Skip to main content
Erschienen in: NeuroMolecular Medicine 3/2008

01.09.2008 | Original Paper

Maximizing the Potential of Plasma Amyloid-Beta as a Diagnostic Biomarker for Alzheimer’s Disease

verfasst von: Esther S. Oh, Juan C. Troncoso, Stina M. Fangmark Tucker

Erschienen in: NeuroMolecular Medicine | Ausgabe 3/2008

Einloggen, um Zugang zu erhalten

Abstract

Amyloid plaques are composed primarily of amyloid-beta (Aβ) peptides derived from proteolytic cleavage of amyloid precursor protein (APP) and are considered to play a pivotal role in Alzheimer’s disease (AD) pathogenesis. Presently, AD is diagnosed after the onset of clinical manifestations. With the arrival of novel therapeutic agents for treatment of AD, there is an urgent need for biomarkers to detect early stages of AD. Measurement of plasma Aβ has been suggested as an inexpensive and non-invasive tool to diagnose AD and to monitor Aβ modifying therapies. However, the majority of cross-sectional studies on plasma Aβ levels in humans have not shown differences between individuals with AD compared to controls. Similarly, cross-sectional studies of mouse plasma Aβ have yielded inconsistent trends in different mouse models. However, longitudinal studies appear to be more promising in humans. Recently, efforts to modify plasma Aβ levels using modulators have shown some promise. In this review, we will summarize the present data on plasma Aβ in humans and mouse models of AD. We will discuss the potential of modulators of Aβ levels in plasma, including antibodies and insulin, and the challenges associated with measuring plasma Aβ. Modulators of plasma Aβ may provide an important tool to optimize plasma Aβ levels and may improve the diagnostic potential of this approach.
Literatur
Zurück zum Zitat Andreasen, N., Hesse, C., Davidsson, P., Minthon, L., Wallin, A., Winblad, B., et al. (1999). Cerebrospinal fluid beta-amyloid(1-42) in Alzheimer disease: Differences between early- and late-onset alzheimer disease and stability during the course of disease. Archives of Neurology, 56, 673–680.PubMed Andreasen, N., Hesse, C., Davidsson, P., Minthon, L., Wallin, A., Winblad, B., et al. (1999). Cerebrospinal fluid beta-amyloid(1-42) in Alzheimer disease: Differences between early- and late-onset alzheimer disease and stability during the course of disease. Archives of Neurology, 56, 673–680.PubMed
Zurück zum Zitat Asami-Odaka, A., Obayashi-Adachi, Y., Matsumoto, Y., Takahashi, H., Fukumoto, H., Horiguchi, T., et al. (2005). Passive immunization of the Abeta42(43) C-terminal-specific antibody BC05 in a mouse model of Alzheimer’s disease. Neurodegeneration Diseases, 2, 36–43.PubMed Asami-Odaka, A., Obayashi-Adachi, Y., Matsumoto, Y., Takahashi, H., Fukumoto, H., Horiguchi, T., et al. (2005). Passive immunization of the Abeta42(43) C-terminal-specific antibody BC05 in a mouse model of Alzheimer’s disease. Neurodegeneration Diseases, 2, 36–43.PubMed
Zurück zum Zitat Assini, A., Cammarata, S., Vitali, A., Colucci, M., Giliberto, L., Borghi, R., et al. (2004). Plasma levels of amyloid beta-protein 42 are increased in women with mild cognitive impairment. Neurology, 63, 828–831.PubMed Assini, A., Cammarata, S., Vitali, A., Colucci, M., Giliberto, L., Borghi, R., et al. (2004). Plasma levels of amyloid beta-protein 42 are increased in women with mild cognitive impairment. Neurology, 63, 828–831.PubMed
Zurück zum Zitat Bateman, R. J., Wen, G., Morris, J. C., & Holtzman, D. M. (2007). Fluctuations of CSF amyloid-beta levels: Implications for a diagnostic and therapeutic biomarker. Neurology, 68, 666–669.PubMed Bateman, R. J., Wen, G., Morris, J. C., & Holtzman, D. M. (2007). Fluctuations of CSF amyloid-beta levels: Implications for a diagnostic and therapeutic biomarker. Neurology, 68, 666–669.PubMed
Zurück zum Zitat Begley, D. J., & Brightman, M. W. (2003). Structural and functional aspects of the blood–brain barrier. Progress in Drug Research, 61, 39–78.PubMed Begley, D. J., & Brightman, M. W. (2003). Structural and functional aspects of the blood–brain barrier. Progress in Drug Research, 61, 39–78.PubMed
Zurück zum Zitat Biere, A. L., Ostaszewski, B., Stimson, E. R., Hyman, B. T., Maggio, J. E., & Selkoe, D. J. (1996). Amyloid beta-peptide is transported on lipoproteins and albumin in human plasma. Journal of Biological Chemistry, 271, 32916–32922.PubMed Biere, A. L., Ostaszewski, B., Stimson, E. R., Hyman, B. T., Maggio, J. E., & Selkoe, D. J. (1996). Amyloid beta-peptide is transported on lipoproteins and albumin in human plasma. Journal of Biological Chemistry, 271, 32916–32922.PubMed
Zurück zum Zitat Boyt, A. A., Taddei, T. K., Hallmayer, J., Helmerhorst, E., Gandy, S. E., Craft, S., et al. (2000). The effect of insulin and glucose on the plasma concentration of Alzheimer’s amyloid precursor protein. Neuroscience, 95, 727–734.PubMed Boyt, A. A., Taddei, T. K., Hallmayer, J., Helmerhorst, E., Gandy, S. E., Craft, S., et al. (2000). The effect of insulin and glucose on the plasma concentration of Alzheimer’s amyloid precursor protein. Neuroscience, 95, 727–734.PubMed
Zurück zum Zitat Braak, H., Braak, E., Ohm, T., & Bohl, J. (1989). Alzheimer’s disease: Mismatch between amyloid plaques and neuritic plaques. Neuroscience Letters, 103, 24–28.PubMed Braak, H., Braak, E., Ohm, T., & Bohl, J. (1989). Alzheimer’s disease: Mismatch between amyloid plaques and neuritic plaques. Neuroscience Letters, 103, 24–28.PubMed
Zurück zum Zitat Bush, A. I., Martins, R. N., Rumble, B., Moir, R., Fuller, S., Milward, E., et al. (1990). The amyloid precursor protein of Alzheimer’s disease is released by human platelets. Journal of Biological Chemistry, 265, 15977–15983.PubMed Bush, A. I., Martins, R. N., Rumble, B., Moir, R., Fuller, S., Milward, E., et al. (1990). The amyloid precursor protein of Alzheimer’s disease is released by human platelets. Journal of Biological Chemistry, 265, 15977–15983.PubMed
Zurück zum Zitat Chauhan, V. P., Ray, I., Chauhan, A., & Wisniewski, H. M. (1999). Binding of gelsolin, a secretory protein, to amyloid beta-protein. Biochemical and Biophysical Research Communications, 258, 241–246.PubMed Chauhan, V. P., Ray, I., Chauhan, A., & Wisniewski, H. M. (1999). Binding of gelsolin, a secretory protein, to amyloid beta-protein. Biochemical and Biophysical Research Communications, 258, 241–246.PubMed
Zurück zum Zitat Chen, M., Inestrosa, N. C., Ross, G. S., & Fernandez, H. L. (1995). Platelets are the primary source of amyloid beta-peptide in human blood. Biochemical and Biophysical Research Communications, 213, 96–103.PubMed Chen, M., Inestrosa, N. C., Ross, G. S., & Fernandez, H. L. (1995). Platelets are the primary source of amyloid beta-peptide in human blood. Biochemical and Biophysical Research Communications, 213, 96–103.PubMed
Zurück zum Zitat Choo-Smith, L. P., Garzon-Rodriguez, W., Glabe, C. G., & Surewicz, W. K. (1997). Acceleration of amyloid fibril formation by specific binding of Abeta-(1-40) peptide to ganglioside-containing membrane vesicles. Journal of Biological Chemistry, 272, 22987–22990.PubMed Choo-Smith, L. P., Garzon-Rodriguez, W., Glabe, C. G., & Surewicz, W. K. (1997). Acceleration of amyloid fibril formation by specific binding of Abeta-(1-40) peptide to ganglioside-containing membrane vesicles. Journal of Biological Chemistry, 272, 22987–22990.PubMed
Zurück zum Zitat Craft, S., Asthana, S., Cook, D. G., Baker, L. D., Cherrier, M., Purganan, K., et al. (2003). Insulin dose–response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: Interactions with apolipoprotein E genotype. Psychoneuroendocrinology, 28, 809–822.PubMed Craft, S., Asthana, S., Cook, D. G., Baker, L. D., Cherrier, M., Purganan, K., et al. (2003). Insulin dose–response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: Interactions with apolipoprotein E genotype. Psychoneuroendocrinology, 28, 809–822.PubMed
Zurück zum Zitat Crystal, H., Dickson, D., Fuld, P., Masur, D., Scott, R., Mehler, M., et al. (1988). Clinico-pathologic studies in dementia: Nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology, 38, 1682–1687.PubMed Crystal, H., Dickson, D., Fuld, P., Masur, D., Scott, R., Mehler, M., et al. (1988). Clinico-pathologic studies in dementia: Nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology, 38, 1682–1687.PubMed
Zurück zum Zitat Cummings, J. L., Doody, R., & Clark, C. (2007). Disease-modifying therapies for Alzheimer disease: Challenges to early intervention. Neurology, 69, 1622–1634.PubMed Cummings, J. L., Doody, R., & Clark, C. (2007). Disease-modifying therapies for Alzheimer disease: Challenges to early intervention. Neurology, 69, 1622–1634.PubMed
Zurück zum Zitat DaSilva, K., Brown, M. E., Westaway, D., & McLaurin, J. (2006). Immunization with amyloid-beta using GM-CSF and IL-4 reduces amyloid burden and alters plaque morphology. Neurobiology of Disease, 23, 433–444.PubMed DaSilva, K., Brown, M. E., Westaway, D., & McLaurin, J. (2006). Immunization with amyloid-beta using GM-CSF and IL-4 reduces amyloid burden and alters plaque morphology. Neurobiology of Disease, 23, 433–444.PubMed
Zurück zum Zitat de Leon, M. J., DeSanti, S., Zinkowski, R., Mehta, P. D., Pratico, D., Segal, S., et al. (2004). MRI and CSF studies in the early diagnosis of Alzheimer’s disease. Journal of Internal Medicine, 256, 205–223.PubMed de Leon, M. J., DeSanti, S., Zinkowski, R., Mehta, P. D., Pratico, D., Segal, S., et al. (2004). MRI and CSF studies in the early diagnosis of Alzheimer’s disease. Journal of Internal Medicine, 256, 205–223.PubMed
Zurück zum Zitat De Strooper, B. (2003). Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron, 38, 9–12.PubMed De Strooper, B. (2003). Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron, 38, 9–12.PubMed
Zurück zum Zitat Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., et al. (2003). RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nature Medicine, 9, 907–913.PubMed Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., et al. (2003). RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nature Medicine, 9, 907–913.PubMed
Zurück zum Zitat Deane, R., Wu, Z., Sagare, A., Davis, J., Du Yan, S., Hamm, K., et al. (2004). LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron, 43, 333–344.PubMed Deane, R., Wu, Z., Sagare, A., Davis, J., Du Yan, S., Hamm, K., et al. (2004). LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron, 43, 333–344.PubMed
Zurück zum Zitat DeMattos, R. B., Bales, K. R., Cummins, D. J., Dodart, J. C., Paul, S. M., & Holtzman, D. M. (2001). Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98, 8850–8855.PubMed DeMattos, R. B., Bales, K. R., Cummins, D. J., Dodart, J. C., Paul, S. M., & Holtzman, D. M. (2001). Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98, 8850–8855.PubMed
Zurück zum Zitat DeMattos, R. B., Bales, K. R., Cummins, D. J., Paul, S. M., & Holtzman, D. M. (2002a). Brain to plasma amyloid-beta efflux: A measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science, 295, 2264–2267.PubMed DeMattos, R. B., Bales, K. R., Cummins, D. J., Paul, S. M., & Holtzman, D. M. (2002a). Brain to plasma amyloid-beta efflux: A measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science, 295, 2264–2267.PubMed
Zurück zum Zitat DeMattos, R. B., Bales, K. R., Parsadanian, M., O’Dell, M. A., Foss, E. M., Paul, S. M., et al. (2002b). Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease. Journal of Neurochemistry, 81, 229–236.PubMed DeMattos, R. B., Bales, K. R., Parsadanian, M., O’Dell, M. A., Foss, E. M., Paul, S. M., et al. (2002b). Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease. Journal of Neurochemistry, 81, 229–236.PubMed
Zurück zum Zitat Dodart, J. C., Bales, K. R., Gannon, K. S., Greene, S. J., DeMattos, R. B., Mathis, C., et al. (2002). Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nature Neuroscience, 5, 452–457.PubMed Dodart, J. C., Bales, K. R., Gannon, K. S., Greene, S. J., DeMattos, R. B., Mathis, C., et al. (2002). Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nature Neuroscience, 5, 452–457.PubMed
Zurück zum Zitat Dodel, R. C., Du, Y., Depboylu, C., Hampel, H., Frolich, L., Haag, A., et al. (2004). Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 75, 1472–1474. Dodel, R. C., Du, Y., Depboylu, C., Hampel, H., Frolich, L., Haag, A., et al. (2004). Intravenous immunoglobulins containing antibodies against beta-amyloid for the treatment of Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 75, 1472–1474.
Zurück zum Zitat Dodel, R., Hampel, H., Depboylu, C., Lin, S., Gao, F., Schock, S., et al. (2002). Human antibodies against amyloid beta peptide: A potential treatment for Alzheimer’s disease. Annals of Neurology, 52, 253–256.PubMed Dodel, R., Hampel, H., Depboylu, C., Lin, S., Gao, F., Schock, S., et al. (2002). Human antibodies against amyloid beta peptide: A potential treatment for Alzheimer’s disease. Annals of Neurology, 52, 253–256.PubMed
Zurück zum Zitat Englund, H., Sehlin, D., Johansson, A. S., Nilsson, L. N., Gellerfors, P., Paulie, S., et al. (2007). Sensitive ELISA detection of amyloid-beta protofibrils in biological samples. Journal of Neurochemistry, 103, 334–345.PubMed Englund, H., Sehlin, D., Johansson, A. S., Nilsson, L. N., Gellerfors, P., Paulie, S., et al. (2007). Sensitive ELISA detection of amyloid-beta protofibrils in biological samples. Journal of Neurochemistry, 103, 334–345.PubMed
Zurück zum Zitat Ertekin-Taner, N., Graff-Radford, N., Younkin, L. H., Eckman, C., Adamson, J., Schaid, D. J., et al. (2001). Heritability of plasma amyloid beta in typical late-onset alzheimer’s disease pedigrees. Genetic Epidemiology, 21, 19–30.PubMed Ertekin-Taner, N., Graff-Radford, N., Younkin, L. H., Eckman, C., Adamson, J., Schaid, D. J., et al. (2001). Heritability of plasma amyloid beta in typical late-onset alzheimer’s disease pedigrees. Genetic Epidemiology, 21, 19–30.PubMed
Zurück zum Zitat Ertekin-Taner, N., Younkin, L. H., Yager, D. M., Parfitt, F., Baker, M. C., Asthana, S., et al. (2008). Plasma amyloid beta protein is elevated in late-onset alzheimer disease families. Neurology, 70, 596–606.PubMed Ertekin-Taner, N., Younkin, L. H., Yager, D. M., Parfitt, F., Baker, M. C., Asthana, S., et al. (2008). Plasma amyloid beta protein is elevated in late-onset alzheimer disease families. Neurology, 70, 596–606.PubMed
Zurück zum Zitat Evin, G., Zhu, A., Holsinger, R. M., Masters, C. L., & Li, Q. X. (2003). Proteolytic processing of the Alzheimer’s disease amyloid precursor protein in brain and platelets. Journal of Neuroscience Research, 74, 386–392.PubMed Evin, G., Zhu, A., Holsinger, R. M., Masters, C. L., & Li, Q. X. (2003). Proteolytic processing of the Alzheimer’s disease amyloid precursor protein in brain and platelets. Journal of Neuroscience Research, 74, 386–392.PubMed
Zurück zum Zitat Fagan, A. M., Mintun, M. A., Mach, R. H., Lee, S. Y., Dence, C. S., Shah, A. R., et al. (2006). Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Annals of Neurology, 59, 512–519.PubMed Fagan, A. M., Mintun, M. A., Mach, R. H., Lee, S. Y., Dence, C. S., Shah, A. R., et al. (2006). Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Annals of Neurology, 59, 512–519.PubMed
Zurück zum Zitat Fishel, M. A., Watson, G. S., Montine, T. J., Wang, Q., Green, P. S., Kulstad, J. J., et al. (2005). Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Archives of Neurology, 62, 1539–1544.PubMed Fishel, M. A., Watson, G. S., Montine, T. J., Wang, Q., Green, P. S., Kulstad, J. J., et al. (2005). Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Archives of Neurology, 62, 1539–1544.PubMed
Zurück zum Zitat Freeman, S. H., Raju, S., Hyman, B. T., Frosch, M. P., & Irizarry, M. C. (2007). Plasma Abeta levels do not reflect brain Abeta levels. Journal of Neuropathology and Experimental Neurology, 66, 264–271.PubMed Freeman, S. H., Raju, S., Hyman, B. T., Frosch, M. P., & Irizarry, M. C. (2007). Plasma Abeta levels do not reflect brain Abeta levels. Journal of Neuropathology and Experimental Neurology, 66, 264–271.PubMed
Zurück zum Zitat Fukumoto, H., Tennis, M., Locascio, J. J., Hyman, B. T., Growdon, J. H., & Irizarry, M. C. (2003). Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels. Archives of Neurology, 60, 958–964.PubMed Fukumoto, H., Tennis, M., Locascio, J. J., Hyman, B. T., Growdon, J. H., & Irizarry, M. C. (2003). Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels. Archives of Neurology, 60, 958–964.PubMed
Zurück zum Zitat Galasko, D. (2005). Biomarkers for Alzheimer’s disease—clinical needs and application. Journal of Alzheimers Disease, 8, 339–346.PubMed Galasko, D. (2005). Biomarkers for Alzheimer’s disease—clinical needs and application. Journal of Alzheimers Disease, 8, 339–346.PubMed
Zurück zum Zitat Gasparini, L., Gouras, G. K., Wang, R., Gross, R. S., Beal, M. F., Greengard, P., et al. (2001). Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. Journal of Neuroscience, 21, 2561–2570.PubMed Gasparini, L., Gouras, G. K., Wang, R., Gross, R. S., Beal, M. F., Greengard, P., et al. (2001). Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. Journal of Neuroscience, 21, 2561–2570.PubMed
Zurück zum Zitat Giedraitis, V., Sundelof, J., Irizarry, M. C., Garevik, N., Hyman, B. T., Wahlund, L. O., et al. (2007). The normal equilibrium between CSF and plasma amyloid beta levels is disrupted in Alzheimer’s disease. Neuroscience Letters, 427, 127–131.PubMed Giedraitis, V., Sundelof, J., Irizarry, M. C., Garevik, N., Hyman, B. T., Wahlund, L. O., et al. (2007). The normal equilibrium between CSF and plasma amyloid beta levels is disrupted in Alzheimer’s disease. Neuroscience Letters, 427, 127–131.PubMed
Zurück zum Zitat Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349, 704–706.PubMed Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349, 704–706.PubMed
Zurück zum Zitat Golde, T. E., Eckman, C. B., & Younkin, S. G. (2000). Biochemical detection of Abeta isoforms: Implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochimica et Biophysica Acta, 1502, 172–187.PubMed Golde, T. E., Eckman, C. B., & Younkin, S. G. (2000). Biochemical detection of Abeta isoforms: Implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochimica et Biophysica Acta, 1502, 172–187.PubMed
Zurück zum Zitat Graff-Radford, N. R., Crook, J. E., Lucas, J., Boeve, B. F., Knopman, D. S., Ivnik, R. J., et al. (2007). Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Archives of Neurology, 64, 354–362.PubMed Graff-Radford, N. R., Crook, J. E., Lucas, J., Boeve, B. F., Knopman, D. S., Ivnik, R. J., et al. (2007). Association of low plasma Abeta42/Abeta40 ratios with increased imminent risk for mild cognitive impairment and Alzheimer disease. Archives of Neurology, 64, 354–362.PubMed
Zurück zum Zitat Gray, A. J., Sakaguchi, G., Shiratori, C., Becker, A. G., LaFrancois, J., Aisen, P. S., et al. (2007). Antibody against C-terminal Abeta selectively elevates plasma Abeta. NeuroReport, 18, 293–296.PubMed Gray, A. J., Sakaguchi, G., Shiratori, C., Becker, A. G., LaFrancois, J., Aisen, P. S., et al. (2007). Antibody against C-terminal Abeta selectively elevates plasma Abeta. NeuroReport, 18, 293–296.PubMed
Zurück zum Zitat Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.PubMed Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.PubMed
Zurück zum Zitat Harris, M. I., Flegal, K. M., Cowie, C. C., Eberhardt, M. S., Goldstein, D. E., Little, R. R., et al. (1998). Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care, 21, 518–524.PubMed Harris, M. I., Flegal, K. M., Cowie, C. C., Eberhardt, M. S., Goldstein, D. E., Little, R. R., et al. (1998). Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care, 21, 518–524.PubMed
Zurück zum Zitat Hartman, R. E., Izumi, Y., Bales, K. R., Paul, S. M., Wozniak, D. F., & Holtzman, D. M. (2005). Treatment with an amyloid-beta antibody ameliorates plaque load, learning deficits, and hippocampal long-term potentiation in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 25, 6213–6220.PubMed Hartman, R. E., Izumi, Y., Bales, K. R., Paul, S. M., Wozniak, D. F., & Holtzman, D. M. (2005). Treatment with an amyloid-beta antibody ameliorates plaque load, learning deficits, and hippocampal long-term potentiation in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 25, 6213–6220.PubMed
Zurück zum Zitat Hock, C., Konietzko, U., Streffer, J. R., Tracy, J., Signorell, A., Muller-Tillmanns, B., et al. (2003). Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron, 38, 547–554.PubMed Hock, C., Konietzko, U., Streffer, J. R., Tracy, J., Signorell, A., Muller-Tillmanns, B., et al. (2003). Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron, 38, 547–554.PubMed
Zurück zum Zitat Holsinger, R. M., McLean, C. A., Beyreuther, K., Masters, C. L., & Evin, G. (2002). Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Annals of Neurology, 51, 783–786.PubMed Holsinger, R. M., McLean, C. A., Beyreuther, K., Masters, C. L., & Evin, G. (2002). Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Annals of Neurology, 51, 783–786.PubMed
Zurück zum Zitat Ida, N., Hartmann, T., Pantel, J., Schroder, J., Zerfass, R., Forstl, H., et al. (1996). Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. Journal of Biological Chemistry, 271, 22908–22914.PubMed Ida, N., Hartmann, T., Pantel, J., Schroder, J., Zerfass, R., Forstl, H., et al. (1996). Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. Journal of Biological Chemistry, 271, 22908–22914.PubMed
Zurück zum Zitat Irizarry, M. C. (2004). Biomarkers of Alzheimer disease in plasma. NeuroRx, 1, 226–234.PubMed Irizarry, M. C. (2004). Biomarkers of Alzheimer disease in plasma. NeuroRx, 1, 226–234.PubMed
Zurück zum Zitat Irizarry, M. C., McNamara, M., Fedorchak, K., Hsiao, K., & Hyman, B. T. (1997). APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. Journal of Neuropathology and Experimental Neurology, 56, 965–973.PubMed Irizarry, M. C., McNamara, M., Fedorchak, K., Hsiao, K., & Hyman, B. T. (1997). APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. Journal of Neuropathology and Experimental Neurology, 56, 965–973.PubMed
Zurück zum Zitat Iwatsubo, T. (1998). Amyloid beta protein in plasma as a diagnostic marker for Alzheimer’s disease. Neurobiology of Aging, 19, 161–163.PubMed Iwatsubo, T. (1998). Amyloid beta protein in plasma as a diagnostic marker for Alzheimer’s disease. Neurobiology of Aging, 19, 161–163.PubMed
Zurück zum Zitat Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y., Schmidt, S. D., et al. (2000). A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature, 408, 979–982.PubMed Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y., Schmidt, S. D., et al. (2000). A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature, 408, 979–982.PubMed
Zurück zum Zitat Jensen, M., Schroder, J., Blomberg, M., Engvall, B., Pantel, J., Ida, N., et al. (1999). Cerebrospinal fluid A beta42 is increased early in sporadic Alzheimer’s disease and declines with disease progression. Annals of Neurology, 45, 504–511.PubMed Jensen, M., Schroder, J., Blomberg, M., Engvall, B., Pantel, J., Ida, N., et al. (1999). Cerebrospinal fluid A beta42 is increased early in sporadic Alzheimer’s disease and declines with disease progression. Annals of Neurology, 45, 504–511.PubMed
Zurück zum Zitat Joachim, C. L., Mori, H., & Selkoe, D. J. (1989). Amyloid beta-protein deposition in tissues other than brain in Alzheimer’s disease. Nature, 341, 226–230.PubMed Joachim, C. L., Mori, H., & Selkoe, D. J. (1989). Amyloid beta-protein deposition in tissues other than brain in Alzheimer’s disease. Nature, 341, 226–230.PubMed
Zurück zum Zitat Kanai, M., Matsubara, E., Isoe, K., Urakami, K., Nakashima, K., Arai, H., et al. (1998). Longitudinal study of cerebrospinal fluid levels of tau, A beta1-40, and A beta1-42(43) in Alzheimer’s disease: A study in Japan. Annals of Neurology, 44, 17–26.PubMed Kanai, M., Matsubara, E., Isoe, K., Urakami, K., Nakashima, K., Arai, H., et al. (1998). Longitudinal study of cerebrospinal fluid levels of tau, A beta1-40, and A beta1-42(43) in Alzheimer’s disease: A study in Japan. Annals of Neurology, 44, 17–26.PubMed
Zurück zum Zitat Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., et al. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23, 138–144.PubMed Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., et al. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23, 138–144.PubMed
Zurück zum Zitat Kawarabayashi, T., Younkin, L. H., Saido, T. C., Shoji, M., Ashe, K. H., & Younkin, S. G. (2001). Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. Journal of Neuroscience, 21, 372–381.PubMed Kawarabayashi, T., Younkin, L. H., Saido, T. C., Shoji, M., Ashe, K. H., & Younkin, S. G. (2001). Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. Journal of Neuroscience, 21, 372–381.PubMed
Zurück zum Zitat Klunk, W. E., Pettegrew, J. W., & Abraham, D. J. (1989). Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. Journal of Histochemistry and Cytochemistry, 37, 1273–1281.PubMed Klunk, W. E., Pettegrew, J. W., & Abraham, D. J. (1989). Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. Journal of Histochemistry and Cytochemistry, 37, 1273–1281.PubMed
Zurück zum Zitat Kosaka, T., Imagawa, M., Seki, K., Arai, H., Sasaki, H., Tsuji, S., et al. (1997). The beta APP717 Alzheimer mutation increases the percentage of plasma amyloid-beta protein ending at A beta42(43). Neurology, 48, 741–745.PubMed Kosaka, T., Imagawa, M., Seki, K., Arai, H., Sasaki, H., Tsuji, S., et al. (1997). The beta APP717 Alzheimer mutation increases the percentage of plasma amyloid-beta protein ending at A beta42(43). Neurology, 48, 741–745.PubMed
Zurück zum Zitat Koudinov, A., Matsubara, E., Frangione, B., & Ghiso, J. (1994). The soluble form of Alzheimer’s amyloid beta protein is complexed to high density lipoprotein 3 and very high density lipoprotein in normal human plasma. Biochemical and Biophysical Research Communications, 205, 1164–1171.PubMed Koudinov, A., Matsubara, E., Frangione, B., & Ghiso, J. (1994). The soluble form of Alzheimer’s amyloid beta protein is complexed to high density lipoprotein 3 and very high density lipoprotein in normal human plasma. Biochemical and Biophysical Research Communications, 205, 1164–1171.PubMed
Zurück zum Zitat Kulstad, J. J., Green, P. S., Cook, D. G., Watson, G. S., Reger, M. A., Baker, L. D., et al. (2006). Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology, 66, 1506–1510.PubMed Kulstad, J. J., Green, P. S., Cook, D. G., Watson, G. S., Reger, M. A., Baker, L. D., et al. (2006). Differential modulation of plasma beta-amyloid by insulin in patients with Alzheimer disease. Neurology, 66, 1506–1510.PubMed
Zurück zum Zitat Kuo, Y. M., Emmerling, M. R., Lampert, H. C., Hempelman, S. R., Kokjohn, T. A., Woods, A. S., et al. (1999). High levels of circulating Abeta42 are sequestered by plasma proteins in Alzheimer’s disease. Biochemical and Biophysical Research Communications, 257, 787–791.PubMed Kuo, Y. M., Emmerling, M. R., Lampert, H. C., Hempelman, S. R., Kokjohn, T. A., Woods, A. S., et al. (1999). High levels of circulating Abeta42 are sequestered by plasma proteins in Alzheimer’s disease. Biochemical and Biophysical Research Communications, 257, 787–791.PubMed
Zurück zum Zitat Kuo, Y. M., Kokjohn, T. A., Kalback, W., Luehrs, D., Galasko, D. R., Chevallier, N., et al. (2000a). Amyloid-beta peptides interact with plasma proteins and erythrocytes: Implications for their quantitation in plasma. Biochemical and Biophysical Research Communications, 268, 750–756.PubMed Kuo, Y. M., Kokjohn, T. A., Kalback, W., Luehrs, D., Galasko, D. R., Chevallier, N., et al. (2000a). Amyloid-beta peptides interact with plasma proteins and erythrocytes: Implications for their quantitation in plasma. Biochemical and Biophysical Research Communications, 268, 750–756.PubMed
Zurück zum Zitat Kuo, Y. M., Kokjohn, T. A., Watson, M. D., Woods, A. S., Cotter, R. J., Sue, L. I., et al. (2000b). Elevated abeta42 in skeletal muscle of Alzheimer disease patients suggests peripheral alterations of AbetaPP metabolism. American Journal of Pathology, 156, 797–805.PubMed Kuo, Y. M., Kokjohn, T. A., Watson, M. D., Woods, A. S., Cotter, R. J., Sue, L. I., et al. (2000b). Elevated abeta42 in skeletal muscle of Alzheimer disease patients suggests peripheral alterations of AbetaPP metabolism. American Journal of Pathology, 156, 797–805.PubMed
Zurück zum Zitat Laird, F. M., Cai, H., Savonenko, A. V., Farah, M. H., He, K., Melnikova, T., et al. (2005). BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. Journal of Neuroscience, 25, 11693–11709.PubMed Laird, F. M., Cai, H., Savonenko, A. V., Farah, M. H., He, K., Melnikova, T., et al. (2005). BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. Journal of Neuroscience, 25, 11693–11709.PubMed
Zurück zum Zitat Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., et al. (1998). Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America, 95, 6448–6453.PubMed Lambert, M. P., Barlow, A. K., Chromy, B. A., Edwards, C., Freed, R., Liosatos, M., et al. (1998). Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America, 95, 6448–6453.PubMed
Zurück zum Zitat Lemere, C. A., Spooner, E. T., LaFrancois, J., Malester, B., Mori, C., Leverone, J. F., et al. (2003). Evidence for peripheral clearance of cerebral Abeta protein following chronic, active Abeta immunization in PSAPP mice. Neurobiology of Disease, 14, 10–18.PubMed Lemere, C. A., Spooner, E. T., LaFrancois, J., Malester, B., Mori, C., Leverone, J. F., et al. (2003). Evidence for peripheral clearance of cerebral Abeta protein following chronic, active Abeta immunization in PSAPP mice. Neurobiology of Disease, 14, 10–18.PubMed
Zurück zum Zitat Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440, 352–357.PubMed Lesne, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., et al. (2006). A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 440, 352–357.PubMed
Zurück zum Zitat Levites, Y., Das, P., Price, R. W., Rochette, M. J., Kostura, L. A., McGowan, E. M., et al. (2006). Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. Journal of Clinical Investigation, 116, 193–201.PubMed Levites, Y., Das, P., Price, R. W., Rochette, M. J., Kostura, L. A., McGowan, E. M., et al. (2006). Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. Journal of Clinical Investigation, 116, 193–201.PubMed
Zurück zum Zitat Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., et al. (1995). Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science, 269, 973–977.PubMed Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J., Pettingell, W. H., et al. (1995). Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science, 269, 973–977.PubMed
Zurück zum Zitat Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., et al. (1999). Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. American Journal of Pathology, 155, 853–862.PubMed Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., et al. (1999). Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. American Journal of Pathology, 155, 853–862.PubMed
Zurück zum Zitat Maezawa, I., Hong, H. S., Liu, R., Wu, C. Y., Cheng, R. H., Kung, M. P., et al. (2008). Congo red and thioflavin-T analogs detect Abeta oligomers. Journal of Neurochemistry, 107, 457–468. Maezawa, I., Hong, H. S., Liu, R., Wu, C. Y., Cheng, R. H., Kung, M. P., et al. (2008). Congo red and thioflavin-T analogs detect Abeta oligomers. Journal of Neurochemistry, 107, 457–468.
Zurück zum Zitat Matsubara, E., Ghiso, J., Frangione, B., Amari, M., Tomidokoro, Y., Ikeda, Y., et al. (1999). Lipoprotein-free amyloidogenic peptides in plasma are elevated in patients with sporadic Alzheimer’s disease and Down’s syndrome. Annals of Neurology, 45, 537–541.PubMed Matsubara, E., Ghiso, J., Frangione, B., Amari, M., Tomidokoro, Y., Ikeda, Y., et al. (1999). Lipoprotein-free amyloidogenic peptides in plasma are elevated in patients with sporadic Alzheimer’s disease and Down’s syndrome. Annals of Neurology, 45, 537–541.PubMed
Zurück zum Zitat Matsumoto, Y., Yanase, D., Noguchi-Shinohara, M., Ono, K., Yoshita, M., & Yamada, M. (2007). Blood–brain barrier permeability correlates with medial temporal lobe atrophy but not with amyloid-beta protein transport across the blood–brain barrier in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 23, 241–245.PubMed Matsumoto, Y., Yanase, D., Noguchi-Shinohara, M., Ono, K., Yoshita, M., & Yamada, M. (2007). Blood–brain barrier permeability correlates with medial temporal lobe atrophy but not with amyloid-beta protein transport across the blood–brain barrier in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 23, 241–245.PubMed
Zurück zum Zitat Matsuoka, Y., Saito, M., LaFrancois, J., Saito, M., Gaynor, K., Olm, V., et al. (2003). Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to beta-amyloid. Journal of Neuroscience, 23, 29–33.PubMed Matsuoka, Y., Saito, M., LaFrancois, J., Saito, M., Gaynor, K., Olm, V., et al. (2003). Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to beta-amyloid. Journal of Neuroscience, 23, 29–33.PubMed
Zurück zum Zitat Matsuoka, Y., Shao, L., Debnath, M., Lafrancois, J., Becker, A., Gray, A., et al. (2005). An Abeta sequestration approach using non-antibody Abeta binding agents. Current Alzheimer Research, 2, 265–268.PubMed Matsuoka, Y., Shao, L., Debnath, M., Lafrancois, J., Becker, A., Gray, A., et al. (2005). An Abeta sequestration approach using non-antibody Abeta binding agents. Current Alzheimer Research, 2, 265–268.PubMed
Zurück zum Zitat Mayeux, R., Honig, L. S., Tang, M. X., Manly, J., Stern, Y., Schupf, N., et al. (2003). Plasma A[beta]40 and A[beta]42 and Alzheimer’s disease: Relation to age, mortality, and risk. Neurology, 61, 1185–1190.PubMed Mayeux, R., Honig, L. S., Tang, M. X., Manly, J., Stern, Y., Schupf, N., et al. (2003). Plasma A[beta]40 and A[beta]42 and Alzheimer’s disease: Relation to age, mortality, and risk. Neurology, 61, 1185–1190.PubMed
Zurück zum Zitat Mayeux, R., Tang, M. X., Jacobs, D. M., Manly, J., Bell, K., Merchant, C., et al. (1999). Plasma amyloid beta-peptide 1-42 and incipient Alzheimer’s disease. Annals of Neurology, 46, 412–416.PubMed Mayeux, R., Tang, M. X., Jacobs, D. M., Manly, J., Bell, K., Merchant, C., et al. (1999). Plasma amyloid beta-peptide 1-42 and incipient Alzheimer’s disease. Annals of Neurology, 46, 412–416.PubMed
Zurück zum Zitat McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., et al. (1999). Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Annals of Neurology, 46, 860–866.PubMed McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., et al. (1999). Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Annals of Neurology, 46, 860–866.PubMed
Zurück zum Zitat Mehta, P. D., Pirttila, T., Mehta, S. P., Sersen, E. A., Aisen, P. S., & Wisniewski, H. M. (2000). Plasma and cerebrospinal fluid levels of amyloid beta proteins 1-40 and 1-42 in Alzheimer disease. Archives of Neurology, 57, 100–105.PubMed Mehta, P. D., Pirttila, T., Mehta, S. P., Sersen, E. A., Aisen, P. S., & Wisniewski, H. M. (2000). Plasma and cerebrospinal fluid levels of amyloid beta proteins 1-40 and 1-42 in Alzheimer disease. Archives of Neurology, 57, 100–105.PubMed
Zurück zum Zitat Mehta, P. D., Pirttila, T., Patrick, B. A., Barshatzky, M., & Mehta, S. P. (2001). Amyloid beta protein 1-40 and 1-42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neuroscience Letters, 304, 102–106.PubMed Mehta, P. D., Pirttila, T., Patrick, B. A., Barshatzky, M., & Mehta, S. P. (2001). Amyloid beta protein 1-40 and 1-42 levels in matched cerebrospinal fluid and plasma from patients with Alzheimer disease. Neuroscience Letters, 304, 102–106.PubMed
Zurück zum Zitat Morgan, D., Diamond, D. M., Gottschall, P. E., Ugen, K. E., Dickey, C., Hardy, J., et al. (2000). A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature, 408, 982–985.PubMed Morgan, D., Diamond, D. M., Gottschall, P. E., Ugen, K. E., Dickey, C., Hardy, J., et al. (2000). A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature, 408, 982–985.PubMed
Zurück zum Zitat Morris, J. C., & Price, A. L. (2001). Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. Journal of Molecular Neuroscience, 17, 101–118.PubMed Morris, J. C., & Price, A. L. (2001). Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. Journal of Molecular Neuroscience, 17, 101–118.PubMed
Zurück zum Zitat Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., et al. (2005). Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers and Dementia, 1, 55–66.PubMed Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., et al. (2005). Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers and Dementia, 1, 55–66.PubMed
Zurück zum Zitat Naslund, J., Schierhorn, A., Hellman, U., Lannfelt, L., Roses, A. D., Tjernberg, L. O., et al. (1994). Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proceedings of the National Academy of Sciences of the United States of America, 91, 8378–8382.PubMed Naslund, J., Schierhorn, A., Hellman, U., Lannfelt, L., Roses, A. D., Tjernberg, L. O., et al. (1994). Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proceedings of the National Academy of Sciences of the United States of America, 91, 8378–8382.PubMed
Zurück zum Zitat Neugroschl, J., & Davis, K. L. (2002). Biological markers in Alzheimer disease. American Journal of Geriatric Psychiatry, 10, 660–677.PubMed Neugroschl, J., & Davis, K. L. (2002). Biological markers in Alzheimer disease. American Journal of Geriatric Psychiatry, 10, 660–677.PubMed
Zurück zum Zitat Nystrom, F. H., & Quon, M. J. (1999). Insulin signalling: Metabolic pathways and mechanisms for specificity. Cellular Signalling, 11, 563–574.PubMed Nystrom, F. H., & Quon, M. J. (1999). Insulin signalling: Metabolic pathways and mechanisms for specificity. Cellular Signalling, 11, 563–574.PubMed
Zurück zum Zitat Park, J. H., Gimbel, D. A., GrandPre, T., Lee, J. K., Kim, J. E., Li, W., et al. (2006a). Alzheimer precursor protein interaction with the Nogo–66 receptor reduces amyloid-beta plaque deposition. Journal of Neuroscience, 26, 1386–1395.PubMed Park, J. H., Gimbel, D. A., GrandPre, T., Lee, J. K., Kim, J. E., Li, W., et al. (2006a). Alzheimer precursor protein interaction with the Nogo–66 receptor reduces amyloid-beta plaque deposition. Journal of Neuroscience, 26, 1386–1395.PubMed
Zurück zum Zitat Park, J. H., Widi, G. A., Gimbel, D. A., Harel, N. Y., Lee, D. H., & Strittmatter, S. M. (2006b). Subcutaneous Nogo receptor removes brain amyloid-beta and improves spatial memory in Alzheimer’s transgenic mice. Journal of Neuroscience, 26, 13279–13286.PubMed Park, J. H., Widi, G. A., Gimbel, D. A., Harel, N. Y., Lee, D. H., & Strittmatter, S. M. (2006b). Subcutaneous Nogo receptor removes brain amyloid-beta and improves spatial memory in Alzheimer’s transgenic mice. Journal of Neuroscience, 26, 13279–13286.PubMed
Zurück zum Zitat Pesaresi, M., Lovati, C., Bertora, P., Mailland, E., Galimberti, D., Scarpini, E., et al. (2006). Plasma levels of beta-amyloid (1-42) in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 27, 904–905.PubMed Pesaresi, M., Lovati, C., Bertora, P., Mailland, E., Galimberti, D., Scarpini, E., et al. (2006). Plasma levels of beta-amyloid (1-42) in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 27, 904–905.PubMed
Zurück zum Zitat Price, D. L., & Sisodia, S. S. (1998). Mutant genes in familial Alzheimer’s disease and transgenic models. Annual Review of Neuroscience, 21, 479–505.PubMed Price, D. L., & Sisodia, S. S. (1998). Mutant genes in familial Alzheimer’s disease and transgenic models. Annual Review of Neuroscience, 21, 479–505.PubMed
Zurück zum Zitat Price, J. L., & Morris, J. C. (1999). Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Annals of Neurology, 45, 358–368.PubMed Price, J. L., & Morris, J. C. (1999). Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Annals of Neurology, 45, 358–368.PubMed
Zurück zum Zitat Qiu, W. Q., Walsh, D. M., Ye, Z., Vekrellis, K., Zhang, J., Podlisny, M. B., et al. (1998). Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. Journal of Biological Chemistry, 273, 32730–32738.PubMed Qiu, W. Q., Walsh, D. M., Ye, Z., Vekrellis, K., Zhang, J., Podlisny, M. B., et al. (1998). Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. Journal of Biological Chemistry, 273, 32730–32738.PubMed
Zurück zum Zitat Quinn, K. A., Grimsley, P. G., Dai, Y. P., Tapner, M., Chesterman, C. N., & Owensby, D. A. (1997). Soluble low density lipoprotein receptor-related protein (LRP) circulates in human plasma. Journal of Biological Chemistry, 272, 23946–23951.PubMed Quinn, K. A., Grimsley, P. G., Dai, Y. P., Tapner, M., Chesterman, C. N., & Owensby, D. A. (1997). Soluble low density lipoprotein receptor-related protein (LRP) circulates in human plasma. Journal of Biological Chemistry, 272, 23946–23951.PubMed
Zurück zum Zitat Ray, S., Britschgi, M., Herbert, C., Takeda-Uchimura, Y., Boxer, A., Blennow, K., et al. (2007). Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nature Medicine, 13, 1359–1362.PubMed Ray, S., Britschgi, M., Herbert, C., Takeda-Uchimura, Y., Boxer, A., Blennow, K., et al. (2007). Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nature Medicine, 13, 1359–1362.PubMed
Zurück zum Zitat Robinson, S. R., Bishop, G. M., & Munch, G. (2003). Alzheimer vaccine: Amyloid-beta on trial. Bioessays, 25, 283–288.PubMed Robinson, S. R., Bishop, G. M., & Munch, G. (2003). Alzheimer vaccine: Amyloid-beta on trial. Bioessays, 25, 283–288.PubMed
Zurück zum Zitat Sagare, A., Deane, R., Bell, R. D., Johnson, B., Hamm, K., Pendu, R., et al. (2007). Clearance of amyloid-beta by circulating lipoprotein receptors. Nature Medicine, 13, 1029–1031.PubMed Sagare, A., Deane, R., Bell, R. D., Johnson, B., Hamm, K., Pendu, R., et al. (2007). Clearance of amyloid-beta by circulating lipoprotein receptors. Nature Medicine, 13, 1029–1031.PubMed
Zurück zum Zitat Saulino, M. F., & Schengrund, C. L. (1994). Differential accumulation of gangliosides by the brains of MPTP-lesioned mice. Journal of Neuroscience Research, 37, 384–391.PubMed Saulino, M. F., & Schengrund, C. L. (1994). Differential accumulation of gangliosides by the brains of MPTP-lesioned mice. Journal of Neuroscience Research, 37, 384–391.PubMed
Zurück zum Zitat Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Medicine, 2, 864–870.PubMed Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al. (1996). Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Medicine, 2, 864–870.PubMed
Zurück zum Zitat Schmitt, F. A., Davis, D. G., Wekstein, D. R., Smith, C. D., Ashford, J. W., & Markesbery, W. R. (2000). “Preclinical” AD revisited: Neuropathology of cognitively normal older adults. Neurology, 55, 370–376.PubMed Schmitt, F. A., Davis, D. G., Wekstein, D. R., Smith, C. D., Ashford, J. W., & Markesbery, W. R. (2000). “Preclinical” AD revisited: Neuropathology of cognitively normal older adults. Neurology, 55, 370–376.PubMed
Zurück zum Zitat Schulingkamp, R. J., Pagano, T. C., Hung, D., & Raffa, R. B. (2000). Insulin receptors and insulin action in the brain: Review and clinical implications. Neuroscience and Biobehavioral Reviews, 24, 855–872.PubMed Schulingkamp, R. J., Pagano, T. C., Hung, D., & Raffa, R. B. (2000). Insulin receptors and insulin action in the brain: Review and clinical implications. Neuroscience and Biobehavioral Reviews, 24, 855–872.PubMed
Zurück zum Zitat Seabrook, T. J., Jiang, L., Thomas, K., & Lemere, C. A. (2006). Boosting with intranasal dendrimeric Abeta1-15 but not Abeta1-15 peptide leads to an effective immune response following a single injection of Abeta1-40/42 in APP-tg mice. J Neuroinflammation, 3, 14.PubMed Seabrook, T. J., Jiang, L., Thomas, K., & Lemere, C. A. (2006). Boosting with intranasal dendrimeric Abeta1-15 but not Abeta1-15 peptide leads to an effective immune response following a single injection of Abeta1-40/42 in APP-tg mice. J Neuroinflammation, 3, 14.PubMed
Zurück zum Zitat Selkoe, D. J. (1997). Alzheimer’s disease: Genotypes, phenotypes, and treatments. Science, 275, 630–631.PubMed Selkoe, D. J. (1997). Alzheimer’s disease: Genotypes, phenotypes, and treatments. Science, 275, 630–631.PubMed
Zurück zum Zitat Selkoe, D. J. (2001). Clearing the Brain’s Amyloid Cobwebs. Neuron, 32, 177–180.PubMed Selkoe, D. J. (2001). Clearing the Brain’s Amyloid Cobwebs. Neuron, 32, 177–180.PubMed
Zurück zum Zitat Selkoe, D. J. (2002). Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. Journal of Clinical Investigation, 110, 1375–1381.PubMed Selkoe, D. J. (2002). Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. Journal of Clinical Investigation, 110, 1375–1381.PubMed
Zurück zum Zitat Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375, 754–760.PubMed Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375, 754–760.PubMed
Zurück zum Zitat Shibata, M., Yamada, S., Kumar, S. R., Calero, M., Bading, J., Frangione, B., et al. (2000). Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. Journal of Clinical Investigation, 106, 1489–1499.PubMed Shibata, M., Yamada, S., Kumar, S. R., Calero, M., Bading, J., Frangione, B., et al. (2000). Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood–brain barrier. Journal of Clinical Investigation, 106, 1489–1499.PubMed
Zurück zum Zitat Siemers, E. R., Dean, R. A., Friedrich, S., Ferguson-Sells, L., Gonzales, C., Farlow, M. R., et al. (2007). Safety, tolerability, and effects on plasma and cerebrospinal fluid amyloid-beta after inhibition of gamma-secretase. Clinical Neuropharmacology, 30, 317–325.PubMedCrossRef Siemers, E. R., Dean, R. A., Friedrich, S., Ferguson-Sells, L., Gonzales, C., Farlow, M. R., et al. (2007). Safety, tolerability, and effects on plasma and cerebrospinal fluid amyloid-beta after inhibition of gamma-secretase. Clinical Neuropharmacology, 30, 317–325.PubMedCrossRef
Zurück zum Zitat Siemers, E. R., Quinn, J. F., Kaye, J., Farlow, M. R., Porsteinsson, A., Tariot, P., et al. (2006). Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology, 66, 602–604.PubMed Siemers, E. R., Quinn, J. F., Kaye, J., Farlow, M. R., Porsteinsson, A., Tariot, P., et al. (2006). Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology, 66, 602–604.PubMed
Zurück zum Zitat Silverberg, G. D., Mayo, M., Saul, T., Rubenstein, E., & McGuire, D. (2003). Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: A hypothesis. Lancet Neurology, 2, 506–511.PubMed Silverberg, G. D., Mayo, M., Saul, T., Rubenstein, E., & McGuire, D. (2003). Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: A hypothesis. Lancet Neurology, 2, 506–511.PubMed
Zurück zum Zitat Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., et al. (1999). Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature, 402, 537–540.PubMed Sinha, S., Anderson, J. P., Barbour, R., Basi, G. S., Caccavello, R., Davis, D., et al. (1999). Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature, 402, 537–540.PubMed
Zurück zum Zitat Skovronsky, D. M., Lee, V. M., & Pratico, D. (2001). Amyloid precursor protein and amyloid beta peptide in human platelets. Role of cyclooxygenase and protein kinase C. Journal of Biological Chemistry, 276, 17036–17043. Skovronsky, D. M., Lee, V. M., & Pratico, D. (2001). Amyloid precursor protein and amyloid beta peptide in human platelets. Role of cyclooxygenase and protein kinase C. Journal of Biological Chemistry, 276, 17036–17043.
Zurück zum Zitat Slemmon, J. R., Painter, C. L., Nadanaciva, S., Catana, F., Cook, A., Motter, R., et al. (2007). Distribution of Abeta peptide in whole blood. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 846, 24–31.PubMed Slemmon, J. R., Painter, C. L., Nadanaciva, S., Catana, F., Cook, A., Motter, R., et al. (2007). Distribution of Abeta peptide in whole blood. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 846, 24–31.PubMed
Zurück zum Zitat Small, S. A., & Gandy, S. (2006). Sorting through the cell biology of Alzheimer’s disease: Intracellular pathways to pathogenesis. Neuron, 52, 15–31.PubMed Small, S. A., & Gandy, S. (2006). Sorting through the cell biology of Alzheimer’s disease: Intracellular pathways to pathogenesis. Neuron, 52, 15–31.PubMed
Zurück zum Zitat Stenh, C., Englund, H., Lord, A., Johansson, A. S., Almeida, C. G., Gellerfors, P., et al. (2005). Amyloid-beta oligomers are inefficiently measured by enzyme-linked immunosorbent assay. Annals of Neurology, 58, 147–150.PubMed Stenh, C., Englund, H., Lord, A., Johansson, A. S., Almeida, C. G., Gellerfors, P., et al. (2005). Amyloid-beta oligomers are inefficiently measured by enzyme-linked immunosorbent assay. Annals of Neurology, 58, 147–150.PubMed
Zurück zum Zitat Sundelof, J., Giedraitis, V., Irizarry, M. C., Sundstrom, J., Ingelsson, E., Ronnemaa, E., et al. (2008). Plasma beta Amyloid and the Risk of Alzheimer Disease and Dementia in Elderly Men: A Prospective, Population-Based Cohort Study. Archives of Neurology, 65, 256–263.PubMed Sundelof, J., Giedraitis, V., Irizarry, M. C., Sundstrom, J., Ingelsson, E., Ronnemaa, E., et al. (2008). Plasma beta Amyloid and the Risk of Alzheimer Disease and Dementia in Elderly Men: A Prospective, Population-Based Cohort Study. Archives of Neurology, 65, 256–263.PubMed
Zurück zum Zitat Sunderland, T., Linker, G., Mirza, N., Putnam, K. T., Friedman, D. L., Kimmel, L. H., et al. (2003). Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA, 289, 2094–2103.PubMed Sunderland, T., Linker, G., Mirza, N., Putnam, K. T., Friedman, D. L., Kimmel, L. H., et al. (2003). Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA, 289, 2094–2103.PubMed
Zurück zum Zitat Takata, K., Hirata-Fukae, C., Becker, A. G., Chishiro, S., Gray, A. J., Nishitomi, K., et al. (2007). Deglycosylated anti-amyloid beta antibodies reduce microglial phagocytosis and cytokine production while retaining the capacity to induce amyloid beta sequestration. European Journal of Neuroscience, 26, 2458–2468. Takata, K., Hirata-Fukae, C., Becker, A. G., Chishiro, S., Gray, A. J., Nishitomi, K., et al. (2007). Deglycosylated anti-amyloid beta antibodies reduce microglial phagocytosis and cytokine production while retaining the capacity to induce amyloid beta sequestration. European Journal of Neuroscience, 26, 2458–2468.
Zurück zum Zitat Tamaki, C., Ohtsuki, S., Iwatsubo, T., Hashimoto, T., Yamada, K., Yabuki, C., et al. (2006). Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharmaceutical Research, 23, 1407–1416.PubMed Tamaki, C., Ohtsuki, S., Iwatsubo, T., Hashimoto, T., Yamada, K., Yabuki, C., et al. (2006). Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharmaceutical Research, 23, 1407–1416.PubMed
Zurück zum Zitat Tamaki, C., Ohtsuki, S., & Terasaki, T. (2007). Insulin facilitates the hepatic clearance of plasma amyloid beta-peptide (1-40) by intracellular translocation of low-density lipoprotein receptor-related protein 1 (LRP-1) to the plasma membrane in hepatocytes. Molecular Pharmacology, 72, 850–855.PubMed Tamaki, C., Ohtsuki, S., & Terasaki, T. (2007). Insulin facilitates the hepatic clearance of plasma amyloid beta-peptide (1-40) by intracellular translocation of low-density lipoprotein receptor-related protein 1 (LRP-1) to the plasma membrane in hepatocytes. Molecular Pharmacology, 72, 850–855.PubMed
Zurück zum Zitat Tamaoka, A., Fukushima, T., Sawamura, N., Ishikawa, K., Oguni, E., Komatsuzaki, Y., et al. (1996). Amyloid beta protein in plasma from patients with sporadic Alzheimer’s disease. Journal of the Neurological Sciences, 141, 65–68.PubMed Tamaoka, A., Fukushima, T., Sawamura, N., Ishikawa, K., Oguni, E., Komatsuzaki, Y., et al. (1996). Amyloid beta protein in plasma from patients with sporadic Alzheimer’s disease. Journal of the Neurological Sciences, 141, 65–68.PubMed
Zurück zum Zitat Tanzi, R. E., Moir, R. D., & Wagner, S. L. (2004). Clearance of Alzheimer’s Abeta peptide: The many roads to perdition. Neuron, 43, 605–608.PubMed Tanzi, R. E., Moir, R. D., & Wagner, S. L. (2004). Clearance of Alzheimer’s Abeta peptide: The many roads to perdition. Neuron, 43, 605–608.PubMed
Zurück zum Zitat Tokuda, T., Fukushima, T., Ikeda, S., Sekijima, Y., Shoji, S., Yanagisawa, N., et al. (1997). Plasma levels of amyloid beta proteins Abeta1-40 and Abeta1-42(43) are elevated in Down’s syndrome. Annals of Neurology, 41, 271–273.PubMed Tokuda, T., Fukushima, T., Ikeda, S., Sekijima, Y., Shoji, S., Yanagisawa, N., et al. (1997). Plasma levels of amyloid beta proteins Abeta1-40 and Abeta1-42(43) are elevated in Down’s syndrome. Annals of Neurology, 41, 271–273.PubMed
Zurück zum Zitat Troncoso, J. C., Martin, L. J., Dal Forno, G., & Kawas, C. H. (1996). Neuropathology in controls and demented subjects from the Baltimore Longitudinal Study of Aging. Neurobiology of Aging, 17, 365–371.PubMed Troncoso, J. C., Martin, L. J., Dal Forno, G., & Kawas, C. H. (1996). Neuropathology in controls and demented subjects from the Baltimore Longitudinal Study of Aging. Neurobiology of Aging, 17, 365–371.PubMed
Zurück zum Zitat van Oijen, M., Hofman, A., Soares, H. D., Koudstaal, P. J., & Breteler, M. M. (2006). Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: A prospective case-cohort study. Lancet Neurology, 5, 655–660.PubMed van Oijen, M., Hofman, A., Soares, H. D., Koudstaal, P. J., & Breteler, M. M. (2006). Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: A prospective case-cohort study. Lancet Neurology, 5, 655–660.PubMed
Zurück zum Zitat Vanderstichele, H., Van Kerschaver, E., Hesse, C., Davidsson, P., Buyse, M. A., Andreasen, N., et al. (2000). Standardization of measurement of beta-amyloid(1-42) in cerebrospinal fluid and plasma. Amyloid, 7, 245–258.PubMed Vanderstichele, H., Van Kerschaver, E., Hesse, C., Davidsson, P., Buyse, M. A., Andreasen, N., et al. (2000). Standardization of measurement of beta-amyloid(1-42) in cerebrospinal fluid and plasma. Amyloid, 7, 245–258.PubMed
Zurück zum Zitat Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., et al. (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286, 735–741.PubMed Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., et al. (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286, 735–741.PubMed
Zurück zum Zitat Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.PubMed Walsh, D. M., Klyubin, I., Fadeeva, J. V., Cullen, W. K., Anwyl, R., Wolfe, M. S., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.PubMed
Zurück zum Zitat Watson, G. S., Peskind, E. R., Asthana, S., Purganan, K., Wait, C., Chapman, D., et al. (2003). Insulin increases CSF Abeta42 levels in normal older adults. Neurology, 60, 1899–1903.PubMed Watson, G. S., Peskind, E. R., Asthana, S., Purganan, K., Wait, C., Chapman, D., et al. (2003). Insulin increases CSF Abeta42 levels in normal older adults. Neurology, 60, 1899–1903.PubMed
Zurück zum Zitat Yang, L. B., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X. L., et al. (2003). Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nature Medicine, 9, 3–4.PubMed Yang, L. B., Lindholm, K., Yan, R., Citron, M., Xia, W., Yang, X. L., et al. (2003). Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nature Medicine, 9, 3–4.PubMed
Zurück zum Zitat Zamora, E., Handisurya, A., Shafti-Keramat, S., Borchelt, D., Rudow, G., Conant, K., et al. (2006). Papillomavirus-like particles are an effective platform for amyloid-beta immunization in rabbits and transgenic mice. Journal of Immunology, 177, 2662–2670. Zamora, E., Handisurya, A., Shafti-Keramat, S., Borchelt, D., Rudow, G., Conant, K., et al. (2006). Papillomavirus-like particles are an effective platform for amyloid-beta immunization in rabbits and transgenic mice. Journal of Immunology, 177, 2662–2670.
Metadaten
Titel
Maximizing the Potential of Plasma Amyloid-Beta as a Diagnostic Biomarker for Alzheimer’s Disease
verfasst von
Esther S. Oh
Juan C. Troncoso
Stina M. Fangmark Tucker
Publikationsdatum
01.09.2008
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 3/2008
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-008-8035-0

Weitere Artikel der Ausgabe 3/2008

NeuroMolecular Medicine 3/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.