Skip to main content
Erschienen in: European Journal of Medical Research 1/2023

Open Access 01.12.2023 | Review

Mesenchymal stem cells-derived exosomes: novel carriers for nanoparticle to combat cancer

verfasst von: Reza Abbasi, Raziye Momen Mesgin, Fereshteh Nazari-Khanamiri, Nima Abdyazdani, Zeynab Imani, Shabnam Pirnezhad Talatapeh, Aidin Nourmohammadi, Vahid Nejati, Jafar Rezaie

Erschienen in: European Journal of Medical Research | Ausgabe 1/2023

Abstract

Background

The advancement in novel cancer therapeutics brought a platform combining the properties of exosomes with nanoparticles to precision medicine. The novel therapeutic approach aim is cancer-targeted therapy. Exosomes from mesenchymal stem cells (MSCs-Exo) exhibit unique properties in cancer therapies, which makes them an ideal tool for delivering therapeutic agents into tumor cells.

The main body of the abstract

The key role of natural MSCs-Exo is controversial in cancer therapy; however, they can be engineered at their surface or cargo to serve as a smart drug delivery system for cancer-targeted therapy. In the last few years, researchers harnessed nanotechnology to enforce MSCs-Exo for cancer management including, tumor cell tracking, imaging, and tumor cell killing. Different nanoparticles such as gold nanoparticles have particularly been incorporated into MSCs-Exo, which showed an efficient accumulation at the site of tumor with improved anticancer impact. These findings indicate that a hybrid of exosomes–nanoparticles may serve as combination therapy for the effective removal of cancers.

Short conclusion

Although exhibiting impressive potential, the use of nanoparticle-loaded MSCs-Exo as a drug-delivery tool has been troubled by some challenges, therefore, translation to clinic prerequisites further scrutiny. In this review, we focus on nanoparticle-loaded MSCs-Exo as a new cancer therapy and discuss engineered MSC-Exo for target therapy.
Hinweise
Vahid Nejati and Jafar Rezaie participated equally.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AD
Alzheimer's disease
BALF
Bronchoalveolar lavage fluid
BM-MSCs
Bone marrow mesenchymal stem cell
CSF
Cerebrospinal fluid
CM
Conditioned medium
CTX
Cabazitaxel
Cur
Curcumin
CoS QDs
Cobalt sulphide quantum dots
EV
Extracellular vesicles
I/R
Ischemia/reperfusion
MSCs
Mesenchymal stem cells
MSCs-Exo
Exosomes from mesenchymal stem cells
MVBs
Multivesicular bodies
PDAC
Pancreatic ductal adenocarcinoma
PEDF
Pigment epithelium-derived factor
PTX
Paclitaxcel
RVG
Rabies viral glycoprotein
SCC
Squamous cell carcinoma
SPIONs
Superparamagnetic iron oxide nanoparticles
GNPs
Gold nanoparticles
LSPR
Localized SPR
AFM
Atomic force microscopy
BBB
Blood–brain barrier
DDS
Drug delivery system
FTIR
Fourier transform infrared

Background

Cancer is a significant global health challenge due to its devastating effects, including high rates of recurrence and mortality [1, 2]. In 2023, about 1.9 million incidences and 609,820 cancer-related mortality have been estimated in the United States [3]. To combat this, several methods including chemotherapy, radiation, and surgery are commonly being utilized [4, 5]. However, despite significant advances in medical technology in cancer therapy, cancer metastasis and recurrence remain the main challenge [6]. In recent years, stem cell therapy has emerged as a viable treatment option for various types of cancer. Mesenchymal stem cells (MSCs), adult stem cells, can self-renew and differentiate into several types of cell lines [7]. Originally found in the bone marrow [8], MSCs can be found in various body tissues and have the potential to contribute to tissue regeneration by differentiating into endodermal, ectodermal, and mesodermal cell lines [9]. In addition, these cells can regulate tumorigenesis via different signaling pathways; they may inhibit or promote tumors, which is controversial in the literature [10]. MSCs are capable of migrating towards damaged tissue and releasing bioactive substances, such as cytokines, growth factors, and extracellular vesicles (EVs), which offer a range of therapeutic benefits. These include immune suppression, anti-inflammatory properties, anti-apoptosis, antifibrosis, and angiogenesis [11]. MSCs can produce different EVs for instance exosomes to regulate different cellular processes from hemostasis to metastasis. Multiple studies in recent years have demonstrated that exosomes derived from MSCs (MSCs-Exo) may be involved in cancer development. However, there is ongoing debate surrounding the precise role of MSCs-Exo in cancer, as some studies have suggested that they could both promote and inhibit cancer progression [10]. The literature on exosome-based drug delivery systems shows a variety of cell sources are being used to load therapeutic agents onto their exosomes [12, 13]. However, this approach is in its infancy with faces challenges regarding selecting a suitable cell source and loading methods. Due to the useful advantages associated with MSCs-Exo, Scientists have been exploring the potential of using MSCs-Exo as a means of delivering therapeutic agents to tumor cells in both laboratory and animal studies in recent times [14, 15]. Previous research showed the successful creation of a therapy using a combination of MSCs-Exo and NP, demonstrating their potential in tissue repair [16]. In addition, Zhao et al. showed that combining exosome with engineering technology may increase drug targeting capacity of them to tumors [17]. On the other hand, various nanoparticles have been heavily investigated for cancer therapy [18, 19]. Nanoparticles could be used for tumor cells death or can deliver therapeutic agents to tumor cells [20, 21]. Recently, there has been a rising interest in merging nanoparticle therapy with exosome therapy to combat cancer metastasis. This review paper focuses on the latest information on the utilization of MSCs-Exo as a new drug delivery technique for treating tumors, particularly the utilization of nanoparticle-loaded MSCs-Exo. Additionally, the paper discusses the use of engineered MSCs-Exo for targeted therapy (Fig. 1).

Exosomes loading methods

Exosomes can be altered to serve drug delivery system for specific therapeutic aims [22]. Modifications of exosomes involves incorporating of therapeutic agents and other drugs into them, as well as altering the exosomal surface charge to facilitate rapid drug uptake [23]. Various loading techniques have been advanced to enhance the effectiveness of exosomes in cancer therapy [24, 25]. Typically, these strategies can be categorized as either indirect approaches that involve endocellular loading, or direct approaches that involve extracellular loading (Fig. 2). By endocellular loading methods, cargo is usually delivered into the exosome-producing cells. After being enveloped into exosomes, the exosomes containing cargo are collected for therapeutic application [26]. Methods for enhancing exosome therapeutic potential involve modifying parent cells to produce exosomes that overexpress certain biomolecules on the surface or inside the vesicles. Endocellular loading approaches typically involve co-incubation or genetic modification of parent cells to load genes or cargo into exosomes. Extracellular loading methods, on the other hand, involve directly loading cargo into exosomes isolated from cells using active techniques such as electroporation, sonication, incubation, freeze–thaw, or passive methods such as surface modification, hybridization, and biomimetic approaches (Fig. 2) (Table 1). Effective loading of therapeutic cargo into MSCs-Exos is an actual vital step. Now, investigators used various loading methods for several types of therapeutic cargo [27]. Transfection method is the most frequently used technique to load RNAs into exosomes. For example, in a study plasmids were used to transfect miR-122 into adipose-derived MSCs. Results showed that miR-122 molecules were effectively enriched in exosomes [28]. The electroporation method practices an electric field to form impermanent hydrophilic pores on the exosomes membrane to load the therapeutic cargo into them [29]. Gomari et al. used electroporation method to encompass doxorubicin into the MSC-Exo successfully. The loading effectiveness was calculated by a spectrophotometer [30]. However, some studies have pointed out that electroporation may induce RNA aggregation and fluctuations in the exosomes morphology [31]. Overexpression is frequently used for the loading of proteins in MSCs-Exo. Transfection attaches gene fragments to control cell protein synthesis. The target protein can be loaded into the MSCs-Exo through isolation and purification. This method is theoretically mature and easy to work. For example, Huang et al. effectively loaded pigment epithelium-derived factor (PEDF) into MSCs-Exo by overexpression and recognized the expression of PEDF in them via western blotting [32]. Modifying the targeting peptide on the surface of MSCs-Exo is an effective and direct method to expand the targeting capacity of MSCs-Exo [33]. In the study, researchers used the IMTP (ischemic myocardium-targeting peptide) motif CSTSMLKAC on MSC-Exo membrane to target the ischemic myocardium. The results of study revealed that IMTP exosomes considerably enhanced the targeting capability [34]. Among them, two of the simplest techniques for manipulating exosomes are incubation and freeze–thaw cycles. For example, Tian et al. employed a cyclo(Arg-Gly-Asp-D-Tyr-Lys) peptide [c(RGDyK)] to modify the surface of MSCs-Exo, enhancing their targeting capabilities in cerebral ischemia therapy [35]. Another study conducted by Kamerkar et al. focused on engineered EVs for the treatment of pancreatic cancer. The researchers employed electroporation to introduce siRNA or shRNA molecules that target KRASG12D, a common mutation in the KRAS GTPase that is associated with pancreatic ductal adenocarcinoma (PDAC)[36].
Table 1
Exosomes loading methods
Example
Advantage
Disadvantage
Direct methods
Passive
Electroporation: creating an electric field in the microvesicles membrane to increase membrane permeability
Loading↑
Complications in changing cellular gene expression
Safer↑
Extrusion: a combination of two membranes
Fast transfer ↑
Change the membrane proteins in EVs cytotoxicity↑
Freeze–thaw: combination of drug with extracellular vesicle in liquid nitrogen at -80 temperature
Simple and loading↑
Loading ↓ increase the size of EVs and accumulation of exosomes
Sonication: creating a mechanical cut using an ultrasound probe
Loading ↑
Damage the EVs structure
Active
Hybridization: Combining extracellular vesicles with nanovesicles
Loading↑
Potential toxicity
EVs surface modifying: making connections between the ligand of the extracellular vesicle and the membrane of the target molecule
Loading↑
Potential toxicity↑
Biomimetic EVs production: combination of metallic or inorganic nanoparticles with extracellular vesicles
Loading↑
Potential toxicity↑
Indirect methods
Co-incubation: modifying parent cells with drugs and transferring and encapsulating them in cells
Loading↑
Aggregation therapeutic drugs↑
Safer↑
Simple and cheap
Gene editing (transfection): plasmid or vector transfer for protein production
Loading↑
Sensitivity and biocompatibility problem
Safer↑
Microfluidic technology has emerged as a pivotal loading method, significantly influencing the progression of biomedical research [37, 38] due to its advantages such as small size distribution, lower polydispersity index, heightened encapsulation and loading efficiencies, enhanced batch-to-batch uniformity, and facile scalability [39]. The current landscape of microfluidic techniques offers unparalleled opportunities for manipulating drug delivery [40] technologies like localized surface plasmon resonance (LSPR) and atomic force microscopy (AFM), a versatile scanning probe microscope, empower the visualization and characterization of the biomolecular composition of tumor-derived exosomes [40]. These methodologies exhibit the potential to sensitively detect exosomal surface proteins, providing fast, accurate, and reliable results with substantial diagnostic value [41]. In the pursuit of enhancing targeted delivery efficiency for exosomes in treating brain diseases, the optimization of exosomes through engineering technology proves to be an effective strategy. Notably, exosomes possess the ability to traverse the blood–brain barrier (BBB) [42, 43]. As an example by Kim et al., T7-exo stands out as an efficient carrier of AMO-21 into glioblastoma, showcasing its potential utility in glioblastoma therapy development [44]. Moreover, the genetic modification of autologous exosomes to carry ligands specific to receptors enhances cargo delivery stability [45]. Illustratively, in a system where Fe65-engineered exosomes from hippocampal neurons were utilized, the delivery of Cory-B to the brains of Alzheimer's disease (AD) mouse models was achieved. This targeted exosome-based delivery system holds promise as a compelling approach for AD treatment [43].
For convenience, the exosomes loading methods are given in Table 1.

MSCs-Exo

There is evidence that MSCs can produce exosomes in large-scale [46]. In 2010, for the first time, MSCs-Exo were studied in the myocardial ischemia/reperfusion injury in an in vivo, then followed by many studies focusing on the function of these exosomes in several diseases [47]. Similar to other exosomes, MSCs-Exo have the same morphological features and separation and storing procedures [48]. Regarding exosomal markers, MSCs-Exo have common surface markers including CD9, CD63, and CD81; and also contain MSCs surface markers, like CD44, CD29, CD90 and CD73. In addition, these exosomes contain various biomolecules like exosomes from other cell sources [49]. MSCs-Exo have the unique characteristics that make them ideal for bio-application in the treatment of diverse human diseases (nano-carrier) such as low immunogenicity, biosafety, nano-size, long circulation half-life, ideal biocompatibility, outstanding penetration capability, and high uptake rate [49]. In addition, MSCs can be isolated from various tissues and grow in lab easily for the mass-production of exosomes [50]. Native MSCs-Exo can stimulate or prevent cancer cells, whereas engineered MSCs-Exo are involved in the destruction of cancer growth and development via the delivery of numerous therapeutics molecules containing miRNAs, specific siRNAs, drugs, anti-miRNAs, and proteins. In the next section, we focus of the therapeutic application of MSCs-Exo in delivering nanoparticles to cancer cells.

Nanoparticle-loaded MSCs-Exo for targeted therapy

Nanoparticles have demonstrated significant potential as carriers for delivering drugs owing to their small size, large surface area, and capability to attach targeting molecules [51]. By incorporating nanoparticles into exosomes obtained from MSCs, it is possible to specifically deliver them to targeted cells or tissues, making them an attractive approach for cancer-targeted therapy (Fig. 3) (Table 2). When these exosomes reach their target cells, they transmit information through binding to receptors or internalization [52]. Achieving clinical effectiveness with minimal amounts of nanoparticles while ensuring safety is an important objective. In a study, it was shown that gold nanoparticles (GNPs) coated with glucose were effectively taken up by MSCs-Exo through an active and energy-dependent mechanism. The team used a mouse model to track the labeled exosomes administered nasal way, and they observed that these exosomes showed a significant accumulation at the site of a brain injury within 24 h. This accumulation was higher compared to the random movement and clearance observed in control animals. The labeling method for exosomes has significant potential as a valuable diagnostic apparatus for various brain disorders and may improve treatments for neuronal regeneration [53]. More recently, a study also revealed that hybrid nanoparticles, which combined the features of exosomes and dendrimers, improved the uptake of dendrimers by cells without causing significant toxicity. By utilizing these hybrid nanoparticles, the researchers achieved enhanced delivery of oligonucleotides to cancer cells, surpassing the delivery efficiency of dendrimers alone by more than twofold. This research demonstrated the integration of exosomes of MCF-7 cells and dendrimers to produce a versatile nanoparticle platform, offering a new approach to nanoparticle design [54]. Using a mouse model of colon adenocarcinoma called C26, researchers observed that a single intravenous injection of doxorubicin (a chemotherapy drug) encapsulated in exosome–aptamer complexes significantly suppressed tumor growth when compared to free doxorubicin. The study used BALB/c mice and found that the exosome–aptamer complexes derived from MSCs loaded with doxorubicin (MSCs-Exo-Apt-Dox) showed improved efficacy in inhibiting tumor growth [55]. Nisim Perets et al. established a protocol to coat glucose onto GNPs to prepare MSC-Exo. In keeping, they utilized this method to monitor the movement and targeting behaviors of MSC-Exo following administration intranasally. These investigations covered various brain conditions such as stroke, autism, Parkinson's disease, and Alzheimer's disease, involving the utilization of exosomes loaded with nanoparticles [56]. Oded Cohen and colleagues investigated these particles in MSCs-Exo and A431 squamous cell carcinoma line-derived exosomes (A431-exo), both of which hold promise for cancer treatment. They used GNPs for labeling exosomes to target and track tumors and their distribution within the body. Findings indicate that MSCs-Exo, in particular, exhibits enhanced capabilities for tumor-targeted therapy [57]. In other research, researchers incorporated superparamagnetic iron oxide nanoparticles (SPIONs) and curcumin (Cur) into exosomes derived from MSCs. The modified exosomes were found to be capable of effectively passing through the blood–brain barrier and exhibited promising results in targeted imaging and glioma therapy. [58]. More recently, Yang et al. loaded cobalt sulfide quantum dots (CoS QDs) into MSCs-Exo to study anticancer effects. Results showed that MSCs-Exo loaded with CoS QDs could efficiently increase ROS in bladder cancer cells. In addition, in vitro and in vivo results showed that these exosomes exerted remarkable anticancer properties through chemodynamic and photothermal impacts [59]. Overall, these findings indicate that incorporating nanoparticles into MSCs-Exo has more anticancer effects. In addition, it seems that these exosomes are useful for targeted therapy and tumor cells imaging as well as tracking. To the best of our knowledge, there are few studies and further research on these exosomes is necessary to extend our knowledge of the usefulness of MSCs-Exo loaded nanoparticles in cancer-targeted and effective therapies.
Table 2
Studies related to nanoparticle-loaded MSCs-Exo for targeted therapy
Cell type
Nanoparticles
Disease
Loading method
Results
References
MSCs
Gold nanoparticles (GNPs)
Brain injury
Glucose enters cells through an energy-dependent process that is facilitated by a specific protein called GLUT-1
Significant accumulation of labeled exosomes at the site of brain injury within 24 h
[54]
MSCs
Gold nanoparticles (GNPs)
Various brain disorders
Glucose enters cells through an energy-dependent process that is facilitated by a specific protein called GLUT-1
Promising diagnostic tool for brain disorders- Potential for enhancing neuronal recovery
[57]
Human MSCs, A431 squamous cell line
GNPs
Cancer
Glucose enters cells through an energy-dependent process that is facilitated by a specific protein called GLUT-1
Enhanced capabilities of MSCs-Exo for tumor-targeted therapy
[58]
MSCs
Cobalt sulfide quantum dots (CoS QDs)
Bladder cancer
Electrotransfection
These exosomes specifically induced the increase of reactive oxygen species (ROS) concentration in bladder cancer cells
[59]
MSCs
Superparamagnetic iron oxide nanoparticles (SPIONs), curcumin
Glioma
Click chemistry
–Effective crossing of the blood–brain barrier- Positive outcomes in targeted imaging and glioma therapy
[59]

Engineered MSC-Exo for target therapy

Advancements in genetic engineering and click chemistry techniques have opened up exciting possibilities for tailoring MSC-Exo to deliver specific therapeutic payloads, leading to the emergence of engineered MSC-Exo target therapy as a promising avenue for precision medicine [60] (Fig. 4). Targeted therapy, an innovative approach to treating cancer, shows promise in combating tumors involving MSCs-Exo. The ideal drug carrier should specifically target cells or tissues while minimizing systemic side effects. Targeted therapies offer hope in overcoming tumor resistance and cancer metastasis, with minimal non-targeting effects. In this regard, in a study, researchers investigated the probability of advancing a vector based on MSCs-Exo for compacting oral squamous cell carcinoma (OSCC) to carry Cabazitaxel (CTX) /TRAIL combinations. They showed that genetically modified MSCs released exosomes that contain both TRAIL and CTX. MSCs-Exo/CTX showed an effective synergistic impact and a highly efficient pharmacological suppression on tumor cells, as confirmed by the following mouse model [61]. Scientists used bone marrow MSCs (BM-MSCs) derived exosomes to specifically target cancer to modify the tumor cell kinetics in pancreatic ductal adenocarcinoma (PDAC)[62]. BM-MSCs-Exo tagged with rabies viral glycoprotein (RVG) demonstrated enhanced targeting to the cortex and hippocampus following intravenous administration. Results present a novel approach to increase the delivery of exosomes for the treatment of Alzheimer's disease in an animal model [63]. In addition, by targeting exosomes to the cortex and hippocampus of mice, they observed significant improvements in learning and memory abilities, removed plaque deposition and Aβ levels, as well as normalized inflammatory cytokine levels associated with Alzheimer's disease [63]. The data suggest that modified BM-MSCs-Exo attenuates myocardial ischemia/reperfusion (I/R) injury in mice by delivering miR-182, which modulates the polarization status of macrophages during ischemia [64]. Through a transfection method, Wang et al. isolated BM-MSCs-Exo that overexpressed CTnI-targeted peptides on their surfaces. Engineered exosomes may be directed to the myocardial infarction (MI) zone by exploiting the concentration gradient of cardiac troponin I (CTnI), which is upregulated in this area. [65]. Jia and colleagues employed click chemistry to attach a neuropilin-1-targeted peptide (RGERPPR) onto the membrane of MSCs-Exo. This modification enabled efficient targeting of glioma cells [58]. In a different investigation, the IMTP motif CSTSMLKAC was incorporated into the surface of MSCs-Exo to target the MI zone. The results of the study revealed that IMTP exosomes showed a significant improvement in their targeting abilities [65]. To enhance the bone regeneration properties of MSCs, they were modified through the modification of BMP2 gene. This modification resulted in exosomes biogenesis with modified features and cargo (MSCs-BMP2-Exo). These exosomes demonstrated a significant ability to facilitate bone healing in a mouse model with bone defects [66]. Therefore, engineered MSCs-Exo showed promising results in the targeted therapy area.

Clinical trials

Currently, ongoing clinical trials are studying the use of EVs/exosomes as carriers for therapeutic agents in various diseases. An analysis of the ClinicalTrials.gov database reveals the registration of a clinical trial in its Phase I stage. This clinical trial aims to determine the appropriate dosage and evaluate any potential adverse effects of iExosomes, which are MSCs-Exo containing KrasG12D siRNA, in the treatment of pancreatic cancer patients with metastasis to other areas of the body and characterized by the KrasG12D mutation (NCT03608631). Researchers have harnessed the immunomodulatory and regenerative properties of MSC-Exo to enhance the therapeutic outcomes of drug delivery. By modulating inflammation, promoting tissue repair, or influencing cell-signaling pathways, MSC-Exo can augment the efficacy of drug treatment in clinical trials.

Conclusion and further perspective

Our work has led us to conclude that MSCs-Exo loaded with nanoparticles showed great promise for cancer therapy. They can be used for tumor cell tracking, imaging, and efficient killing. In addition, studies showed that these exosomes are easily captured with tumor cells, delivering nanoparticles into cellular cytoplasm. Administration of nanoparticles loaded MSCs-Exo may exert low systematic toxicity because nanoparticles are encapsulated by exosomes, further, protecting them from macrophage cleaning in the systematic system. Although there are limitations due to nanoparticles, this approach is in its infancy and few studies examined their efficacy. It is not clear which nanoparticle is suitable for loading into MSCs-Exo. Which method is universal and suitable for loading MSCs-Exo? Does nanoparticle interface with exosomes structure and function? What is the fate or/and interaction way of these exosomes with target cells? And what is a proper source for isolating MSCs-Exo? In addition, we have provided further evidence for the usefulness of engineered MSCs-Exo in targeted therapy, which showed that these exosomes can specifically target cells or tissues when systematically administrated. This feature makes them an ideal tool for precision imaging and treatment. Results so far have been very promising, however, for clinical applications, some challenges remain to be overwhelmed, which are discussed here as questions. Do engineered methods disrupt MSCs-Exo integrity? Do engineered methods modify MSCs-Exo cargo? What is the biodistribution of engineered MSCs-Exo? And which method is suitable for engineering MSCs-Exo? In addition, the advanced analytical techniques like Raman and FT-IR for the evaluation of exosome-based delivery systems have been reported. For example, Horgan et al. developed a metabolic labeling strategy utilizing deuterium for studying EVs through a confocal spontaneous Raman micro-spectroscopy system [67]. Raman scattering-based immunoaffinity, exploiting specific chemical fingerprints, and magnetic properties for exosome isolation and characterization have been explored. Previous studies have demonstrated the high sensitivity and specificity of the Raman method in detecting breast cancer in patients [68]. Fourier transform infrared (FTIR) spectroscopy is another method that has shown successful diagnosis in blood exosome samples from Alzheimer's patients [69].

Acknowledgements

Some of the figures have been designed using BioRender Co. online site (https://​biorender.​com/​).

Declarations

None.
None.

Competing interests

None.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):394–424.CrossRef
2.
Zurück zum Zitat Babaei M, Pirnejad H, Rezaie J, Roshandel G, Hoseini R. Association between socioeconomic factors and the risk of gastric cancer incidence: results from an ecological study. Iran J Public Health. 2023;52(8):1739.PubMedPubMedCentral Babaei M, Pirnejad H, Rezaie J, Roshandel G, Hoseini R. Association between socioeconomic factors and the risk of gastric cancer incidence: results from an ecological study. Iran J Public Health. 2023;52(8):1739.PubMedPubMedCentral
3.
Zurück zum Zitat Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Cancer J Clin. 2023;73(1):17–48.CrossRef Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Cancer J Clin. 2023;73(1):17–48.CrossRef
4.
Zurück zum Zitat Liu YP, Zheng CC, Huang YN, He ML, Xu WW, Li B. Molecular mechanisms of chemo-and radiotherapy resistance and the potential implications for cancer treatment. MedComm. 2021;2(3):315–40.PubMedPubMedCentralCrossRef Liu YP, Zheng CC, Huang YN, He ML, Xu WW, Li B. Molecular mechanisms of chemo-and radiotherapy resistance and the potential implications for cancer treatment. MedComm. 2021;2(3):315–40.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Bao Y, Liu S, Zhou Q, Cai P, Anfossi S, Li Q, Hu Y, Liu M, Fu J, Rong T. Three-dimensional conformal radiotherapy with concurrent chemotherapy for postoperative recurrence of esophageal squamous cell carcinoma: clinical efficacy and failure pattern. Radiat Oncol. 2013;8:1–8.CrossRef Bao Y, Liu S, Zhou Q, Cai P, Anfossi S, Li Q, Hu Y, Liu M, Fu J, Rong T. Three-dimensional conformal radiotherapy with concurrent chemotherapy for postoperative recurrence of esophageal squamous cell carcinoma: clinical efficacy and failure pattern. Radiat Oncol. 2013;8:1–8.CrossRef
6.
Zurück zum Zitat Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):7.PubMedPubMedCentralCrossRef Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):7.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.PubMedCrossRef Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.PubMedCrossRef
8.
Zurück zum Zitat Friedenstein A, Chailakhjan R, Lalykina K. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3(4):393–403.CrossRef Friedenstein A, Chailakhjan R, Lalykina K. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif. 1970;3(4):393–403.CrossRef
9.
10.
Zurück zum Zitat Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol. 2021;14(1):1–16.CrossRef Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol. 2021;14(1):1–16.CrossRef
11.
Zurück zum Zitat Salgado JA, Reis LR, Sousa N, Gimble MJ. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Current Stem Cell Res Ther. 2010;5(2):103–10.CrossRef Salgado JA, Reis LR, Sousa N, Gimble MJ. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Current Stem Cell Res Ther. 2010;5(2):103–10.CrossRef
12.
Zurück zum Zitat Xi X-M, Xia S-J, Lu R. Drug loading techniques for exosome-based drug delivery systems. Die Pharmazie Int J Pharm Sci. 2021;76(2–3):61–7. Xi X-M, Xia S-J, Lu R. Drug loading techniques for exosome-based drug delivery systems. Die Pharmazie Int J Pharm Sci. 2021;76(2–3):61–7.
13.
Zurück zum Zitat Gutierrez-Millan C, Calvo Díaz C, Lanao JM, Colino CI. Advances in exosomes-based drug delivery systems. Macromol Biosci. 2021;21(1):2000269.CrossRef Gutierrez-Millan C, Calvo Díaz C, Lanao JM, Colino CI. Advances in exosomes-based drug delivery systems. Macromol Biosci. 2021;21(1):2000269.CrossRef
14.
Zurück zum Zitat Yang Z, Li Y, Wang Z. Recent advances in the application of mesenchymal stem cell-derived exosomes for cardiovascular and neurodegenerative disease therapies. Pharmaceutics. 2022;14(3):618.PubMedPubMedCentralCrossRef Yang Z, Li Y, Wang Z. Recent advances in the application of mesenchymal stem cell-derived exosomes for cardiovascular and neurodegenerative disease therapies. Pharmaceutics. 2022;14(3):618.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Zargar MJ, Kaviani S, Vasei M, Soufi Zomorrod M, Heidari Keshel S, Soleimani M. Therapeutic role of mesenchymal stem cell-derived exosomes in respiratory disease. Stem Cell Res Ther. 2022;13(1):1–11.CrossRef Zargar MJ, Kaviani S, Vasei M, Soufi Zomorrod M, Heidari Keshel S, Soleimani M. Therapeutic role of mesenchymal stem cell-derived exosomes in respiratory disease. Stem Cell Res Ther. 2022;13(1):1–11.CrossRef
16.
Zurück zum Zitat Li X, Wang Y, Shi L, Li B, Li J, Wei Z, Lv H, Wu L, Zhang H, Yang B. Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. Journal of nanobiotechnology. 2020;18:1–14.CrossRef Li X, Wang Y, Shi L, Li B, Li J, Wei Z, Lv H, Wu L, Zhang H, Yang B. Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. Journal of nanobiotechnology. 2020;18:1–14.CrossRef
17.
Zurück zum Zitat Zhao C, Busch DJ, Vershel CP, Stachowiak JC. Multifunctional transmembrane protein ligands for cell-specific targeting of plasma membrane-derived vesicles. Small. 2016;12(28):3837–48.PubMedPubMedCentralCrossRef Zhao C, Busch DJ, Vershel CP, Stachowiak JC. Multifunctional transmembrane protein ligands for cell-specific targeting of plasma membrane-derived vesicles. Small. 2016;12(28):3837–48.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Sánchez-Moreno P, Ortega-Vinuesa JL, Martín-Rodríguez A, Boulaiz H, Marchal-Corrales JA, Peula-García JM. Characterization of different functionalized lipidic nanocapsules as potential drug carriers. Int J Mol Sci. 2012;13(2):2405–24.PubMedPubMedCentralCrossRef Sánchez-Moreno P, Ortega-Vinuesa JL, Martín-Rodríguez A, Boulaiz H, Marchal-Corrales JA, Peula-García JM. Characterization of different functionalized lipidic nanocapsules as potential drug carriers. Int J Mol Sci. 2012;13(2):2405–24.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Jafari H, Hassanpour M, Akbari A, Rezaie J, Gohari G, Mahdavinia GR, Jabbari E. Characterization of pH-sensitive chitosan/hydroxypropyl methylcellulose composite nanoparticles for delivery of melatonin in cancer therapy. Mater Lett. 2021;282: 128818.CrossRef Jafari H, Hassanpour M, Akbari A, Rezaie J, Gohari G, Mahdavinia GR, Jabbari E. Characterization of pH-sensitive chitosan/hydroxypropyl methylcellulose composite nanoparticles for delivery of melatonin in cancer therapy. Mater Lett. 2021;282: 128818.CrossRef
20.
Zurück zum Zitat Zafar S, Akhter S, Ahmad I, Hafeez Z, Rizvi MMA, Jain GK, Ahmad FJ. Improved chemotherapeutic efficacy against resistant human breast cancer cells with co-delivery of docetaxel and thymoquinone by chitosan grafted lipid nanocapsules: formulation optimization, in vitro and in vivo studies. Colloids Surf B. 2020;186: 110603.CrossRef Zafar S, Akhter S, Ahmad I, Hafeez Z, Rizvi MMA, Jain GK, Ahmad FJ. Improved chemotherapeutic efficacy against resistant human breast cancer cells with co-delivery of docetaxel and thymoquinone by chitosan grafted lipid nanocapsules: formulation optimization, in vitro and in vivo studies. Colloids Surf B. 2020;186: 110603.CrossRef
21.
Zurück zum Zitat Nabavinia M, Beltran-Huarac J. Recent progress in iron oxide nanoparticles as therapeutic magnetic agents for cancer treatment and tissue engineering. ACS Appl Bio Mater. 2020;3(12):8172–87.PubMedCrossRef Nabavinia M, Beltran-Huarac J. Recent progress in iron oxide nanoparticles as therapeutic magnetic agents for cancer treatment and tissue engineering. ACS Appl Bio Mater. 2020;3(12):8172–87.PubMedCrossRef
22.
Zurück zum Zitat García-Manrique P, Gutiérrez G, Blanco-López MC. Fully artificial exosomes: towards new theranostic biomaterials. Trends Biotechnol. 2018;36(1):10–4.PubMedCrossRef García-Manrique P, Gutiérrez G, Blanco-López MC. Fully artificial exosomes: towards new theranostic biomaterials. Trends Biotechnol. 2018;36(1):10–4.PubMedCrossRef
23.
Zurück zum Zitat García-Manrique P, Matos M, Gutiérrez G, Pazos C, Blanco-López MC. Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering and mimetic preparation routes. J Extracell Vesicles. 2018;7(1):1422676.PubMedPubMedCentralCrossRef García-Manrique P, Matos M, Gutiérrez G, Pazos C, Blanco-López MC. Therapeutic biomaterials based on extracellular vesicles: classification of bio-engineering and mimetic preparation routes. J Extracell Vesicles. 2018;7(1):1422676.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Akhavanakbari G, Babapour B, Alipour MR, Keyhanmanesh R, Ahmadi M, Aslani MR. Effect of high fat diet on NF-кB microRNA146a negative feedback loop in ovalbumin-sensitized rats. BioFactors. 2019;45(1):75–84.PubMedCrossRef Akhavanakbari G, Babapour B, Alipour MR, Keyhanmanesh R, Ahmadi M, Aslani MR. Effect of high fat diet on NF-кB microRNA146a negative feedback loop in ovalbumin-sensitized rats. BioFactors. 2019;45(1):75–84.PubMedCrossRef
25.
26.
Zurück zum Zitat Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L, Wang A, Sylvester MD, Schmidt TL, Kaspar RL, Butte MJ. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci. 2015;112(12):E1433–42.PubMedPubMedCentralCrossRef Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L, Wang A, Sylvester MD, Schmidt TL, Kaspar RL, Butte MJ. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci. 2015;112(12):E1433–42.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Sun Y, Liu G, Zhang K, Cao Q, Liu T, Li J. Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Res Ther. 2021;12:1–15.CrossRef Sun Y, Liu G, Zhang K, Cao Q, Liu T, Li J. Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Res Ther. 2021;12:1–15.CrossRef
28.
Zurück zum Zitat Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8(1):1–11.PubMedPubMedCentralCrossRef Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, Liu Y. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8(1):1–11.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Familtseva A, Jeremic N, Tyagi SC. Exosomes: cell-created drug delivery systems. Mol Cell Biochem. 2019;459:1–6.PubMedCrossRef Familtseva A, Jeremic N, Tyagi SC. Exosomes: cell-created drug delivery systems. Mol Cell Biochem. 2019;459:1–6.PubMedCrossRef
30.
Zurück zum Zitat Gomari H, Forouzandeh Moghadam M, Soleimani M, Ghavami M, Khodashenas S. Targeted delivery of doxorubicin to HER2 positive tumor models. Int J Nanomed. 2019;14:5679–90.CrossRef Gomari H, Forouzandeh Moghadam M, Soleimani M, Ghavami M, Khodashenas S. Targeted delivery of doxorubicin to HER2 positive tumor models. Int J Nanomed. 2019;14:5679–90.CrossRef
31.
Zurück zum Zitat Jeyaram A, Lamichhane TN, Wang S, Zou L, Dahal E, Kronstadt SM, Levy D, Parajuli B, Knudsen DR, Chao W. Enhanced loading of functional miRNA cargo via pH gradient modification of extracellular vesicles. Mol Ther. 2020;28(3):975–85.PubMedCrossRef Jeyaram A, Lamichhane TN, Wang S, Zou L, Dahal E, Kronstadt SM, Levy D, Parajuli B, Knudsen DR, Chao W. Enhanced loading of functional miRNA cargo via pH gradient modification of extracellular vesicles. Mol Ther. 2020;28(3):975–85.PubMedCrossRef
32.
Zurück zum Zitat Huang X, Ding J, Li Y, Liu W, Ji J, Wang H, Wang X. Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion injury by regulation of autophagy and apoptosis. Exp Cell Res. 2018;371(1):269–77.PubMedCrossRef Huang X, Ding J, Li Y, Liu W, Ji J, Wang H, Wang X. Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion injury by regulation of autophagy and apoptosis. Exp Cell Res. 2018;371(1):269–77.PubMedCrossRef
33.
Zurück zum Zitat David A. Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Adv Drug Deliv Rev. 2017;119:120–42.PubMedCrossRef David A. Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment. Adv Drug Deliv Rev. 2017;119:120–42.PubMedCrossRef
34.
Zurück zum Zitat Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, Yang Z, Chen Y, Li J, Ma T. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 2018;7(15): e008737.PubMedPubMedCentralCrossRef Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, Yang Z, Chen Y, Li J, Ma T. Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 2018;7(15): e008737.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Tian T, Zhang H-X, He C-P, Fan S, Zhu Y-L, Qi C, Huang N-P, Xiao Z-D, Lu Z-H, Tannous BA. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49.PubMedCrossRef Tian T, Zhang H-X, He C-P, Fan S, Zhu Y-L, Qi C, Huang N-P, Xiao Z-D, Lu Z-H, Tannous BA. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49.PubMedCrossRef
36.
Zurück zum Zitat Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498–503.PubMedPubMedCentralCrossRef Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498–503.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Yeo LY, Chang HC, Chan PP, Friend JR. Microfluidic devices for bioapplications. Small. 2011;7(1):12–48.PubMedCrossRef Yeo LY, Chang HC, Chan PP, Friend JR. Microfluidic devices for bioapplications. Small. 2011;7(1):12–48.PubMedCrossRef
38.
Zurück zum Zitat Tsui JH, Lee W, Pun SH, Kim J, Kim D-H. Microfluidics-assisted in vitro drug screening and carrier production. Adv Drug Deliv Rev. 2013;65(11–12):1575–88.PubMedCrossRef Tsui JH, Lee W, Pun SH, Kim J, Kim D-H. Microfluidics-assisted in vitro drug screening and carrier production. Adv Drug Deliv Rev. 2013;65(11–12):1575–88.PubMedCrossRef
39.
Zurück zum Zitat Huang X, Lee RJ, Qi Y, Li Y, Lu J, Meng Q, Teng L, Xie J. Microfluidic hydrodynamic focusing synthesis of polymer-lipid nanoparticles for siRNA delivery. Oncotarget. 2017;8(57):96826.PubMedPubMedCentralCrossRef Huang X, Lee RJ, Qi Y, Li Y, Lu J, Meng Q, Teng L, Xie J. Microfluidic hydrodynamic focusing synthesis of polymer-lipid nanoparticles for siRNA delivery. Oncotarget. 2017;8(57):96826.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Mao K, Min X, Zhang H, Zhang K, Cao H, Guo Y, Yang Z. based microfluidics for rapid diagnostics and drug delivery. J Control Release. 2020;322:187–99.PubMedCrossRef Mao K, Min X, Zhang H, Zhang K, Cao H, Guo Y, Yang Z. based microfluidics for rapid diagnostics and drug delivery. J Control Release. 2020;322:187–99.PubMedCrossRef
41.
Zurück zum Zitat Thakur A, Qiu G, Siu-Pang N, Guan J, Yue J, Lee Y, Wu C-ML. Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor. Biosens Bioelectron. 2017;94:400–7.PubMedCrossRef Thakur A, Qiu G, Siu-Pang N, Guan J, Yue J, Lee Y, Wu C-ML. Direct detection of two different tumor-derived extracellular vesicles by SAM-AuNIs LSPR biosensor. Biosens Bioelectron. 2017;94:400–7.PubMedCrossRef
42.
Zurück zum Zitat Thakur A, Qiu G, Xu C, Han X, Yang T, Ng S, Chan K, Wu C-ML, Lee Y. Label-free sensing of exosomal MCT1 and CD147 for tracking metabolic reprogramming and malignant progression in glioma. Sci Adv. 2020;6(26):eaaz6119.PubMedPubMedCentralCrossRef Thakur A, Qiu G, Xu C, Han X, Yang T, Ng S, Chan K, Wu C-ML, Lee Y. Label-free sensing of exosomal MCT1 and CD147 for tracking metabolic reprogramming and malignant progression in glioma. Sci Adv. 2020;6(26):eaaz6119.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Ballard C, Aarsland D, Cummings J, O’Brien J, Mills R, Molinuevo JL, Fladby T, Williams G, Doherty P, Corbett A. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol. 2020;16(12):661–73.PubMedPubMedCentralCrossRef Ballard C, Aarsland D, Cummings J, O’Brien J, Mills R, Molinuevo JL, Fladby T, Williams G, Doherty P, Corbett A. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol. 2020;16(12):661–73.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Kim G, Kim M, Lee Y, Byun JW, Lee M. Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes. J Control Release. 2020;317:273–81.PubMedCrossRef Kim G, Kim M, Lee Y, Byun JW, Lee M. Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes. J Control Release. 2020;317:273–81.PubMedCrossRef
45.
Zurück zum Zitat Santiard-Baron D, Langui D, Delehedde M, Delatour B, Schombert B, Touchet N, Tremp G, Paul MF, Blanchard V, Sergeant N. Expression of human FE65 in amyloid precursor protein transgenic mice is associated with a reduction in β-amyloid load. J Neurochem. 2005;93(2):330–8.PubMedCrossRef Santiard-Baron D, Langui D, Delehedde M, Delatour B, Schombert B, Touchet N, Tremp G, Paul MF, Blanchard V, Sergeant N. Expression of human FE65 in amyloid precursor protein transgenic mice is associated with a reduction in β-amyloid load. J Neurochem. 2005;93(2):330–8.PubMedCrossRef
46.
Zurück zum Zitat Yeo RWY, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, Lim SK. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013;65(3):336–41.PubMedCrossRef Yeo RWY, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, Lim SK. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013;65(3):336–41.PubMedCrossRef
47.
Zurück zum Zitat Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–22.PubMedCrossRef Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–22.PubMedCrossRef
48.
Zurück zum Zitat Lai RC, Yeo RWY, Lim SK. Mesenchymal stem cell exosomes. Amsterdam: Elsevier; 2015. p. 82–8. Lai RC, Yeo RWY, Lim SK. Mesenchymal stem cell exosomes. Amsterdam: Elsevier; 2015. p. 82–8.
50.
Zurück zum Zitat Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, Guo L, Zhang X, Zhou X, Xu X, et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis. 2022;13(7):580.PubMedPubMedCentralCrossRef Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, Guo L, Zhang X, Zhou X, Xu X, et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis. 2022;13(7):580.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: taking a unique position in medicine. Nanomaterials. 2023;13(3):574.PubMedPubMedCentralCrossRef Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: taking a unique position in medicine. Nanomaterials. 2023;13(3):574.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49(6):e346–e346.PubMedPubMedCentralCrossRef Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49(6):e346–e346.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Betzer O, Perets N, Angel A, Motiei M, Sadan T, Yadid G, Offen D, Popovtzer R. In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano. 2017;11(11):10883–93.PubMedCrossRef Betzer O, Perets N, Angel A, Motiei M, Sadan T, Yadid G, Offen D, Popovtzer R. In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano. 2017;11(11):10883–93.PubMedCrossRef
54.
Zurück zum Zitat Nair A, Javius-Jones K, Bugno J, Poellmann MJ, Mamidi N, Kim I-S, Kwon IC, Hong H, Hong S. Hybrid nanoparticle system integrating tumor-derived exosomes and poly (amidoamine) dendrimers: implications for an effective gene delivery platform. Chem Mater. 2023;35(8):3138–50.CrossRef Nair A, Javius-Jones K, Bugno J, Poellmann MJ, Mamidi N, Kim I-S, Kwon IC, Hong H, Hong S. Hybrid nanoparticle system integrating tumor-derived exosomes and poly (amidoamine) dendrimers: implications for an effective gene delivery platform. Chem Mater. 2023;35(8):3138–50.CrossRef
55.
Zurück zum Zitat Bagheri E, Abnous K, Farzad SA, Taghdisi SM, Ramezani M, Alibolandi M. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Sci. 2020;261: 118369.PubMedCrossRef Bagheri E, Abnous K, Farzad SA, Taghdisi SM, Ramezani M, Alibolandi M. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Sci. 2020;261: 118369.PubMedCrossRef
56.
Zurück zum Zitat Perets N, Betzer O, Shapira R, Brenstein S, Angel A, Sadan T, Ashery U, Popovtzer R, Offen D. Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders. Nano Lett. 2019;19(6):3422–31.PubMedCrossRef Perets N, Betzer O, Shapira R, Brenstein S, Angel A, Sadan T, Ashery U, Popovtzer R, Offen D. Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders. Nano Lett. 2019;19(6):3422–31.PubMedCrossRef
57.
Zurück zum Zitat Cohen O, Betzer O, Elmaliach-Pnini N, Motiei M, Sadan T, Cohen-Berkman M, Dagan O, Popovtzer A, Yosepovich A, Barhom H. ‘Golden’ exosomes as delivery vehicles to target tumors and overcome intratumoral barriers: in vivo tracking in a model for head and neck cancer. Biomater Sci. 2021;9(6):2103–14.PubMedCrossRef Cohen O, Betzer O, Elmaliach-Pnini N, Motiei M, Sadan T, Cohen-Berkman M, Dagan O, Popovtzer A, Yosepovich A, Barhom H. ‘Golden’ exosomes as delivery vehicles to target tumors and overcome intratumoral barriers: in vivo tracking in a model for head and neck cancer. Biomater Sci. 2021;9(6):2103–14.PubMedCrossRef
58.
Zurück zum Zitat Jia G, Han Y, An Y, Ding Y, He C, Wang X, Tang Q. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials. 2018;178:302–16.PubMedCrossRef Jia G, Han Y, An Y, Ding Y, He C, Wang X, Tang Q. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials. 2018;178:302–16.PubMedCrossRef
59.
Zurück zum Zitat Yang J, Wang Q, Xing T, Wang X, Li G, Shang Z, Wu J, Chen W, Ou T. Engineered exosome-mediated cobalt sulfide quantum dot targeted delivery for photothermal and chemodynamic anticancer therapy. J Drug Del Sci Technol. 2023;83: 104441.CrossRef Yang J, Wang Q, Xing T, Wang X, Li G, Shang Z, Wu J, Chen W, Ou T. Engineered exosome-mediated cobalt sulfide quantum dot targeted delivery for photothermal and chemodynamic anticancer therapy. J Drug Del Sci Technol. 2023;83: 104441.CrossRef
60.
Zurück zum Zitat Xie X, Yang X, Wu J, Tang S, Yang L, Fei X, Wang M. Exosome from indoleamine 2, 3-dioxygenase-overexpressing bone marrow mesenchymal stem cells accelerates repair process of ischemia/reperfusion-induced acute kidney injury by regulating macrophages polarization. Stem Cell Res Ther. 2022;13(1):1–14.CrossRef Xie X, Yang X, Wu J, Tang S, Yang L, Fei X, Wang M. Exosome from indoleamine 2, 3-dioxygenase-overexpressing bone marrow mesenchymal stem cells accelerates repair process of ischemia/reperfusion-induced acute kidney injury by regulating macrophages polarization. Stem Cell Res Ther. 2022;13(1):1–14.CrossRef
61.
Zurück zum Zitat Qiu Y, Sun J, Qiu J, Chen G, Wang X, Mu Y, Li K, Wang W. Antitumor activity of cabazitaxel and MSC-TRAIL derived extracellular vesicles in drug-resistant oral squamous cell carcinoma. Cancer Manag Res. 2020;12:10809.PubMedPubMedCentralCrossRef Qiu Y, Sun J, Qiu J, Chen G, Wang X, Mu Y, Li K, Wang W. Antitumor activity of cabazitaxel and MSC-TRAIL derived extracellular vesicles in drug-resistant oral squamous cell carcinoma. Cancer Manag Res. 2020;12:10809.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Zhou W, Zhou Y, Chen X, Ning T, Chen H, Guo Q, Zhang Y, Liu P, Zhang Y, Li C. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials. 2021;268: 120546.PubMedCrossRef Zhou W, Zhou Y, Chen X, Ning T, Chen H, Guo Q, Zhang Y, Liu P, Zhang Y, Li C. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials. 2021;268: 120546.PubMedCrossRef
63.
Zurück zum Zitat Cui G, Guo H, Li H, Zhai Y, Gong Z, Wu J, Liu J, Dong Y, Hou S, Liu J. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun Ageing. 2019;16(1):1–12.CrossRef Cui G, Guo H, Li H, Zhai Y, Gong Z, Wu J, Liu J, Dong Y, Hou S, Liu J. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer’s disease. Immun Ageing. 2019;16(1):1–12.CrossRef
64.
Zurück zum Zitat Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J, Xu B. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 2019;115(7):1205–16.PubMedPubMedCentralCrossRef Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, Gao L, Xie J, Xu B. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 2019;115(7):1205–16.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Wang Y, Ding N, Guan G, Liu G, Huo D, Li Y, Wei K, Yang J, Cheng P, Zhu C. Rapid delivery of Hsa-miR-590-3p using targeted exosomes to treat acute myocardial infarction through regulation of the cell cycle. J Biomed Nanotechnol. 2018;14(5):968–77.PubMedCrossRef Wang Y, Ding N, Guan G, Liu G, Huo D, Li Y, Wei K, Yang J, Cheng P, Zhu C. Rapid delivery of Hsa-miR-590-3p using targeted exosomes to treat acute myocardial infarction through regulation of the cell cycle. J Biomed Nanotechnol. 2018;14(5):968–77.PubMedCrossRef
66.
Zurück zum Zitat Li F, Wu J, Li D, Hao L, Li Y, Yi D, Yeung KW, Chen D, Lu WW, Pan H. Engineering stem cells to produce exosomes with enhanced bone regeneration effects: an alternative strategy for gene therapy. J Nanobiotechnol. 2022;20(1):1–23. Li F, Wu J, Li D, Hao L, Li Y, Yi D, Yeung KW, Chen D, Lu WW, Pan H. Engineering stem cells to produce exosomes with enhanced bone regeneration effects: an alternative strategy for gene therapy. J Nanobiotechnol. 2022;20(1):1–23.
67.
Zurück zum Zitat Horgan CC, Nagelkerke A, Whittaker TE, Nele V, Massi L, Kauscher U, Penders J, Bergholt MS, Hood SR, Stevens MM. Molecular imaging of extracellular vesicles in vitro via Raman metabolic labelling. J Mater Chem B. 2020;8(20):4447–59.PubMedPubMedCentralCrossRef Horgan CC, Nagelkerke A, Whittaker TE, Nele V, Massi L, Kauscher U, Penders J, Bergholt MS, Hood SR, Stevens MM. Molecular imaging of extracellular vesicles in vitro via Raman metabolic labelling. J Mater Chem B. 2020;8(20):4447–59.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Li G, Zhu N, Zhou J, Kang K, Zhou X, Ying B, Yi Q, Wu Y. A magnetic surface-enhanced Raman scattering platform for performing successive breast cancer exosome isolation and analysis. J Mater Chem B. 2021;9(11):2709–16.PubMedCrossRef Li G, Zhu N, Zhou J, Kang K, Zhou X, Ying B, Yi Q, Wu Y. A magnetic surface-enhanced Raman scattering platform for performing successive breast cancer exosome isolation and analysis. J Mater Chem B. 2021;9(11):2709–16.PubMedCrossRef
69.
Zurück zum Zitat Soares Martins T, Magalhães S, Rosa IM, Vogelgsang J, Wiltfang J, Delgadillo I, Catita J, da Cruze Silva OA, Nunes A, Henriques AG. Potential of FTIR spectroscopy applied to exosomes for Alzheimer’s disease discrimination: a pilot study. J Alzheimer’s Dis. 2020;74(1):391–405.CrossRef Soares Martins T, Magalhães S, Rosa IM, Vogelgsang J, Wiltfang J, Delgadillo I, Catita J, da Cruze Silva OA, Nunes A, Henriques AG. Potential of FTIR spectroscopy applied to exosomes for Alzheimer’s disease discrimination: a pilot study. J Alzheimer’s Dis. 2020;74(1):391–405.CrossRef
Metadaten
Titel
Mesenchymal stem cells-derived exosomes: novel carriers for nanoparticle to combat cancer
verfasst von
Reza Abbasi
Raziye Momen Mesgin
Fereshteh Nazari-Khanamiri
Nima Abdyazdani
Zeynab Imani
Shabnam Pirnezhad Talatapeh
Aidin Nourmohammadi
Vahid Nejati
Jafar Rezaie
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
European Journal of Medical Research / Ausgabe 1/2023
Elektronische ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01556-y

Weitere Artikel der Ausgabe 1/2023

European Journal of Medical Research 1/2023 Zur Ausgabe