Skip to main content
Erschienen in: Clinical and Experimental Medicine 1/2024

Open Access 01.12.2024 | Review

Macrophages and angiogenesis in human lymphomas

verfasst von: Domenico Ribatti, Roberto Tamma, Tiziana Annese, Giuseppe Ingravallo, Giorgina Specchia

Erschienen in: Clinical and Experimental Medicine | Ausgabe 1/2024

Abstract

A link exists between chronic inflammation and cancer and immune cells, angiogenesis, and tumor progression. In hematologic malignancies, tumor-associated macrophages (TAMs) are a significant part of the tumor microenvironment. Macrophages are classified into M1/classically activated and M2/alternatively activated. In tumors, TAMs are mainly constituted by M2 subtype, which promotes angiogenesis, lymphangiogenesis, repair, and remodeling, suppressing adaptive immunity, increasing tumor cell proliferation, drug resistance, histological malignancy, and poor clinical prognosis. The aim of our review article is to define the role of TAMs and their relationship with the angiogenesis in patients with lymphoma reporting both an analysis of main published data and those emerging from our studies. Finally, we have discussed the anti-angiogenic approach in the treatment of lymphomas.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

The link between chronic inflammation and cancer was first proposed by Rudolf Virchow in 1863, establishing a relationship between inflammatory cell infiltration and cancer [1]. Moreover, inflammatory cells in tumor microenvironment contribute to tumor angiogenesis through the release of several angiogenic factors [2, 3]. Macrophages recruited to the tumor microenvironment are the tumor-associated macrophages (TAMs). TAMs can reach up to 50% of the total tumor mass and are concentrated at the invasive edge of the tumor [4, 5]. Different chemokines and growth factors, including colony-stimulating factor(CSF)-1, monocyte chemoattractant protein (MCP)-1/CCL-2, CCL-3, CCL-4, CCL-5, CCL-7, CCL-8, CXCL-12, interleukin (IL)-10, vascular endothelial growth factor (VEGF), and platelet derived growth factor (PDGF), secreted by tumor or stromal cells, recruit blood circulating monocytes which then differentiate into TAMs in the tumor site [6]. TAMs are classified into M1/classically activated and M2/alternatively activated [5]. Hypoxia-inducible factor-1 (HIF-1) regulates the immune response, viability, migration, phenotypic plasticity, and metabolism of macrophages [4]. Specifically, HIF-1α promotes macrophage M1 polarization by targeting glucose metabolism. Moreover, the HIF/VEGF axis, as well as the release of other mediators, is involved in the amplification of tumor angiogenesis [5]. In this context, TAMs release both pro-angiogenic and angiostatic factors (Table 1). M1 is the pro-inflammatory subtype through the section of molecules with pro-inflammatory activity (Table 1) promoting Th1 T -cells and is activated by granulocyte macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFNγ), and bacterial products. M2 is the pro-tumoral subtype promoting Th2 T cells, angiogenesis, and immunosuppression through the release of anti-inflammatory molecules (Table 1). The phenotype of M1–M2 macrophages may be reversed [7, 8]. CD163 is a phenotypic marker of M2 macrophages that can be used to distinguish M2 and M1 macrophages, while CD68 is a pan-macrophage marker, and its expression is upregulated in M1 compared to M2 macrophages.
Table 1
Pro-angiogenic and angiostatic factors released by tumor-associated macrophages (TAMs). Pro-inflammatory molecules secreted by M1-TAMs and anti-inflammatory molecules expressed or released by M2-TAMs 
Pro-angiogenic factors
FGF-2
VEGF
IL-6
IL-8
PDGF
G-CSF
GM-CSF
Angiostatic factors
TSP-1
IL-12
IL-18
CXCL-9
CXCL-10
Pro-inflammatory molecules
IL-1
IL-6
IL-12
IL-23
TNFα
Nitric oxide
CXCL-9
CXCL-10
CXCL-11
Anti-inflammatory molecules
IL-10
TGFβ
CCL-17
CCL-18
CCL-22
Class A scavenger receptor (CD204)
Mannose receptor C type 1 (CD206)
Hemoglobin scavenger receptor (CD163)
s
MiR-126 suppresses the recruitment of inflammatory monocytes into the tumor stroma [9], while overexpression of hypoxia-inducible miR-210 increases the recruitment of monocytes and their M2 macrophage [10]. Other mechanisms are involved in the recruitment of TAMs in the tumor microenvironment, including chemoattractants and their receptors, such as chemokine ligand (CCL) 2/CC receptor (R)2+, CCL-2/CCR-5+, IL-1β/IL-1 receptor (R), VEGFA/VEGFR, CSF1/CSF R, tyrosine-protein kinase receptor (Tie)/angiopoitein 2 (Ang2), CCL-5, C-X-C motif chemokine ligand (CXCL) 10, CXCL-12, and complement C1q, the latter is the most potent attractant promoting M2-like TAMs recruitment [11]. Tumor cells produce factors that promote TAMs recruitment, which, in turn, secrete different cytokines and express their receptors, allowing their own recruitment [12].
In tumors, TAMs are mainly constituted by M2 subtype [13], which promotes angiogenesis, lymphangiogenesis, repair, and remodeling, suppressing adaptive immunity, increasing tumor cell proliferation, drug resistance, histological malignancy, and poor clinical prognosis [14]. M2 macrophages express high levels of IL-10, low levels of IL-12 and IL-13 [15], and contribute to immune suppression through IL-10 and transforming growth factor beta (TGFβ) [16]. In regressing and non-progressing tumors, TAMs mainly resemble the M1 type and exhibit anti-tumor activity, while in malignant and advanced tumors, TAMs are biased toward the M2 phenotype that favors tumor malignancy [17].

Human lymphomas

Non-Hodgkin lymphomas (NHLs) include neoplasms infiltrating various lymphoid structures which may arise from B lymphocytes, T lymphocytes, and natural killer (NK) cells and are characterized by a tendency to disseminate toward extra-nodal locations [18]. About 25% of NHLs arise in extra-nodal locations and most of them are present in both nodal and extra-nodal sites. Based on their morphology, immunophenotype, genetic, and clinical features, NHLs have been classified into more than 30 different types [19]. Histological features allow to discriminate between a nodular and a diffuse pattern. In the nodular pattern, the tumor cells aggregate to form large clusters, while the diffuse is characterized by an impairment of lymph node architecture [20]. Clinical trials allowed us to distinguish the B cell lymphoma histological subtypes as indolent, aggressive, and very aggressive based on their typical clinical behavior [21, 22]. The indolent lymphomas, whose overall survival is measured in years [23], represent about 40 percent of NHL and include follicular lymphomas (FL), chronic lymphocytic leukemia/small lymphocytic lymphomas (CLL/SLL), a fraction of mantle cell lymphomas (MCL) cases, extra-medullary, nodal, and splenic marginal zone lymphomas (MZL), and lymphoplasmacytic lymphomas (LPL). The aggressive group includes large B cell lymphomas, subdivided into anaplastic and primary mediastinal lymphomas, and various kinds of diffuse large B cell lymphomas (DLBCL). In this group, untreated patients survive a few months, even if treatment may lead to definitive remissions and cure in a significant number of patients [24]. The highly aggressive group is characterized by survival of a few weeks if not adequately treated. The elected therapies for B cell NHL are chemotherapy, radiotherapy, and immunotherapy, used either as monotherapies or as combined therapies [25]. Classical Hodgkin’s lymphoma (CHL) is one of the most common lymphomas characterized by the presence of large multi- and mono-nucleated cells, Reed–Sternberg (RS) and Hodgkin (H) cells, respectively [26]. RS and H cells correspond to 1–10% of total tumor mass; the remaining 90% is composed of tumor inflammatory cells, including T and B lymphocytes, plasma cells, histiocytes/macrophages, granulocytes, eosinophils, mast cells, and mesenchymal stromal cells (MSCs) [27]. How RS cells interact with the tumor microenvironment is still a debated question. RS and H cells carry Ig genes somatic hypermutations and clonal Ig rearrangements, suggesting their origin from pre-apoptotic germinal center (GC) B cells [28]. RS cells present an unusual immunophenotype characterized by the absence of B cell markers, associated with possible co-expression of molecules of various hematopoietic lineages [29]. RS cells induce programmed death ligand-1 (PDL-1) expression in macrophages [30] and induce M2 phenotype in vitro [31]. The number of TAMs is higher in EBV-related CHL [32]. TAMs faster FL growth and survival via the CD40 axis [33] and can activate the B cell receptor [34]. In FL, it has been demonstrated an increased number of PDL-1-expressing TAMs [35].

Macrophages and angiogenesis in non-Hodgkin lymphomas (Table 2)

The tumor microenvironment constitutes about half of the tumor mass in indolent FL and marginal zone lymphoma, whereas the proportion in aggressive DLBCL is generally lower and scarce in Burkitt’s lymphoma [36, 37]. TAMs found in DLBCL and correlate with a poor prognosis [3841]. Pro-angiogenic M2 TAMs were found in FL and DLBCL through the secretion of angiogenic factors and matrix metalloproteinases (MMPs) which remodel the extracellular matrix [42, 43]. In MCL, TAMs expression was positively associated with ki67 proliferative index and negatively associated with overall survival [44]. Moreover, in MCL infiltration of CD163+ cells adversely affect outcome independent of established risk factors [45]. VEGF-A levels in the serum of patients with progressive NHL were significantly elevated in comparison with patients with complete remission [46, 47]. Elevated VEGF-A levels have been found in aggressive B cell lymphoma subtypes, including MCL, DLBCL, and CLL and small lymphocytic lymphoma [4851].
DLBCLs have been described a “stromal 1” signature associated with a favorable prognosis and include the expression of MMP-2 and MMP-9, tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), and a “stromal 2” signature is associated with a poor clinical outcome and is found in tumors with a high microvascular density [52].

Macrophages and angiogenesis in Hodgkin lymphomas (Table 2)

Table 2
Tumor-associated macrophages (TAMs) in different types of lymphomas (references between brackets)
Non-Hodgkin lymphoma
Diffuse large B cell lymphoma (DLBCL)
M2 TAMs positively correlate with a poor prognosis [38, 39]
Follicular lymphoma
M2 TAMs number correlates with angiogenesis [42]
Mantle cell lymphoma
M1 and M2 TAMs positively correlate with ki67 and negatively with overall survival  (OS) [50]
M2 TAMs adversely affect outcome [73]
Classic Hodgkin lymphoma
TAMs involved in the mechanism of action of checkpoint inhibitors [35]
TAM-derived PDL-1 and HRS cell-derived PD-L1 and PD-L2 neutralize the activity of PD-1+ T cells and NK cells [55]
Higher number of CD68+ TAMs is associated with shortened survival and the outcome of autologous stem-cell transplantation [64]
M1 TAMs number correlates with favorable prognosis in the mixed cellularity cHL [69]
Lack of TAMs is beneficial for HL growth [76]
High number of CD163+ TAMs correlates with VEGF-A levels and increased microvascular density [77]
TAMs are present in cHL [53, 54]. In the tumor microenvironment, PD-L1+TAMs, and programmed cell death protein-1 (PD-1)+ CD4+ T cells are present, in contact with PD-L1+ tumor cells, supporting a possible role of the TAMs in the mechanism of action of checkpoint inhibitor therapy [30]. TAM-derived PDL-1 in conjunction with the HRS cell-derived PD-1 ligands PD-L1 and PD-L2 neutralizes the anticancer activity of PD-1+ T cells and natural killer (NK) cells, that can be reversed utilizing PD-1 blocking antibodies [55]. A higher number of CD68+ TAMs was associated with shortened survival and with the outcome of autologous stem-cell transplantation [56]. Other studies have confirmed the relationship between TAMs and lower outcomes after upfront treatment [5760]. The molecular characterization of HR cells reported as neoplastic clones the overexpression of CSF1 receptor (CSF1R), a gene of the macrophage signature, and the latter gene was associated with primary treatment failure [61]. A correlation between the number of M1 TAMs and favorable prognosis in the mixed cellularity subtype of cHL has been reported [62]. PI3K activity is essential for M2 polarization [63].Dual PI3K/inhibition suppresses M2 macrophage polarization in HL through PKM downregulation [64]. A lack of TAMs is beneficial for HL growth, while TAMs have an inhibitory effect with an increasing number [65].
A high number of CD163 + TAMs correlate with elevated VEGF-A levels and an increased microvascular density [66].

Personal experience (Table 3)

Table 3
Personal experience (references between brackets)
Diffuse large B cell lymphoma (DLBCL)
Higher number of CD68+ TAMs and microvessels in the non-responder versus the responder groups [78]
A higher number of CD68+ TAMs in the chemo-resistant group versus the chemo-sensitive one [68]
Increase in CD68+, CD163+, and CD34+ cells in the ABC subgroup versus GCB one [71]
Mantle cell lymphoma
Reduced CD68+ and CD163+ TAMs in the group with > 40% of Sox11+ cells versus negative and 1–39% of positivity groups [72]
Splenic marginal zone lymphoma
Increased number of CD68+ and CD163+ TAMs in the MALT compared to the healthy ones [75]
MALT lymphoma
Significant increase in CD68+ and CD163+ TAMs and microvascular density [76]
Follicular lymphoma
Significant increase in CD68+ and CD163+ TAMs in FL grades versus healthy controls [77]
Classic Hodgkin lymphoma
Significant increase in CD68+ and CD163+ TAMs and CD34+ microvessels in REL patients versus to RESP to ABVC therapy [78]
One of our earliest investigations concerning the microenvironment consisted of counting and mapping out the microvessels in samples of B-NHL. We demonstrated that the stroma of B-NHL has stronger angiogenesis than that of benign lymphadenopathies, and that this angiogenesis intensifies with increase in malignancy grade. Given that B-NHL tumor malignancy grades involve a progression path due to significant increases in tumor cell growth fraction (S-phase and M-phase), this link shows that angiogenesis correlates with tumor progression in these tumor types [67].
We have observed in DLBCL a higher number of CD68+ macrophages and microvessels in the non-responder compared to the responder groups [68]. Moreover, we investigated the CD68 expression and its relationship to microvascular density in patients with chemo-resistant and chemo-sensitive DLBCL. A statistically significant greater CD68 expression was seen in the chemo-resistant group respect the chemo-sensitive one. The chemo-resistant group had more vessels counted than patients who were chemo-sensitive [68].
Experimental data in DLBCL suggest that TAMs may contribute to tumor growth by activating STAT3 [69, 70]. We have demonstrated that in the ABC and GCB, DLBCL groups revealed a decrease in CD68+, CD163+, and CD34+ cells in the GBC subgroup (Fig. 1A, B, C) of DLBCL patients respect to ABC one (Fig. 1D, E, F). Additionally, we detected a positive correlation between STAT3 and CD68+, CD163+ macrophages as well as CD34+ vessels [71].
In our research on MCL, we examined the inflammation cell infiltrate in lymph node biopsies taken from patients whose Sox11 expression was either negative, light, or strong. Strong group patients had fewer CD68+ and CD163+ macrophages than the other two, which was inversely correlated with increased Sox11  intensity and angiogenesis. CD163+ cells often outnumbered CD68+ cells in each group, and they had both rounded and elongated forms. Our findings demonstrate a mixed M1/M2 population, highlighting the marginal contribution of CD163+ rounded and elongated macrophages to the maintenance of a pro-tumorigenic microenvironment in Sox11+ patients [72]. Sox11 promotes tumor angiogenesis through transcriptional regulation of PDGF-A [73]. Sox11 is a highly specific marker of MCL because it was detected in around 90% of the MCL examined but in none of the CLL or FL and only weakly in two of 30 DLBCL [74].
In splenic marginal zone lymphoma (MZL), an increased number of CD68+ and CD163+ macrophages have been demonstrated in the mucosa-associated lymphoid tissue (MALT) compared to the healthy ones [75].
MALT type lymphoma belongs to marginal zone lymphomas (MZL). We examined and quantified the microvessel content and the tumor's inflammatory microenvironment in MALT lymphoma samples and compared them with healthy controls. In comparison with the controls (Fig. 2A, B, C), an increase in CD68+ and CD163+ TAM numbers as well as microvascular density was seen in the MALT group (Fig. 2D, E, F). Additionally, we discovered a positive correlation between CD34+ microvessels and M2 type macrophages, supporting the significance of these cells in angiogenesis [76].
We published the data about the study of inflammatory infiltrate and angiogenesis in lymph node biopsies derived from FL patients at grades 1, 2, and 3A, at first diagnosis and in control healthy group. The results indicated a significant increase in the number of CD68+ (Fig. 3D, G, L) and CD163+ (Fig. 3E, H, M) macrophages in all three analyzed FL grades respect to the healthy controls (Fig. 3A, B). The number of CD34+ microvessels resulted increased in FL1 and FL2 patients (Fig. 3F,I) respect to controls (Fig. 3C) and FL3 patients (Fig. 3N). Moreover, the higher number of CD34+ microvessels in the FL grades 1 and 2 of samples positively correlated with CD68+ and CD163+ cells [77].
The interaction between RS cells and other immune cells in the CHL microenvironment may offer new approaches for targeted immunotherapies. The microenvironment content in CHL patients with ABVD responsive disease (RESP) and patients with disease that had relapsed or was resistant to ABVD treatment (REL) was examined in our most recent research. The findings showed that there were more CD68+ and CD163+ macrophages and CD 34+ microvessels in REL patients (Fig. 4A, B, C) compared to RESP patients (Fig. 4D, E, F), suggesting that the immunological escape in refractory CHL patients involved a greater number of macrophages. Additionally, the findings suggested that microvascular density could be used to evaluate angiogenic activity and aggressiveness in NHL subtypes [78].

Different therapeutic approaches in lymphomas involving an inhibition of the vascular growth

The major classes of anti-angiogenic therapy include (i) anti-VEGF (bevacizumab, VEGF-Trap, VEGF-antisense); (ii) receptor tyrosine kinase inhibitors targeting VEGF receptor signaling as well as receptors for other pro-angiogenic factors; (iii) immunomodulatory drugs (iMiDs) with anti-angiogenic properties; (iv) the novel anti-endothelial approach of metronomic therapy; and (v) other new compounds targeting signaling checkpoints downstream of pro-angiogenic growth factors, which include mammalian target of rapamycin (mTOR) inhibitors, histone deacetylases (HDAC) inhibitors, and proteasome inhibitors.
Bevacizumab has shown modest clinical activity in lymphoma patients as a single agent in the setting of relapsed aggressive NHL [79] and has been combined with rituximab-CHOP (R-CHOP) in upfront treatment [80]. Levine reported a phase I study of antisense oligonucleotide against VEGF-A in a small cohort of patients and observed a partial response in one patient with cutaneous T cell lymphoma [81]. Bevacizumab synergizes with the BCL2 inhibitor venetoclax in the treatment of B cell NHL [82].
Thalidomide is an-immunomodulatory drug by co-stimulating T cell proliferation which exerts an anti-angiogenic activity through the inhibition of various cytokines, including tumor necrosis factor alpha (TNF-α)) and VEGF [83].
Single-agent thalidomide demonstrated a limited and modest overall response rate of 12.5% when given to patients with relapsed/refractory indolent NHL [84].
The anti-angiogenic effects of chemotherapy seem to be optimized by administering such drugs metronomically in small doses on a frequent schedule in an uninterrupted manner, for prolonged periods. A combination of rituximab, thalidomide, and metronomic oral chemotherapy with prednisone, etoposide, procarbazine, and cyclophosphamide have been used as anti-angiogenic therapy in relapsed/refractory MCL [85]. Single-agent lenalidomide has been studied in a phase II trial setting in relapsed/refractory indolent and aggressive NHL, with a 34% overall response rate (ORR) rate in aggressive NHL and a 26% ORR rate in indolent NHL [86, 87].
Metronomic therapy in lymphoma incorporates non-myelosuppressive continuous infusional vincristine and bleomycin designed to overcome drug resistance [88]. Another metronomic lymphoma therapy is the PEPC (C3) regimen [89]. PEPC consists of low-dose prednisone, etoposide, procarbazine, and cyclophosphamide administered orally with dosing frequency titrated to hematologic parameters. This regimen is well tolerated and is associated with significant clinical activity in recurrent NHL including MCL [90, 91]. Recombinant human endostatin has been combined with a CHOP regimen in treating peripheral T cell lymphoma [92]. Treatment with the immunomodulatory lenalidomide, depleted VEGF-C expressing TAMs resulted in impaired lymphangiogenesis in MCL [93].
The limitations of applying bevacizumab in lymphoma treatment may be the consequence of drug resistance, metastasis promotion, and reduced delivery of chemotherapeutic agents, resulted from the decrease in tumor vasculature. The fact that tumors may grow without angiogenesis, through the alternative mode of vasculature neo-formation, including vascular co-potion, intussusceptive microvascular growth, and vasculogenic mimicry [94] makes them less likely to respond to anti-angiogenic drugs. Alternative therapeutic strategies may be used to overcome resistance to anti-angiogenic therapy, including the association of multiple anti-angiogenic compounds or a combination of anti-angiogenic drugs with other treatment regimens. The effectiveness of the combination therapy should be monitored during disease progression to optimize the therapy and counteract the development of further resistance.

Concluding remarks

There is clear evidence that macrophages play an active role in enhancing angiogenesis in human lymphomas, either directly through the release of angiogenic cytokines and proteolytic enzymes, or indirectly through paracrine signals. A significant relationship between the number of TAMs and the density of blood vessels has been established in human tumors. Depletion of TAMs reduces to about 50% tumor vascular density, leading to areas of necrosis by loss of blood supply within the tumor mass, and macrophages accumulate particularly in such necrotic and hypoxic areas in different tumors. Therapeutic strategies may include inhibition of recruitment of mast cells and macrophages to the tumor microenvironment and blockade of pro-tumoral effects and pro-angiogenic functions [5].

Declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Literatur
1.
Zurück zum Zitat Virchow R. Die krankhaften Geschwülste. Berlin Heidelberg: Springer; 1978.CrossRef Virchow R. Die krankhaften Geschwülste. Berlin Heidelberg: Springer; 1978.CrossRef
4.
Zurück zum Zitat Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6.PubMedCrossRef Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6.PubMedCrossRef
5.
Zurück zum Zitat Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399–416.PubMedPubMedCentralCrossRef Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399–416.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.PubMedCrossRef Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.PubMedCrossRef
8.
Zurück zum Zitat Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 2005;65(8):3437–46.PubMedCrossRef Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 2005;65(8):3437–46.PubMedCrossRef
9.
Zurück zum Zitat Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y, et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol. 2013;15(3):284–94.PubMedPubMedCentralCrossRef Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y, et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol. 2013;15(3):284–94.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Taddei ML, Cavallini L, Comito G, Giannoni E, Folini M, Marini A, et al. Senescent stroma promotes prostate cancer progression: the role of miR-210. Mol Oncol. 2014;8(8):1729–46.PubMedPubMedCentralCrossRef Taddei ML, Cavallini L, Comito G, Giannoni E, Folini M, Marini A, et al. Senescent stroma promotes prostate cancer progression: the role of miR-210. Mol Oncol. 2014;8(8):1729–46.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Lee HW, Choi HJ, Ha SJ, Lee KT, Kwon YG. Recruitment of monocytes/macrophages in different tumor microenvironments. Biochim Biophys Acta. 2013;1835(2):170–9.PubMed Lee HW, Choi HJ, Ha SJ, Lee KT, Kwon YG. Recruitment of monocytes/macrophages in different tumor microenvironments. Biochim Biophys Acta. 2013;1835(2):170–9.PubMed
12.
Zurück zum Zitat Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23(8):1148–56.PubMedPubMedCentralCrossRef Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23(8):1148–56.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.PubMedCrossRef Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.PubMedCrossRef
14.
Zurück zum Zitat Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur J Cancer. 2006;42(6):717–27.PubMedCrossRef Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur J Cancer. 2006;42(6):717–27.PubMedCrossRef
15.
Zurück zum Zitat Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–73.PubMedCrossRef Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86(5):1065–73.PubMedCrossRef
16.
Zurück zum Zitat Quatromoni JG, Eruslanov E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res. 2012;4(4):376–89.PubMedPubMedCentral Quatromoni JG, Eruslanov E. Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res. 2012;4(4):376–89.PubMedPubMedCentral
18.
Zurück zum Zitat Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019–32.PubMedPubMedCentralCrossRef Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019–32.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Bowzyk Al-Naeeb A, Ajithkumar T, Behan S, Hodson DJ. Non-Hodgkin lymphoma. BMJ. 2018;362:k3204.PubMedCrossRef Bowzyk Al-Naeeb A, Ajithkumar T, Behan S, Hodson DJ. Non-Hodgkin lymphoma. BMJ. 2018;362:k3204.PubMedCrossRef
20.
Zurück zum Zitat Emile JF, Azoulay D, Gornet JM, Lopes G, Delvart V, Samuel D, et al. Primary non-Hodgkin’s lymphomas of the liver with nodular and diffuse infiltration patterns have different prognoses. Ann Oncol. 2001;12(7):1005–10.PubMedCrossRef Emile JF, Azoulay D, Gornet JM, Lopes G, Delvart V, Samuel D, et al. Primary non-Hodgkin’s lymphomas of the liver with nodular and diffuse infiltration patterns have different prognoses. Ann Oncol. 2001;12(7):1005–10.PubMedCrossRef
21.
Zurück zum Zitat Mei M, Chen R. How to approach a Hodgkin lymphoma patient with relapse after autologous SCT: allogeneic SCT. Clin Lymphoma Myeloma Leuk. 2018;18(1):26–33.PubMedCrossRef Mei M, Chen R. How to approach a Hodgkin lymphoma patient with relapse after autologous SCT: allogeneic SCT. Clin Lymphoma Myeloma Leuk. 2018;18(1):26–33.PubMedCrossRef
22.
Zurück zum Zitat Montes-Moreno S, King RL, Oschlies I, Ponzoni M, Goodlad JR, Dotlic S, et al. Update on lymphoproliferative disorders of the gastrointestinal tract: disease spectrum from indolent lymphoproliferations to aggressive lymphomas. Virchows Arch. 2019;476(5):667–81.PubMedCrossRef Montes-Moreno S, King RL, Oschlies I, Ponzoni M, Goodlad JR, Dotlic S, et al. Update on lymphoproliferative disorders of the gastrointestinal tract: disease spectrum from indolent lymphoproliferations to aggressive lymphomas. Virchows Arch. 2019;476(5):667–81.PubMedCrossRef
23.
Zurück zum Zitat Montoto S, Fitzgibbon J. Transformation of indolent B-Cell lymphomas. J Clin Oncol. 2011;29(14):1827–34.PubMedCrossRef Montoto S, Fitzgibbon J. Transformation of indolent B-Cell lymphomas. J Clin Oncol. 2011;29(14):1827–34.PubMedCrossRef
24.
Zurück zum Zitat Grimm KE, O’Malley DP. Aggressive B cell lymphomas in the 2017 revised WHO classification of tumors of hematopoietic and lymphoid tissues. Ann Diagn Pathol. 2019;38:6–10.PubMedCrossRef Grimm KE, O’Malley DP. Aggressive B cell lymphomas in the 2017 revised WHO classification of tumors of hematopoietic and lymphoid tissues. Ann Diagn Pathol. 2019;38:6–10.PubMedCrossRef
25.
Zurück zum Zitat Ott G. Aggressive B-cell lymphomas in the update of the 4th edition of the world health organization classification of haematopoietic and lymphatic tissues: refinements of the classification, new entities and genetic findings. Br J Haematol. 2017;178(6):871–87.PubMedCrossRef Ott G. Aggressive B-cell lymphomas in the update of the 4th edition of the world health organization classification of haematopoietic and lymphatic tissues: refinements of the classification, new entities and genetic findings. Br J Haematol. 2017;178(6):871–87.PubMedCrossRef
26.
Zurück zum Zitat Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the world health organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.PubMedPubMedCentralCrossRef Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the world health organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Aldinucci D, Celegato M, Casagrande N. Microenvironmental interactions in classical Hodgkin lymphoma and their role in promoting tumor growth, immune escape and drug resistance. Cancer Lett. 2016;380(1):243–52.PubMedCrossRef Aldinucci D, Celegato M, Casagrande N. Microenvironmental interactions in classical Hodgkin lymphoma and their role in promoting tumor growth, immune escape and drug resistance. Cancer Lett. 2016;380(1):243–52.PubMedCrossRef
28.
Zurück zum Zitat Küppers R, Schwering I, Bräuninger A, Rajewsky K, Hansmann ML. Biology of Hodgkin’s lymphoma. Ann Oncol. 2002;13:11–8.PubMedCrossRef Küppers R, Schwering I, Bräuninger A, Rajewsky K, Hansmann ML. Biology of Hodgkin’s lymphoma. Ann Oncol. 2002;13:11–8.PubMedCrossRef
29.
Zurück zum Zitat Schmitz R, Stanelle J, Hansmann M-L, Küppers R. Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Annu Rev Pathol. 2009;4(1):151–74.PubMedCrossRef Schmitz R, Stanelle J, Hansmann M-L, Küppers R. Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Annu Rev Pathol. 2009;4(1):151–74.PubMedCrossRef
30.
Zurück zum Zitat Carey CD, Gusenleitner D, Lipschitz M, Roemer MGM, Stack EC, Gjini E, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed–Sternberg cells in Hodgkin lymphoma. Blood. 2017;130(22):2420–30.PubMedPubMedCentralCrossRef Carey CD, Gusenleitner D, Lipschitz M, Roemer MGM, Stack EC, Gjini E, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed–Sternberg cells in Hodgkin lymphoma. Blood. 2017;130(22):2420–30.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Tudor CS, Bruns H, Daniel C, Distel LV, Hartmann A, Gerbitz A, et al. Macrophages and dendritic cells as actors in the immune reaction of classical Hodgkin lymphoma. PLoS One. 2014;9(12):e114345.PubMedPubMedCentralCrossRef Tudor CS, Bruns H, Daniel C, Distel LV, Hartmann A, Gerbitz A, et al. Macrophages and dendritic cells as actors in the immune reaction of classical Hodgkin lymphoma. PLoS One. 2014;9(12):e114345.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Chetaille B, Bertucci F, Finetti P, Esterni B, Stamatoullas A, Picquenot JM, et al. Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood. 2009;113(12):2765–3775.PubMedCrossRef Chetaille B, Bertucci F, Finetti P, Esterni B, Stamatoullas A, Picquenot JM, et al. Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood. 2009;113(12):2765–3775.PubMedCrossRef
33.
Zurück zum Zitat Epron G, Ame-Thomas P, Le Priol J, Pangault C, Dulong J, Lamy T, et al. Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling. Leukemia. 2011;26(1):139–48.PubMedCrossRef Epron G, Ame-Thomas P, Le Priol J, Pangault C, Dulong J, Lamy T, et al. Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling. Leukemia. 2011;26(1):139–48.PubMedCrossRef
34.
Zurück zum Zitat Coelho V, Krysov S, Ghaemmaghami AM, Emara M, Potter KN, Johnson P, et al. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci U S A. 2010;107(43):18587–92.PubMedPubMedCentralCrossRef Coelho V, Krysov S, Ghaemmaghami AM, Emara M, Potter KN, Johnson P, et al. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci U S A. 2010;107(43):18587–92.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Meirav K, Ginette S, Tamar T, Iris B, Arnon N, Abraham A. Extrafollicular PD1 and intrafollicular CD3 expression are associated with survival in follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2017;17(10):645–9.PubMedCrossRef Meirav K, Ginette S, Tamar T, Iris B, Arnon N, Abraham A. Extrafollicular PD1 and intrafollicular CD3 expression are associated with survival in follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2017;17(10):645–9.PubMedCrossRef
36.
Zurück zum Zitat Menter T, Tzankov A. Lymphomas and their microenvironment: a multifaceted relationship. Pathobiology. 2019;86(5–6):225–36.PubMedCrossRef Menter T, Tzankov A. Lymphomas and their microenvironment: a multifaceted relationship. Pathobiology. 2019;86(5–6):225–36.PubMedCrossRef
37.
Zurück zum Zitat Martynchyk A, Chowdhury R, Hawkes EA, Keane C. Prognostic markers within the tumour microenvironment in classical Hodgkin lymphoma. Cancers (Basel). 2023;15(21):5217.PubMedCrossRef Martynchyk A, Chowdhury R, Hawkes EA, Keane C. Prognostic markers within the tumour microenvironment in classical Hodgkin lymphoma. Cancers (Basel). 2023;15(21):5217.PubMedCrossRef
38.
Zurück zum Zitat Cai QC, Liao H, Lin SX, Xia Y, Wang XX, Gao Y, et al. High expression of tumor-infiltrating macrophages correlates with poor prognosis in patients with diffuse large B-cell lymphoma. Med Oncol. 2012;29(4):2317–22.PubMedCrossRef Cai QC, Liao H, Lin SX, Xia Y, Wang XX, Gao Y, et al. High expression of tumor-infiltrating macrophages correlates with poor prognosis in patients with diffuse large B-cell lymphoma. Med Oncol. 2012;29(4):2317–22.PubMedCrossRef
39.
Zurück zum Zitat Hasselblom S, Hansson U, Sigurdardottir M, Nilsson-Ehle H, Ridell B, Andersson PO. Expression of CD68+ tumor-associated macrophages in patients with diffuse large B-cell lymphoma and its relation to prognosis. Pathol Int. 2008;58(8):529–32.PubMedCrossRef Hasselblom S, Hansson U, Sigurdardottir M, Nilsson-Ehle H, Ridell B, Andersson PO. Expression of CD68+ tumor-associated macrophages in patients with diffuse large B-cell lymphoma and its relation to prognosis. Pathol Int. 2008;58(8):529–32.PubMedCrossRef
40.
Zurück zum Zitat Serna L, Azcoaga P, Brahmachary M, Caffarel MM, Braza MS. Diffuse large B-cell lymphoma microenvironment displays a predominant macrophage infiltrate marked by a strong inflammatory signature. Front Immunol. 2023;14:1048567.PubMedPubMedCentralCrossRef Serna L, Azcoaga P, Brahmachary M, Caffarel MM, Braza MS. Diffuse large B-cell lymphoma microenvironment displays a predominant macrophage infiltrate marked by a strong inflammatory signature. Front Immunol. 2023;14:1048567.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Lin M, Ma S, Sun L, Qin Z. The prognostic value of tumor-associated macrophages detected by immunostaining in diffuse large B cell lymphoma: a meta-analysis. Front Oncol. 2022;12:1094400.PubMedCrossRef Lin M, Ma S, Sun L, Qin Z. The prognostic value of tumor-associated macrophages detected by immunostaining in diffuse large B cell lymphoma: a meta-analysis. Front Oncol. 2022;12:1094400.PubMedCrossRef
42.
Zurück zum Zitat Clear AJ, Lee AM, Calaminici M, Ramsay AG, Morris KJ, Hallam S, et al. Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood. 2010;115(24):5053–6.PubMedPubMedCentralCrossRef Clear AJ, Lee AM, Calaminici M, Ramsay AG, Morris KJ, Hallam S, et al. Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood. 2010;115(24):5053–6.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Shen L, Li H, Shi Y, Wang D, Gong J, Xun J, et al. M2 tumour-associated macrophages contribute to tumour progression via legumain remodelling the extracellular matrix in diffuse large B cell lymphoma. Sci Rep. 2016;6:30347.PubMedPubMedCentralCrossRef Shen L, Li H, Shi Y, Wang D, Gong J, Xun J, et al. M2 tumour-associated macrophages contribute to tumour progression via legumain remodelling the extracellular matrix in diffuse large B cell lymphoma. Sci Rep. 2016;6:30347.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Li P, Yuan J, Ahmed FS, McHenry A, Fu K, Yu G, et al. High counts of CD68+ and CD163+ macrophages in mantle cell lymphoma are associated with inferior prognosis. Front Oncol. 2021;11:701492.PubMedPubMedCentralCrossRef Li P, Yuan J, Ahmed FS, McHenry A, Fu K, Yu G, et al. High counts of CD68+ and CD163+ macrophages in mantle cell lymphoma are associated with inferior prognosis. Front Oncol. 2021;11:701492.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Rodrigues JM, Nikkarinen A, Hollander P, Weibull CE, Raty R, Kolstad A, et al. Infiltration of CD163-, PD-L1- and FoxP3-positive cells adversely affects outcome in patients with mantle cell lymphoma independent of established risk factors. Br J Haematol. 2021;193(3):520–31.PubMedCrossRef Rodrigues JM, Nikkarinen A, Hollander P, Weibull CE, Raty R, Kolstad A, et al. Infiltration of CD163-, PD-L1- and FoxP3-positive cells adversely affects outcome in patients with mantle cell lymphoma independent of established risk factors. Br J Haematol. 2021;193(3):520–31.PubMedCrossRef
46.
Zurück zum Zitat Paydas S, Seydaoglu G, Ergin M, Erdogan S, Yavuz S. The prognostic significance of VEGF-C and VEGF-A in non-Hodgkin lymphomas. Leuk Lymphoma. 2009;50(3):366–73.PubMedCrossRef Paydas S, Seydaoglu G, Ergin M, Erdogan S, Yavuz S. The prognostic significance of VEGF-C and VEGF-A in non-Hodgkin lymphomas. Leuk Lymphoma. 2009;50(3):366–73.PubMedCrossRef
47.
Zurück zum Zitat Yang J, Li W, He X, Zhang G, Yue L, Chai Y. VEGF overexpression is a valuable prognostic factor for non-Hodgkin’s lymphoma evidence from a systemic meta-analysis. Dis Markers. 2015;2015:786790.PubMedPubMedCentralCrossRef Yang J, Li W, He X, Zhang G, Yue L, Chai Y. VEGF overexpression is a valuable prognostic factor for non-Hodgkin’s lymphoma evidence from a systemic meta-analysis. Dis Markers. 2015;2015:786790.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Chen H, Treweeke AT, West DC, Till KJ, Cawley JC, Zuzel M, et al. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood. 2000;96(9):3181–7.PubMedCrossRef Chen H, Treweeke AT, West DC, Till KJ, Cawley JC, Zuzel M, et al. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood. 2000;96(9):3181–7.PubMedCrossRef
49.
Zurück zum Zitat Koster A, van Krieken JHJM, MacKenzie MA, Schraders M, Borm GF, van der Laak JAWM, et al. Increased vascularization predicts favorable outcome in follicular lymphoma. Clin Cancer Res. 2005;11(1):154–61.PubMedCrossRef Koster A, van Krieken JHJM, MacKenzie MA, Schraders M, Borm GF, van der Laak JAWM, et al. Increased vascularization predicts favorable outcome in follicular lymphoma. Clin Cancer Res. 2005;11(1):154–61.PubMedCrossRef
50.
Zurück zum Zitat Salven P, Orpana A, Teerenhovi L, Joensuu H. Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients. Blood. 2000;96(12):3712–8.PubMedCrossRef Salven P, Orpana A, Teerenhovi L, Joensuu H. Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients. Blood. 2000;96(12):3712–8.PubMedCrossRef
51.
Zurück zum Zitat Liu Y, Wang J, Shen X, Li L, Zhang N, Wang X, et al. A novel angiogenesis-related scoring model predicts prognosis risk and treatment responsiveness in diffuse large B-cell lymphoma. Clin Exp Med. 2023;23(7):3781–97.PubMedCrossRef Liu Y, Wang J, Shen X, Li L, Zhang N, Wang X, et al. A novel angiogenesis-related scoring model predicts prognosis risk and treatment responsiveness in diffuse large B-cell lymphoma. Clin Exp Med. 2023;23(7):3781–97.PubMedCrossRef
52.
Zurück zum Zitat Abdou AG, Asaad N, Kandil M, Shabaan M, Shams A. Significance of stromal-1 and stromal-2 signatures and biologic prognostic model in diffuse large B-cell lymphoma. Cancer Biol Med. 2017;14(2):151–61.PubMedPubMedCentralCrossRef Abdou AG, Asaad N, Kandil M, Shabaan M, Shams A. Significance of stromal-1 and stromal-2 signatures and biologic prognostic model in diffuse large B-cell lymphoma. Cancer Biol Med. 2017;14(2):151–61.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Xiong X, Xie X, Wang Z, Zhang Y, Wang L. Tumor-associated macrophages in lymphoma: from mechanisms to therapy. Int Immunopharmacol. 2022;112:109235.PubMedCrossRef Xiong X, Xie X, Wang Z, Zhang Y, Wang L. Tumor-associated macrophages in lymphoma: from mechanisms to therapy. Int Immunopharmacol. 2022;112:109235.PubMedCrossRef
54.
Zurück zum Zitat Ferrarini I, Bernardelli A, Lovato E, Schena A, Krampera M, Visco C. An updated portrait of monocyte-macrophages in classical Hodgkin lymphoma. Front Oncol. 2023;13:1149616.PubMedPubMedCentralCrossRef Ferrarini I, Bernardelli A, Lovato E, Schena A, Krampera M, Visco C. An updated portrait of monocyte-macrophages in classical Hodgkin lymphoma. Front Oncol. 2023;13:1149616.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, Jain S, et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood. 2018;131(16):1809–19.PubMedPubMedCentralCrossRef Vari F, Arpon D, Keane C, Hertzberg MS, Talaulikar D, Jain S, et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood. 2018;131(16):1809–19.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85.PubMedPubMedCentralCrossRef Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Gotti M, Nicola M, Lucioni M, Fiaccadori V, Ferretti V, Sciarra R, et al. Independent prognostic impact of tumour-infiltrating macrophages in early-stage Hodgkin’s lymphoma. Hematol Oncol. 2016;35(3):296–302.PubMedCrossRef Gotti M, Nicola M, Lucioni M, Fiaccadori V, Ferretti V, Sciarra R, et al. Independent prognostic impact of tumour-infiltrating macrophages in early-stage Hodgkin’s lymphoma. Hematol Oncol. 2016;35(3):296–302.PubMedCrossRef
58.
Zurück zum Zitat Greaves P, Clear A, Coutinho R, Wilson A, Matthews J, Owen A, et al. Expression of FOXP3, CD68, and CD20 at diagnosis in the microenvironment of classical Hodgkin lymphoma is predictive of outcome. J Clin Oncol. 2013;31(2):256–62.PubMedCrossRef Greaves P, Clear A, Coutinho R, Wilson A, Matthews J, Owen A, et al. Expression of FOXP3, CD68, and CD20 at diagnosis in the microenvironment of classical Hodgkin lymphoma is predictive of outcome. J Clin Oncol. 2013;31(2):256–62.PubMedCrossRef
59.
Zurück zum Zitat Tan KL, Scott DW, Hong F, Kahl BS, Fisher RI, Bartlett NL, et al. Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. Blood. 2012;120(16):3280–7.PubMedPubMedCentralCrossRef Tan KL, Scott DW, Hong F, Kahl BS, Fisher RI, Bartlett NL, et al. Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. Blood. 2012;120(16):3280–7.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Tzankov A, Matter MS, Dirnhofer S. Refined prognostic role of CD68-positive tumor macrophages in the context of the cellular micromilieu of classical Hodgkin lymphoma. Pathobiology. 2010;77(6):301–8.PubMedCrossRef Tzankov A, Matter MS, Dirnhofer S. Refined prognostic role of CD68-positive tumor macrophages in the context of the cellular micromilieu of classical Hodgkin lymphoma. Pathobiology. 2010;77(6):301–8.PubMedCrossRef
61.
Zurück zum Zitat Steidl C, Diepstra A, Lee T, Chan FC, Farinha P, Tan K, et al. Gene expression profiling of microdissected Hodgkin Reed–Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood. 2012;120(17):3530–40.PubMedCrossRef Steidl C, Diepstra A, Lee T, Chan FC, Farinha P, Tan K, et al. Gene expression profiling of microdissected Hodgkin Reed–Sternberg cells correlates with treatment outcome in classical Hodgkin lymphoma. Blood. 2012;120(17):3530–40.PubMedCrossRef
62.
Zurück zum Zitat Zaki MAA, Wada N, Ikeda J, Shibayama H, Hashimoto K, Yamagami T, et al. Prognostic implication of types of tumor-associated macrophages in Hodgkin lymphoma. Virchows Arch. 2011;459(4):361–6.PubMedCrossRef Zaki MAA, Wada N, Ikeda J, Shibayama H, Hashimoto K, Yamagami T, et al. Prognostic implication of types of tumor-associated macrophages in Hodgkin lymphoma. Virchows Arch. 2011;459(4):361–6.PubMedCrossRef
63.
Zurück zum Zitat Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 Polarization. J Immunol. 2017;198(3):1006–14.PubMedCrossRef Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 Polarization. J Immunol. 2017;198(3):1006–14.PubMedCrossRef
64.
Zurück zum Zitat Locatelli SL, Consonni FM, Careddu G, Serio S, Viswanadha S, Vakkalanka S, et al. Treatment of Hodgkin lymphoma xenografts with the novel PI3K δ/γ inhibitor RP6530 suppresses M2 macrophage polarization and results in potent antitumor and antiangiogenic effects. Blood. 2016;128(22):45.CrossRef Locatelli SL, Consonni FM, Careddu G, Serio S, Viswanadha S, Vakkalanka S, et al. Treatment of Hodgkin lymphoma xenografts with the novel PI3K δ/γ inhibitor RP6530 suppresses M2 macrophage polarization and results in potent antitumor and antiangiogenic effects. Blood. 2016;128(22):45.CrossRef
65.
Zurück zum Zitat Werner L, Dreyer JH, Hartmann D, Barros MHM, Büttner-Herold M, Grittner U, et al. Tumor-associated macrophages in classical Hodgkin lymphoma: hormetic relationship to outcome. Sci Rep. 2020;10(1):9410.PubMedPubMedCentralCrossRef Werner L, Dreyer JH, Hartmann D, Barros MHM, Büttner-Herold M, Grittner U, et al. Tumor-associated macrophages in classical Hodgkin lymphoma: hormetic relationship to outcome. Sci Rep. 2020;10(1):9410.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Koh YW, Park C-S, Yoon DH, Suh C, Huh J. CD163 expression was associated with angiogenesis and shortened survival in patients with uniformly treated classical Hodgkin lymphoma. PLoS One. 2014;9(1):e87066.PubMedPubMedCentralCrossRef Koh YW, Park C-S, Yoon DH, Suh C, Huh J. CD163 expression was associated with angiogenesis and shortened survival in patients with uniformly treated classical Hodgkin lymphoma. PLoS One. 2014;9(1):e87066.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Ribatti D, Vacca A, Nico B, Fanelli M, Roncali L, Dammacco F. Angiogenesis spectrum in the stroma of B-cell non-Hodgkin’s lymphomas. An immunohistochemical and ultrastructural study. Eur J Haematol. 1996;56(1–2):45–53.PubMedCrossRef Ribatti D, Vacca A, Nico B, Fanelli M, Roncali L, Dammacco F. Angiogenesis spectrum in the stroma of B-cell non-Hodgkin’s lymphomas. An immunohistochemical and ultrastructural study. Eur J Haematol. 1996;56(1–2):45–53.PubMedCrossRef
68.
Zurück zum Zitat Marinaccio C, Ingravallo G, Gaudio F, Perrone T, Nico B, Maoirano E, et al. Microvascular density, CD68 and tryptase expression in human diffuse large B-Cell lymphoma. Leuk Res. 2014;38(11):1374–7.PubMedCrossRef Marinaccio C, Ingravallo G, Gaudio F, Perrone T, Nico B, Maoirano E, et al. Microvascular density, CD68 and tryptase expression in human diffuse large B-Cell lymphoma. Leuk Res. 2014;38(11):1374–7.PubMedCrossRef
69.
Zurück zum Zitat Iriki T, Ohnishi K, Fujiwara Y, Horlad H, Saito Y, Pan C, et al. The cell-cell interaction between tumor-associated macrophages and small cell lung cancer cells is involved in tumor progression via STAT3 activation. Lung Cancer. 2017;106:22–32.PubMedCrossRef Iriki T, Ohnishi K, Fujiwara Y, Horlad H, Saito Y, Pan C, et al. The cell-cell interaction between tumor-associated macrophages and small cell lung cancer cells is involved in tumor progression via STAT3 activation. Lung Cancer. 2017;106:22–32.PubMedCrossRef
70.
Zurück zum Zitat Wang J, Gao K, Lei W, Dong L, Xuan Q, Feng M, et al. Lymphocyte-to-monocyte ratio is associated with prognosis of diffuse large B-cell lymphoma: correlation with CD163 positive M2 type tumor-associated macrophages, not PD-1 positive tumor-infiltrating lymphocytes. Oncotarget. 2017;8(3):5414–25.PubMedCrossRef Wang J, Gao K, Lei W, Dong L, Xuan Q, Feng M, et al. Lymphocyte-to-monocyte ratio is associated with prognosis of diffuse large B-cell lymphoma: correlation with CD163 positive M2 type tumor-associated macrophages, not PD-1 positive tumor-infiltrating lymphocytes. Oncotarget. 2017;8(3):5414–25.PubMedCrossRef
71.
Zurück zum Zitat Tamma R, Ingravallo G, Gaudio F, Annese T, Albano F, Ruggieri S, et al. STAT3, tumor microenvironment, and microvessel density in diffuse large B cell lymphomas. Leuk Lymphoma. 2020;61(3):567–74.PubMedCrossRef Tamma R, Ingravallo G, Gaudio F, Annese T, Albano F, Ruggieri S, et al. STAT3, tumor microenvironment, and microvessel density in diffuse large B cell lymphomas. Leuk Lymphoma. 2020;61(3):567–74.PubMedCrossRef
72.
Zurück zum Zitat Annese T, Ingravallo G, Tamma R, De Giorgis M, Maiorano E, Perrone T, et al. Inflammatory infiltrate and angiogenesis in mantle cell lymphoma. Transl Oncol. 2020;13(3):100744.PubMedPubMedCentralCrossRef Annese T, Ingravallo G, Tamma R, De Giorgis M, Maiorano E, Perrone T, et al. Inflammatory infiltrate and angiogenesis in mantle cell lymphoma. Transl Oncol. 2020;13(3):100744.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Palomero J, Vegliante MC, Rodríguez ML, Eguileor Á, Castellano G, Planas-Rigol E, et al. SOX11 promotes tumor angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma. Blood. 2014;124(14):2235–47.PubMedCrossRef Palomero J, Vegliante MC, Rodríguez ML, Eguileor Á, Castellano G, Planas-Rigol E, et al. SOX11 promotes tumor angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma. Blood. 2014;124(14):2235–47.PubMedCrossRef
74.
Zurück zum Zitat Mozos A, Royo C, Hartmann E, De Jong D, Baro C, Valera A, et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 2009;94(11):1555–62.PubMedPubMedCentralCrossRef Mozos A, Royo C, Hartmann E, De Jong D, Baro C, Valera A, et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 2009;94(11):1555–62.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Tamma R, Ranieri G, Ingravallo G, Annese T, Oranger A, Gaudio F, et al. Inflammatory cells in diffuse large B cell lymphoma. J Clin Med. 2020;9(8):2418.PubMedPubMedCentralCrossRef Tamma R, Ranieri G, Ingravallo G, Annese T, Oranger A, Gaudio F, et al. Inflammatory cells in diffuse large B cell lymphoma. J Clin Med. 2020;9(8):2418.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Tamma R, Ingravallo G, Annese T, Deg M, Dig F, Gaudio F, et al. Tumor cell microenvironment and microvessel density analysis in MALT type lymphoma. Anticancer Res. 2021;41(3):1291–7.PubMedCrossRef Tamma R, Ingravallo G, Annese T, Deg M, Dig F, Gaudio F, et al. Tumor cell microenvironment and microvessel density analysis in MALT type lymphoma. Anticancer Res. 2021;41(3):1291–7.PubMedCrossRef
77.
Zurück zum Zitat Tamma R, Ingravallo G, Annese T, Gaudio F, Perrone T, Musto P, et al. Tumor microenvironment and microvascular density in follicular lymphoma. J Clin Med. 2022;11(5):1257.PubMedPubMedCentralCrossRef Tamma R, Ingravallo G, Annese T, Gaudio F, Perrone T, Musto P, et al. Tumor microenvironment and microvascular density in follicular lymphoma. J Clin Med. 2022;11(5):1257.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Tamma R, Ingravallo G, Gaudio F, d’Amati A, Masciopinto P, Bellitti E, et al. The tumor microenvironment in classic Hodgkin’s lymphoma in responder and no-responder patients to first line ABVD therapy. Cancers (Basel). 2023;15(10):2803.PubMedCrossRef Tamma R, Ingravallo G, Gaudio F, d’Amati A, Masciopinto P, Bellitti E, et al. The tumor microenvironment in classic Hodgkin’s lymphoma in responder and no-responder patients to first line ABVD therapy. Cancers (Basel). 2023;15(10):2803.PubMedCrossRef
79.
Zurück zum Zitat Stopeck AT, Bellamy W, Unger J, Rimsza L, Iannone M, Fisher RI, et al. Phase II trial of single agent bevacizumab in patients with relapsed aggressive non-Hodgkin’s lymphoma (NHL): southwest oncology group study S0108. J Clin Oncol. 2005;23(16_suppl):6592.CrossRef Stopeck AT, Bellamy W, Unger J, Rimsza L, Iannone M, Fisher RI, et al. Phase II trial of single agent bevacizumab in patients with relapsed aggressive non-Hodgkin’s lymphoma (NHL): southwest oncology group study S0108. J Clin Oncol. 2005;23(16_suppl):6592.CrossRef
80.
Zurück zum Zitat Ganjoo KN, An CS, Robertson MJ, Gordon LI, Sen JA, Weisenbach J, et al. Rituximab, Bevacizumab and CHOP (RA-CHOP) in untreated diffuse large B-cell lymphoma: safety, biomarker and pharmacokinetic analysis. Leuk Lymphoma. 2006;47(6):998–1005.PubMedCrossRef Ganjoo KN, An CS, Robertson MJ, Gordon LI, Sen JA, Weisenbach J, et al. Rituximab, Bevacizumab and CHOP (RA-CHOP) in untreated diffuse large B-cell lymphoma: safety, biomarker and pharmacokinetic analysis. Leuk Lymphoma. 2006;47(6):998–1005.PubMedCrossRef
81.
Zurück zum Zitat Levine AM, Tulpule A, Quinn DI, Gorospe G, Smith DL, Hornor L, et al. Phase I study of antisense oligonucleotide against vascular endothelial growth factor: decrease in plasma vascular endothelial growth factor with potential clinical efficacy. J Clin Oncol. 2006;24(11):1712–9.PubMedCrossRef Levine AM, Tulpule A, Quinn DI, Gorospe G, Smith DL, Hornor L, et al. Phase I study of antisense oligonucleotide against vascular endothelial growth factor: decrease in plasma vascular endothelial growth factor with potential clinical efficacy. J Clin Oncol. 2006;24(11):1712–9.PubMedCrossRef
82.
Zurück zum Zitat Wang L, Peng S, Sun W, Liu X. <i>Retracted:</i> Bevacizumab synergises with the BCL 2 inhibitor venetoclax to effectively treat B-cell non-Hodgkin’s lymphoma. Eur J Haematol. 2019;103(3):234–46.PubMedCrossRef Wang L, Peng S, Sun W, Liu X. <i>Retracted:</i> Bevacizumab synergises with the BCL 2 inhibitor venetoclax to effectively treat B-cell non-Hodgkin’s lymphoma. Eur J Haematol. 2019;103(3):234–46.PubMedCrossRef
83.
Zurück zum Zitat Ribatti D, Vacca A. Therapeutic renaissance of thalidomide in the treatment of haematological malignancies. Leukemia. 2005;19(9):1525–31.PubMedCrossRef Ribatti D, Vacca A. Therapeutic renaissance of thalidomide in the treatment of haematological malignancies. Leukemia. 2005;19(9):1525–31.PubMedCrossRef
84.
Zurück zum Zitat Smith SM, Grinblatt D, Johnson JL, Niedzwiecki D, Rizzieri D, Bartlett NL, et al. Thalidomide has limited single-agent activity in relapsed or refractory indolent non-Hodgkin lymphomas: a phase II trial of the cancer and Leukemia group B. Br J Haematol. 2008;140(3):313–9.PubMedCrossRef Smith SM, Grinblatt D, Johnson JL, Niedzwiecki D, Rizzieri D, Bartlett NL, et al. Thalidomide has limited single-agent activity in relapsed or refractory indolent non-Hodgkin lymphomas: a phase II trial of the cancer and Leukemia group B. Br J Haematol. 2008;140(3):313–9.PubMedCrossRef
85.
Zurück zum Zitat Ruan J, Coleman M, Furman RR, Glynn P, Joyce M, Ketas J, et al. Cell lymphoma: clinical efficacy and correlative studies of a phase II trial of RT-PEPC (rituximab, thalidomide and metronomic oral chemotherapy with prednisone, etoposide, procarbazine and cyclophosphamide) in relapsed/refractory disease. Blood. 2006;108(11):2751.CrossRef Ruan J, Coleman M, Furman RR, Glynn P, Joyce M, Ketas J, et al. Cell lymphoma: clinical efficacy and correlative studies of a phase II trial of RT-PEPC (rituximab, thalidomide and metronomic oral chemotherapy with prednisone, etoposide, procarbazine and cyclophosphamide) in relapsed/refractory disease. Blood. 2006;108(11):2751.CrossRef
86.
Zurück zum Zitat Wiernik PH, Lossos IS, Tuscano J, Justice G, Vose JM, Pietronigro D, et al. Preliminary results from a phase II study of lenalidomide oral monotherapy in relapsed/refractory aggressive non-Hodgkin lymphoma. J Clin Oncol. 2007;25(18_suppl):8052.CrossRef Wiernik PH, Lossos IS, Tuscano J, Justice G, Vose JM, Pietronigro D, et al. Preliminary results from a phase II study of lenalidomide oral monotherapy in relapsed/refractory aggressive non-Hodgkin lymphoma. J Clin Oncol. 2007;25(18_suppl):8052.CrossRef
87.
Zurück zum Zitat Witzig TE, Vose J, Pietronigro D, Takeshita K, Ervin-Haynes A, Zeldis J, et al. Preliminary results from a phase II study of lenalidomide oral monotherapy in relapsed/refractory indolent non-Hodgkin lymphoma. J Clin Oncol. 2007;25(18_suppl):8066.CrossRef Witzig TE, Vose J, Pietronigro D, Takeshita K, Ervin-Haynes A, Zeldis J, et al. Preliminary results from a phase II study of lenalidomide oral monotherapy in relapsed/refractory indolent non-Hodgkin lymphoma. J Clin Oncol. 2007;25(18_suppl):8066.CrossRef
88.
Zurück zum Zitat Boyd DB, Coleman M, Papish SW, Topilow A, Kopel SK, Bernhardt B, et al. COPBLAM III: infusional combination chemotherapy for diffuse large-cell lymphoma. J Clin Oncol. 1988;6(3):425–33.PubMedCrossRef Boyd DB, Coleman M, Papish SW, Topilow A, Kopel SK, Bernhardt B, et al. COPBLAM III: infusional combination chemotherapy for diffuse large-cell lymphoma. J Clin Oncol. 1988;6(3):425–33.PubMedCrossRef
89.
Zurück zum Zitat Coleman M, Leonard JP, Lee C. The PEP-C (C3) oral combination chemotherapy regimen for refractory/ relapsed lymphoma: daily prednisone, etoposide, procarbazine, and cyclophosphamide. BLood. 1999;94:94A. Coleman M, Leonard JP, Lee C. The PEP-C (C3) oral combination chemotherapy regimen for refractory/ relapsed lymphoma: daily prednisone, etoposide, procarbazine, and cyclophosphamide. BLood. 1999;94:94A.
90.
Zurück zum Zitat Coleman M, Martin P, Ruan J, Furman R, Niesvizky R, Elstrom R, et al. Prednisone, etoposide, procarbazine, and cyclophosphamide (PEP-C) oral combination chemotherapy regimen for recurring/refractory lymphoma: low-dose metronomic, multidrug therapy. Cancer. 2008;112(10):2228–32.PubMedCrossRef Coleman M, Martin P, Ruan J, Furman R, Niesvizky R, Elstrom R, et al. Prednisone, etoposide, procarbazine, and cyclophosphamide (PEP-C) oral combination chemotherapy regimen for recurring/refractory lymphoma: low-dose metronomic, multidrug therapy. Cancer. 2008;112(10):2228–32.PubMedCrossRef
91.
Zurück zum Zitat Coleman M, Martin P, Ruan J, Furman R, Niesvizky R, Elstrom R, et al. Low-dose metronomic, multidrug therapy with the PEP-C oral combination chemotherapy regimen for mantle cell lymphoma. Leuk Lymphoma. 2008;49(3):447–50.PubMedCrossRef Coleman M, Martin P, Ruan J, Furman R, Niesvizky R, Elstrom R, et al. Low-dose metronomic, multidrug therapy with the PEP-C oral combination chemotherapy regimen for mantle cell lymphoma. Leuk Lymphoma. 2008;49(3):447–50.PubMedCrossRef
92.
Zurück zum Zitat Zhang Q, Cao J, Xue K, Liu X, Ji D, Guo Y, et al. Recombinant human endostatin in combination with CHOP regimen for peripheral T cell lymphoma. Onco Targets Ther. 2016;10:145–51.PubMedPubMedCentralCrossRef Zhang Q, Cao J, Xue K, Liu X, Ji D, Guo Y, et al. Recombinant human endostatin in combination with CHOP regimen for peripheral T cell lymphoma. Onco Targets Ther. 2016;10:145–51.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Song K, Herzog BH, Sheng M, Fu J, McDaniel JM, Chen H, et al. Lenalidomide inhibits lymphangiogenesis in preclinical models of mantle cell lymphoma. Can Res. 2013;73(24):7254–64.CrossRef Song K, Herzog BH, Sheng M, Fu J, McDaniel JM, Chen H, et al. Lenalidomide inhibits lymphangiogenesis in preclinical models of mantle cell lymphoma. Can Res. 2013;73(24):7254–64.CrossRef
Metadaten
Titel
Macrophages and angiogenesis in human lymphomas
verfasst von
Domenico Ribatti
Roberto Tamma
Tiziana Annese
Giuseppe Ingravallo
Giorgina Specchia
Publikationsdatum
01.12.2024
Verlag
Springer International Publishing
Erschienen in
Clinical and Experimental Medicine / Ausgabe 1/2024
Print ISSN: 1591-8890
Elektronische ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-023-01291-y

Weitere Artikel der Ausgabe 1/2024

Clinical and Experimental Medicine 1/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.