med 1999; 28 (6): 413–27PubMedCrossRef Leveritt MD, Abernethy PJ, Barry BK, et al. Concurrent strength and endurance training: a review. Sports Med 1999; 28 (6): 413–27PubMedCrossRef
268.
Zurück zum Zitat Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 1980; 45: 255–63PubMedCrossRef Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 1980; 45: 255–63PubMedCrossRef
269.
Zurück zum Zitat Hood DA. Plasticity in skeletal, cardiac, and smooth muscle invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 2001; 90: 1137–57PubMed Hood DA. Plasticity in skeletal, cardiac, and smooth muscle invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 2001; 90: 1137–57PubMed
270.
Zurück zum Zitat Riedy M, Moore RL, Gollnick PD. Adaptive response of hypertrophied skeletalmuscle to endurance training. J Appl Physiol 1985; 59 (1): 127–31PubMed Riedy M, Moore RL, Gollnick PD. Adaptive response of hypertrophied skeletalmuscle to endurance training. J Appl Physiol 1985; 59 (1): 127–31PubMed
271.
Zurück zum Zitat Stone J, Brannon T, Haddad F, et al. Adaptive responses of hypertrophying skeletal muscle to endurance training. J Appl Physiol 1996; 81 (2): 665–72PubMed Stone J, Brannon T, Haddad F, et al. Adaptive responses of hypertrophying skeletal muscle to endurance training. J Appl Physiol 1996; 81 (2): 665–72PubMed
272.
Zurück zum Zitat Putman C, Xu X, Gillies E, et al. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol 2004; 92 (4–5): 376–84PubMed Putman C, Xu X, Gillies E, et al. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol 2004; 92 (4–5): 376–84PubMed
273.
Zurück zum Zitat Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem 2002; 269 (22): 5360–8PubMedCrossRef Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem 2002; 269 (22): 5360–8PubMedCrossRef
274.
Zurück zum Zitat Ryazanov AG. Ca2+/calmodulin-dependent phosphorylation of elongation factor 2. FEBS Lett 1987; 214 (2): 331–4PubMedCrossRef Ryazanov AG. Ca2+/calmodulin-dependent phosphorylation of elongation factor 2. FEBS Lett 1987; 214 (2): 331–4PubMedCrossRef
275.
Zurück zum Zitat Horman S, Browne GJ, Krause U, et al. Activation of AMP activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 2002; 12 (16): 1419–23PubMedCrossRef Horman S, Browne GJ, Krause U, et al. Activation of AMP activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 2002; 12 (16): 1419–23PubMedCrossRef
276.
Zurück zum Zitat Rose AJ, Broholm C, Kiillerich K, et al. Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. J Physiol (Lond) 2005; 569 (1): 223–8CrossRef Rose AJ, Broholm C, Kiillerich K, et al. Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men. J Physiol (Lond) 2005; 569 (1): 223–8CrossRef
277.
Zurück zum Zitat Browne GJ, Proud CG. A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol 2004; 24 (7): 2986–97PubMedCrossRef Browne GJ, Proud CG. A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin. Mol Cell Biol 2004; 24 (7): 2986–97PubMedCrossRef
278.
Zurück zum Zitat Daitoku H, Yamagata K, Matsuzaki H, et al. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 2003; 52 (3): 642–9PubMedCrossRef Daitoku H, Yamagata K, Matsuzaki H, et al. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 2003; 52 (3): 642–9PubMedCrossRef
279.
Zurück zum Zitat Matsuzaki H, Daitoku H, Hatta M, et al. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. PNAS 2003; 100 (20): 11285–90PubMedCrossRef Matsuzaki H, Daitoku H, Hatta M, et al. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. PNAS 2003; 100 (20): 11285–90PubMedCrossRef
280.
Zurück zum Zitat Southgate RJ, Bruce CR, Carey AL, et al. PGC-1a gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FoxO1 in insulin-stimulated skeletal muscle. FASEB J 2005; 19 (14): 2072–4PubMed Southgate RJ, Bruce CR, Carey AL, et al. PGC-1a gene expression is down-regulated by Akt-mediated phosphorylation and nuclear exclusion of FoxO1 in insulin-stimulated skeletal muscle. FASEB J 2005; 19 (14): 2072–4PubMed
281.
Zurück zum Zitat Hoffman EP, Nader GA. Balancing muscle hypertrophy and atrophy. Nat Med 2004; 10 (6): 584–5PubMedCrossRef Hoffman EP, Nader GA. Balancing muscle hypertrophy and atrophy. Nat Med 2004; 10 (6): 584–5PubMedCrossRef
Metadaten
Titel
The Molecular Bases of Training Adaptation
verfasst von
Vernon G. Coffey
Dr John A. Hawley
Publikationsdatum
01.09.2007
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 9/2007
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200737090-00001

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

TEP mit Roboterhilfe führt nicht zu größerer Zufriedenheit

15.05.2024 Knie-TEP Nachrichten

Der Einsatz von Operationsrobotern für den Einbau von Totalendoprothesen des Kniegelenks hat die Präzision der Eingriffe erhöht. Für die postoperative Zufriedenheit der Patienten scheint das aber unerheblich zu sein, wie eine Studie zeigt.

Lever-Sign-Test hilft beim Verdacht auf Kreuzbandriss

15.05.2024 Vordere Kreuzbandruptur Nachrichten

Mit dem Hebelzeichen-Test lässt sich offenbar recht zuverlässig feststellen, ob ein vorderes Kreuzband gerissen ist. In einer Metaanalyse war die Vorhersagekraft vor allem bei positivem Testergebnis hoch.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.